Effect of Cycocel Derivatives and Gibberellin on Choline Kinase and Choline Metabolism

Kiichiro Tanaka and N. E. Tolbert
Department of Biochemistry, Michigan State University, East Lansing, Michigan
Received June 21, 1965.

Summary. Cycocel stimulated the activity of partial purified choline kinase from spinach or squash leaves, but it inhibited the activity of yeast choline kinase. The activity of different Cycocel analogs on plant growth corresponded to their stimulatory effect on the isolated choline kinase. Cycocel had no effect upon the activity of a plant phosphatase which hydrolyzed phosphorylcholine nor upon adenosine triphosphatase from wheat roots or leaves.

Gibberellin A₃ inhibited choline kinase activity and reversed the stimulatory effect of Cycocel on the kinase.

Total choline kinase activity per squash plant was not greatly increased by Cycocel treatment. However, on the basis of fresh weight, total kinase activity was increased by Cycocel treatment. Gibberellin A₃ partially reversed these increases. Treatment with Cycocel plus indoleacetic acid resulted in a large increase in choline kinase activity.

The same distribution of tracer among phosphorylcholine, choline and betaine was observed when either phosphorylcholine-C¹⁴ or choline-C¹⁴ was fed to barley or wheat roots. Cycocel stimulated the incorporation of choline-C¹⁴ into the insoluble fraction and into lipids. Cycocel inhibited phosphorylcholine uptake by roots.

Thus Cycocel stimulated choline kinase activity and the utilization of choline-C¹⁴. The effect of Cycocel upon kinase activity in vivo and in vitro was reversed by gibberellin A₃.

The growth of plants with short internodes is the primary alteration after treatment with 2-chloroethyltrimethylammonium chloride or Cycocel (2,8). This effect (2,9) is completely reversed by gibberellin A₃. Since Cycocel is an analog of choline, we have investigated the effect of Cycocel on choline and phosphorylcholine metabolism in plants.

Materials and Methods

Materials. Choline-C¹⁴H₃Cl (2 mc/mmmole) and choline-1,2-C¹⁴ (1.3 mc/mmmole) were purchased from NiChem Incorporated. The barium salt of phosphorylcholine-1,2-C¹⁴, 0.4 mc/mmmole, was purchased from Nuclear Research Chemicals, and the sodium salt was prepared by treatment with IRC 50 (Na⁺). Each compound chromatographed as a single component in a 2-dimensional solvent system of water-saturated phenol followed by butanol-propionic acid-water (1). The preparation of Cycocel and other related derivatives has been described (8,10).

Choline Kinase Preparation and Assay. Units of activity and choline kinase preparation were the same as described in the accompanying paper (7). For in vitro studies in this report, the plant choline kinase preparations was the fraction obtained by precipitation between 28 to 37 g of (NH₄)₂SO₄ per 100 ml of spinach leaf sap and then dialysis against a dilute MgCl₂ solution (7). In the assay 0.01 ml Cycocel (to give a designated final concentration) was added to 0.4 ml of enzyme, and then 0.05 ml of a stock solution of substrate and factors was added. This stock solution contained 0.5 ml of choline-1,2-C¹⁴ (1.5 × 10⁻² μl), 0.4 ml of 0.12 μ ATP (pH 9), 0.3 ml of 0.16 μ MgCl₂ and 1.5 ml of 0.2 μ glycine buffer at pH 9.6. The reaction mixture was incubated for 1 hour at 30° and the experiments terminated by heating for 3 minutes at 100°. Control experiments were run with boiled enzymes.

The yeast choline kinase preparation and spectrophotometric assay were also described in the previous paper (7).

Spinach leaves were purchased in local grocery stores. Table Queen squash plants were grown in a greenhouse in flats of soil supplemented with Hoagland nutrient. The squash plants were treated...
at the first leaf stage of growth with substances as
designated in the results and then harvested at the
sixth leaf stage. Except for the cotyledons the
whole plant about 12 mm above the soil level was
used for enzyme assay.

