Short Communication

Inhibition of Gibberellic Acid-induced Germination by Abscisic Acid and Reversal by Cytokinins

A. A. Khan
New York State Agricultural Experiment Station, Cornell University, Geneva, New York 14456

Received June 17, 1968.

The germination of seed can be controlled by application of exogenous hormones at physiological concentrations. It is therefore possible that the natural control of germination involves an interplay of hormones, both promotors and inhibitors. We have shown that cytokinins overcome the inhibitory action of several natural inhibitors in the germination of the photosensitive Grand Rapids lettuce seed (4, 5). There are other reports of cytokinin-inhibitor antagonism in germination and dormancy (6, 7, 10, 12, 14). Chrispeels and Varner have shown that gibberellic acid (GA$_3$) induced α-amylase synthesis in the excised barley aleurone is inhibited by abscisic acid and reversed only partially by excess GA$_3$ (2).

In the intact barley seed, likewise, GA$_3$ fails to reverse abscisic acid inhibited α-amylase production and coleoptile growth (8, 9). Cytokinins, such as kinetin and benzyladenine, on the other hand, nearly completely reverse the abscisic acid inhibition of α-amylase synthesis and coleoptile growth in the seed (9).

This communication will show that another GA$_3$ induced process, namely dark germination of Grand Rapids lettuce seed, is inhibited by abscisic acid and is reversed by the cytokinin, kinetin but not by excess GA$_3$.

Lettuce seeds (Lactuca sativa var. Grand Rapids, Ferry Morse Seed Company, 1967) were germinated at 20$^\circ$ and 25$^\circ$ in total darkness in 5 cm Petri plates on 2 layers of filter paper soaked in 2 ml of test solution (4 replicates of 50 seeds each). Germination was recorded after 48 hours. Emergence of the radicle was taken as criterion of germination.

The effect of abscisic acid and kinetin on GA$_3$ induced dark germination was examined at 20$^\circ$ (fig 1) and 25$^\circ$ (fig 2). A concentration of 0.05 mM GA$_3$ was sufficient for complete induction of germination at 20$^\circ$ (fig 1, curve B) while at 25$^\circ$ much higher concentration of GA$_3$ (5 mM) was required for complete induction (fig 2, curve B). Kinetin at 0.05 mM caused a slight increase in germination over water (curve A, 0 conc of GA$_3$) and had little effect on GA$_3$ induced germination (curve A). GA$_3$ induced germination was completely inhibited by abscisic acid at 25$^\circ$ and appreciably at 20$^\circ$ (curve E). This inhibition of GA$_3$ induced germination was reversed to a large extent by kinetin (curves C, D). A progressively increased reversal of abscisic acid (0.04 mM) inhibition by kinetin (0.05 mM) was obtained in presence of increasing concentrations of GA$_3$. GA$_3$ by itself, even at high concentrations, failed to reverse abscisic acid inhibition of germination to more than 20% (figs 1, 2, curve E). At a fixed concentration of GA$_3$, kinetin at 0.05 mM was more active (curve C) than at 0.5 mM (curve D) in reversing abscisic acid inhibition of germination. Similar results were obtained with 6N-benzyladenine (data not shown).

The results presented here show that GA$_3$ induced germination in the photosensitive Grand Rapids lettuce seed in the dark is blocked by abscisic acid. This block is removed to a large extent by kinetin but not by excess GA$_3$ (5 mM). These data when considered together with kinetin reversal of abscisic acid inhibition of germination in light (4, 5) would suggest that light and GA$_3$ induced germination may be controlled by the same hormonal mechanism(s). The mechanism(s) controlling light and GA$_3$ induced lettuce seed germination, however, is not yet fully understood.

Data in this report and those of Ikuma and Thimmann (3) suggest that GA$_3$ and cytokinins act at different sites. Unlike GA$_3$, cytokinins do not induce α-amylase synthesis in barley endosperm (1, 9) nor do they induce dark germination of lettuce seed to any marked extent as shown in the data presented here and elsewhere (3, 11). Furthermore, a progressively increased reversal of abscisic acid inhibition of germination by a fixed amount of kinetin and increasing concentrations of GA$_3$ would suggest that GA$_3$ may be the primary stimulus for lettuce seed germination in the dark and the action of kinetin is perhaps limited to the site(s) of inhibition. The possibility that kinetin may be acting at other site(s) as well or that its action may be

1 Supported in part by the American Seed Research Foundation.
2 Approved by the Director of the New York State Agricultural Experiment Station for publication as Journal Paper No. 1650.
indirect cannot be ruled out, however. Similar conclusions were arrived at by Ikuma and Thimann (3).

The participation of more than 1 hormone in biological systems is not uncommon. An interplay of hormones may result in synergistic, antagonistic, additive, and permissive effects (13). In the present instance the effect of kinetin may be regarded both as antagonistic and permissive—antagonistic to the action of the inhibitor, abscisic acid and permissive to the action of the hormone, GA\textsubscript{3}. The question as to how these hormones work await further investigation.

Acknowledgments

I am indebted to Dr. Y. Yeo, Woodstock Agricultural Research Center, for a generous donation of the synthetic racemic abscisic acid (abscisin II) and Merck and Company for a sample of gibberellic acid.

Literature Cited