Choline-C\(^{14}\) and Phosphorylcholine-C\(^{14}\) Metabo-
list Experiments. Thatcher wheat or Trail barley
seedling were used for choline-C\(^{14}\) metabolism studies.
Wheat seeds were surface sterilized with 2 % NaOCl
for 30 seconds, rinsed 3 times with sterile distilled
water, and germinated on filter papers in a sterile
petri dish. These minimal conditions for obtaining
sterile seedlings were developed by germination on
sterile agar plates and examination for growth of
microorganisms.

After 4 days for germination, 2 seedlings were
asectically transferred in an inoculation box to a
black plastic rack from which the roots extended into
300 ml of sterile 0.2 strength Hoagland nutrient
solution. The seedlings were grown inside a large
glass desiccator and the nutrient was aerated with
sterile compressed air. Exhaust air was passed
through 2 ml KOH in a Vigreaux column in order to
absorb any C\(^{14}\)O\(_2\). Unless rigorously sterile condi-
tions were maintained both choline-C\(^{14}\) and phos-
phorylcholine-C\(^{14}\) in the nutrient culture were
converted in a few hours to C\(^{14}\)O\(_2\). When this occurred
the experiments were abandoned.

After transplanting the seedlings into the desicca-
tor jars, they were placed in a plant growth chamber
at about 21 °C day temperature, 13 °C night tempera-
ture and 1500 ft-c of light. Rapid aeration kept the
temperature inside the desiccators at less than 6 °C
above the chamber temperature. After 3 days enough
sterile 0.1 ml Cyococel was injected into the nutrient
solution to produce a final concentration of 10°-m.
Twenty-four hours later solutions containing the
labeled substrates were also injected into the culture.
The choline-C\(^{14}\) solutions were prepared in 50 %
(v/v) ethanol, and before use the ethanol was re-
moved by evaporation and the choline-C\(^{14}\) redisolved
in cool sterile water.

The roots of the wheat seedlings remained in the
choline-C\(^{14}\) solutions for 1 to 24 hours. When the
plants were removed, the roots were washed off with
water and the plants divided into roots and epicotyl.
Each plant tissue was extracted with boiling 95 %
ethanol and then 80 % (v/v) ethanol, and both solu-
tions were combined and referred to as the alcohol
soluble material. The tissue was further extracted
with boiling water. The residual tissue was dried
and combusted to C\(^{14}\)O\(_2\) (12) which was collected
in an alkali trap. All fractions were counted by
liquid scintillation and corrected for counting ef-
ciciency.

The distribution of C\(^{14}\) among the soluble products
was determined by 2-dimensional paper chromato-
graphy using water-saturated phenol first and then
butanol-propionic acid-water (1). To prepare
chromatograms it was necessary to reduce the ex-
tact to near dryness and redissolve the components
with a small amount of 80 % ethanol. This pro-
cedure probably resulted in the loss of some of the
soluble lipoidal material.

Results

Stimulatory Effect of Cyococel on Plant Choline
Kinase Activity. With dialyzed ammonium sulfate
preparations of the choline kinase from spinach
leaves, the activity of the enzyme was doubled by op-
timal amounts of Cyococel (fig 1). In these experi-
mental conditions (see Methods) there was 1.5 \times
10°-m choline, 1 \times 10°-m ATP and 1 \times 10°-m
MgCl\(_2\). Optimal stimulation of kinase activity oc-
curred with 1 \times 10°-m Cyococel. This stimulation of
the kinase activity was abolished when the Cyococel
was removed by dialysis, and the enzyme activity re-
turned to its original level. Similar results were ob-
tained when the kinase was prepared from either
wheat, squash or spinach leaves.

The nature of the Cyococel stimulation of the kin-
ase activity is unknown. As discussed in the pre-
vious paper, the kinase activity in the plant is not great
and the choline-C\(^{14}\) isotope assay does not lend itself
to development of good kinetic analyses. In explora-
tory experiments, maximum Cyococel stimulation of
activity occurred when there was approximately a 5-
fold excess of Cyococel concentration over the sub-
strate choline concentration.

A yeast choline kinase preparation was obtained
with at least 100-fold higher specific activity on a

![Fig. 1. Stimulation by Cyococel of partially purified
choline kinase from spinach leaves.](image-url)
protein basis than could be obtained for the plant kinase experiments. The yeast kinase preparation also contained little adenosine triphosphatase activity, while the plant kinase was mixed with much adenosine triphosphatase. The activity of the yeast choline kinase was not stimulated by addition of Cycocel, rather, the activity was partially inhibited by Cycocel. Similar results were obtained when the assay was run by either the choline-C14 or the spectrophotometric procedure (table I). Thus, the kinase from leaves was stimulated by Cycocel, and the kinase from yeast was partially inhibited by Cycocel.

Adenosine triphosphatase activity from both wheat roots and epicotyl was partially purified. No inhibition or stimulation was observed over a range of 102 to 106 M Cycocel at pH 6 or 8.4 in the presence of calcium ions.

Effect of Other Cycocel Derivatives on Yeast Choline Kinase Activity. This laboratory has tested approximately 200 derivatives of Cycocel for biological activity as measured by growth of plants with shorter internodal distance (8, 10). The effect of 7 of the most active Cycocel derivatives were measured on spinach choline kinase activity in vitro and all were found to have a stimulatory effect on the enzyme activity (table II). Three analogs which were not active in vivo as growth retardants were also tested, and these derivatives did not stimulate the kinase activity in vitro. The inactivity of these derivatives as growth substances has been attributed to the removal of 1 methyl group, so that these compounds were not trimethyl-ammonium salts, although the side chain had the proper structural configuration for activity. Thus, the in vivo biological activity or inactivity of Cycocel analogs corresponds to the observed in vitro stimulation of choline kinase activity.

Reversal by Gibberellin in Cycocel Stimulation of Choline Kinase Activity. Because gibberellin A\textsubscript{3} reverses the long-term growth effect induced by Cycocel, the effect of gibberellin A\textsubscript{3} by itself was tested in vitro on choline kinase activity as well as the effect of gibberellin A\textsubscript{3} on the Cycocel stimulation of the kinase activity (table III). Gibberellin A\textsubscript{3} inhibited the isolated plant choline kinase activity. Gibberellin A\textsubscript{3} (4 \times 104 M) reversed nearly all of the stimulatory effect from 102 M Cycocel, and in the presence of 102 M gibberellin A\textsubscript{3} and 102 M Cycocel a normal rate of kinase activity was measured. Thus gibberellin A\textsubscript{3} inhibited the enzyme activity, Cycocel stimulated the activity, and when combined there was no effect. This in vitro phenomenon is yet another example of the mutually antagonistic effect between gibberellin and Cycocel which has been observed for the in vivo growth and development of plants (2, 9, 10).

Effect of Cycocel and Gibberellin A\textsubscript{3} on the Amount of Kinase in Squash Plants. In this study the amount of the choline kinase enzyme was determined in Table II. Squash plants which were grown with Cycocel, gibberellin A\textsubscript{3}, IAA and combinations of Cycocel with gibberellin A\textsubscript{3} or IAA. The internode length of the plants which were treated with 2 \times 102 M Cycocel was reduced to about 10 \% of normal height. Leaf development was not altered by the treatments, and after the sixth leaf stage, the entire plant tops were harvested and from each group of 8 plants a dialyzed ammonium sulfate precipitate of the kinase was prepared as described for spinach leaves.

<table>
<thead>
<tr>
<th>Table I. Effect of Cycocel on Yeast Choline Kinase Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>The protein concentration of the enzyme preparations ranged between 0.04 to 0.06 mg/ml.</td>
</tr>
<tr>
<td>C14 Chromatographic assay</td>
</tr>
<tr>
<td>Phosphoryl-choline formed</td>
</tr>
<tr>
<td>Addition</td>
</tr>
<tr>
<td>None</td>
</tr>
<tr>
<td>10-2 M</td>
</tr>
</tbody>
</table>

* As percent of total choline-C14 added.
** OD change in 10 minutes and corrected for a control without substrate.
*** Values ranging between 50 and 84 were obtained.

<table>
<thead>
<tr>
<th>Table II. Effect of Cycocel Derivatives on Yeast Choline Kinase Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycocel derivatives</td>
</tr>
<tr>
<td>(CH\textsubscript{3})\textsubscript{3}N-CH\textsubscript{2}CH\textsubscript{2}Cl \cdot Cl-</td>
</tr>
<tr>
<td>(CH\textsubscript{3})\textsubscript{3}N-CH\textsubscript{2}CH\textsubscript{2}Br \cdot Br-</td>
</tr>
<tr>
<td>(CH\textsubscript{3})\textsubscript{2}N-CH\textsubscript{2}CH\textsubscript{2}Br \cdot HBr-</td>
</tr>
<tr>
<td>(CH\textsubscript{3})\textsubscript{3}N-CH\textsubscript{2}CH\textsubscript{2}Cl \cdot Cl-</td>
</tr>
<tr>
<td>(CH\textsubscript{3})\textsubscript{3}N-CH\textsubscript{2}CH\textsubscript{2}HCl</td>
</tr>
<tr>
<td>(CH\textsubscript{3})\textsubscript{3}N-CH\textsubscript{2}CH\textsubscript{2}Br \cdot Br-</td>
</tr>
<tr>
<td>(CH\textsubscript{3})\textsubscript{3}N-CH\textsubscript{2}CH\textsubscript{2}HBr</td>
</tr>
<tr>
<td>(CH\textsubscript{3})\textsubscript{3}N-CH\textsubscript{2}CH\textsubscript{2}Cl \cdot Cl-</td>
</tr>
<tr>
<td>(CH\textsubscript{3})\textsubscript{3}N-CH\textsubscript{2}CH\textsubscript{2}CCl</td>
</tr>
</tbody>
</table>

* Summary of data from references 8 and 10.
** Enzyme activity in the standard assay (7) without addition of Cycocel was equated to 100.

<table>
<thead>
<tr>
<th>Table III. Effect of Cycocel and Gibberellin A\textsubscript{3} on Activity of Choline Kinase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additions</td>
</tr>
<tr>
<td>None</td>
</tr>
<tr>
<td>1 \times 10-2 M Cycocel</td>
</tr>
<tr>
<td>4 \times 104 M Gibberellin A\textsubscript{3}</td>
</tr>
<tr>
<td>1 \times 10-2 M Gibberellin A\textsubscript{3}</td>
</tr>
<tr>
<td>1 \times 10-2 M Cycocel + 4 \times 104 M gibberellin A\textsubscript{3}</td>
</tr>
<tr>
<td>1 \times 10-2 M Cycocel + 1 \times 10-2 M gibberellin A\textsubscript{3}</td>
</tr>
</tbody>
</table>
From the 2×10^{-3} m Cycocel treatment alone, the fresh weight and mg of the protein in the crude enzyme fraction, which contained the kinase, was reduced about half in comparison with the untreated plants (table IV). On the other hand the specific activity of the kinase from the Cycocel-treated plants was nearly doubled that found in the control plants. Thus the total units of kinase activity in the Cycocel-treated plants was nearly the same as in the control plants. The reduction from Cycocel treatment in weight and in the protein content of the enzyme preparation had occurred without loss of total kinase activity on a per plant basis. Until the enzyme is more purified, it can not be determined whether these changes involve a change in specific activity of the enzyme. As shown in table IV, the kinase activity from the Cycocel-treated plants could also be stimulated in vitro by addition of Cycocel to the same extent as the kinase from untreated plants.

In another series of experiments, squash seedlings were initially treated with 1×10^{-3} m Cycocel and then a week later with gibberelin A$_3$ or IAA (table V). In this experiment with half as much Cycocel as used in the previous test, growth retardation was less. The total units of kinase per each plant treated with Cycocel had increased. The units of kinase activity per 100 g of fresh tissue increased even more due to a decrease in weight of the Cycocel-treated plants. This increase in units of kinase activity did not occur with gibberelin A$_3$, treatment alone. Plants treated with both Cycocel and gibberelin A$_3$ contained less choline kinase activity than Cycocel-treated plants. However the kinase level had not dropped to that in untreated plants, probably because the gibberellin treatment occurred a week after the Cycocel treatment.

In vivo treatment with IAA caused reduced growth of the plants. The units of kinase per plant did not change significantly, but the units of activity per g fresh weight of the plant increased. A combined treatment of Cycocel plus IAA significantly stimulate the amount of kinase on the basis of activity per plant and activity per fresh weight. This stimulation from the combined treatment suggests that further in vivo growth experiments with combinations of these 2 substances should be made. A synergistic effect of Cyococel with IAA on the growth of the tomato plant has already been observed (13).

Metabolism of Choline-$1-2-C^{14}$. Cycocel stimulated greatly the amount of choline-$1-2-C^{14}$ incorporation into residual material of wheat and barley roots. Results shown in table VI are for plants which had been treated with Cycocel 24 hours prior to adding choline-C^{14}. When the Cycocel and choline-C^{14} were added simultaneously (data not shown) a similar trend in results were obtained, but the difference between the controls and treated plants was less. Cycocel treatment of wheat generally inhibited choline-C^{14} uptake, but this latter effect may not be of physiological significance. The nature of the residual material containing the C^{14} has not been determined, but it was not extractable by hot 95% alcohol, 80% alcohol or boiling water. Similar results were also obtained with choline-$C^{14}H_2$, but the results are not detailed, because as much as 25% of the C^{14} in the choline-$C^{14}H_2$ were unknown radiation decomposition products. Since C^{14} from choline-$1-2-C^{14}$ rapidly appeared in the residual fraction, the choline molecules were probably incorporated intact.

The products in the alcohol soluble fraction from choline-$1-2-C^{14}$ metabolism by barley roots consisted of choline, phosphocholine, betaine and lipids (table VII). Cycocel-treated plants contained little

Table IV. Formation of Choline Kinase in Squash Plants Treated With Cycocel

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Cycocel treated*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight of 8 plants</td>
<td>64.5 g</td>
<td>35.5 g</td>
</tr>
<tr>
<td>Total protein in</td>
<td>200 mg</td>
<td>107 mg</td>
</tr>
<tr>
<td>enzyme fraction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific activity as</td>
<td>0.013</td>
<td>0.025</td>
</tr>
<tr>
<td>units/mg protein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total units</td>
<td>2.8</td>
<td>2.7</td>
</tr>
<tr>
<td>Increase in activity upon adding 3×10^{-3} m Cycocel to enzyme fraction</td>
<td>65%</td>
<td>54%</td>
</tr>
</tbody>
</table>

* Treatment consisted of 1 liter of 2×10^{-3} m Cycocel per flat of 8 plants.

Table V. Choline Kinase Activity in 8 Squash Plants after in Vino Treatment With Growth Substances

In each plot 8 plants were treated after development of the first true leaf. Cycocel treatment consisted of 1 soil drench with 1 liter of 1×10^{-3} m solution. Gibberellin A$_3$ (2.6×10^{-4} m) and IAA (5.7×10^{-4} m) were sprayed on the leaves at the beginning of the second week and again 4 days later.

<table>
<thead>
<tr>
<th>First Week</th>
<th>Second week</th>
<th>Fr wt g</th>
<th>Kinase activity</th>
<th>Kinase activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>None</td>
<td>75</td>
<td>2.6</td>
<td>4.2</td>
</tr>
<tr>
<td>Cycocel</td>
<td>None</td>
<td>60</td>
<td>3.4*</td>
<td>6.0*</td>
</tr>
<tr>
<td>None</td>
<td>Gibberellin A$_3$</td>
<td>69</td>
<td>2.3*</td>
<td>4.1*</td>
</tr>
<tr>
<td>Cycocel</td>
<td>Gibberellin A$_3$</td>
<td>61</td>
<td>3.1*</td>
<td>6.1*</td>
</tr>
<tr>
<td>None</td>
<td>IAA</td>
<td>53</td>
<td>3.2*</td>
<td>4.2*</td>
</tr>
<tr>
<td>Cycocel</td>
<td>IAA</td>
<td>54</td>
<td>3.5</td>
<td>7.8*</td>
</tr>
</tbody>
</table>

* Significant in comparison with controls.
of the choline-C14 substrate; there was a significant increase in C14 incorporation into the lipids. Thus Cycocel seemed to stimulate choline incorporation into lipids and the insoluble residue.

Metabolism of Phosphorylcholine-C14. The initial rate of uptake of phosphorylcholine-C14H\textsubscript{2} or phosphorylcholine-1,2-C14 by wheat seedling was very slow; in the order of 0.1 the rate of choline-C14 uptake. This result was unexpected since tracer P32 labeled phosphorylcholine had been readily absorbed by roots (5). Perhaps only the phosphate part of the molecules is rapidly exchanged.

The slow rate of uptake of phosphorylcholine by wheat seedlings was further severely inhibited by 10-8 M Cycocel in the nutrient culture. The reason for this inhibition is not known. Thus metabolic data on phosphorylcholine-C14 metabolism in the presence of Cycocel was not obtained. In untreated plants identical distribution of C14 among the metabolic products was found after feeding phosphorylcholine-1,2-C14 as after giving choline-1,2-C14 (table VII).

Discussion

Cycocel stimulated the specific activity of choline kinase in vitro, and the stimulation was reversed by low concentrations of gibberellin A\textsubscript{3}. The kinase was inhibited by gibberellin A\textsubscript{3}. This is the only isolated enzyme system so far reported to be affected by both Cycocel and gibberellin. However, Cycocel also stimulated the polynucleotide phosphorylase activity of wheat roots (3). In vivo Cycocel plus IAA resulted in the formation of an increased amount of choline kinase. Cycocel alone in vivo resulted in increased choline kinase activity on a fresh weight basis, although the amount of enzyme per plant did not show a large increase. Consistent with the enzymatic studies, Cycocel markedly increased the in vivo incorporation of choline-C14 into lipids and insoluble constituents of the plant. This might be accounted for by increased activity of the kinase.

A difference in choline kinase from spinach and yeast was indicated by Cycocel which stimulated the plant enzyme and inhibited the yeast enzyme. This difference might be due in part to the higher specific activity of the yeast kinase. However the most purified spinach kinase which we prepared (7) was also stimulated by Cycocel, although it was not used for most of the Cycocel studies reported in this manuscript.

Cycocel and gibberellin treatments result in opposite growth responses. The growth alteration from a large amount of Cycocel can be reversed by a small amount of gibberellin (2, 10). The Cycocel remains in the plant unchanged (unpublished data). A logical explanation for these effects has been documented by data which indicate that gibberellin synthesis is inhibited by Cycocel (4, 6). The research in this manuscript was done before the inhibition of gibberellin synthesis by Cycocel was known. The question now arises as to whether the Cycocel stimulation of choline kinase and polynucleotide phosphorylase reflects a primary or indirect mechanism of action of Cycocel. Stimulation of lipid synthesis would be consistent with growth of sturdier and more resistant plants after Cycocel treatment. In the presence of excess Cycocel the normal regulation of cellular synthesis by gibberellin might be prevented since the hormone would be absent. Then an additional direct effect from excess Cycocel on certain enzymes might intensify the growth retardation effect of Cycocel.
The inhibition by Cycocel of choline-C\(^{14}\) and particularly of phosphorylcholine-C\(^{14}\) uptake by wheat and barley roots is an effect of Cycocel which has not been further investigated. Phosphorylcholine has been implicated as an organic form of phosphorus storage and transport (5,11). The absorption of the compound from nutrient culture may not be a normal physiological process. However the nearly complete inhibition of phosphorylcholine uptake by roots treated with Cycocel indicate that the absorption was an active process and that Cycocel may effect other in vivo sites which function in choline metabolism. Very rapid labeling of phosphorylcholine with P\(^{32}\) orthophosphate was a unique physiological property of this compound (5,11). In the present study with C\(^{14}\) labeled substrates, the same distribution of tracer among phosphorylcholine and betaine was found when either phosphorylcholine-C\(^{14}\) or choline-C\(^{14}\) was fed. It appeared that during or after absorption, a rapid equilibration occurred between choline and its phosphorylated form. These results are consistent with the hypothesis that phosphorylcholine may participate in phosphate transport in the plant.

Literature Cited