Photosynthetic Light Reactions in Chemically Fixed Spinach Thylakoids

U. W. Hallier² and R. B. Park
Department of Botany, University of California, Berkeley, California 94720
Received November 20, 1968.

Abstract. After proper fixation with glutaraldehyde, spinach thylakoids retain both photosystem I and photosystem II activity. The photochemical activity of fixed thylakoids is highly resistant to 1% triton. This indicates that fixed thylakoids may be useful starting material for isolation of functional components which can be related to the original structure of the membrane.

Previous experiments showed that chloroplasts isolated from glutaraldehyde fixed spinach leaves retained photosystem II activity (6). However thylakoids fixed after isolation were totally inactive. In this paper we report a new method for fixing isolated spinach thylakoids which preserves activities of both photosystems I and II. After an initial loss of Hill reaction activity due to fixation, fixed thylakoids are quite resistant to damage by detergents such as triton. We anticipate that the isolated fixed thylakoids will be valuable starting material both for lipid extraction and reconstitution experiments, and for separating the thylakoid into subunits which can be referred to the intact structure.

Materials and Methods

Isolation of Thylakoids. Leaves of Spinacia oleracea L., obtained from the local market, were sliced and then homogenized in a cooled Waring Blender for 60 sec in 0.05 M tricine buffer (pH 7.4) containing 0.5 M sucrose. The slurry was poured through 8 layers of cheesecloth and centrifuged for 5 min at 160g at 3°. The precipitate, containing mostly cell fragments was discarded. The supernatant, containing mostly class II chloroplasts was again centrifuged for 10 min at 900g. The pellet was washed 3 times with cold grinding buffer to remove most of the stroma material and centrifuged each time for 8 min at 1700g. After the final washing the pellet was resuspended in a small amount of cold grinding buffer.

Fixation. Glutaraldehyde was prepared by washing twice for about 20 min with animal bone charcoal and then titrating, if necessary, to pH 7.4 (1,3). A 10% (v/v) GA-solution made up in cold 0.5 M sucrose was added slowly during a period of 2 min to an equal volume of chloroplast suspension.

The suspension was stirred thoroughly in an icebath for 20 min and then was diluted with cold grinding buffer and centrifuged for 8 min at 2500g. The precipitate was resuspended in grinding buffer containing 0.2 M MA¹, again centrifuged and washed twice in grinding buffer with centrifugations at 1700g. The last precipitate was resuspended in a small amount of grinding buffer. Chlorophyll concentration was determined using the methods of Arnon (2) and MacKinney (5) and an average value of these 2 methods is reported. The chlorophyll a/b ratio was calculated after MacKinney (5).

Reagents used: DCMU (DuPont), DCPIP (Sigma), GA (Fisher Scientific), MA (Matheson), MV (California Chemical), tricine (Calbiochem), triton (Rohn and Haas).

Reaction Mixtures. The reaction mixture for photosystem II contained per ml: 0.03 μmole DCPIP, 100 μmoles MA, and 50 μmoles tricine. The chlorophyll content per ml was 4 μg for unfixed or 8 μg for fixed thylakoids. The total reaction mixture volume varied from 2.5 to 10 ml at pH 7.4.

The reaction mixture for photosystem I was modified from that of Kok (4) and contained per ml: 5 μmoles ascorbate, 5 μmoles MV, 0.1 μmole DCMU, 0.05 μmole DCPIP, and 50 μmoles of tricine. The chlorophyll content per ml was 10 to 25 μg for unfixed and 20 to 25 μg for fixed thylakoids. The total volume of the reaction mixture was 2 ml at pH 7.4.

The photosystem I reactions were performed in closed cuvettes which were flushed with N₂ for 60 sec before illumination. All reactions were per-

¹This work was supported in part by the following grants: National Science Foundation GB-4245, National Institute of General Medical Sciences GM-13942-03 and the Atomic Energy Commission.

²Holder of a grant from the German Academic Exchange Service. Present address: Botanical Institute, University of Dusseldorf, Federal Republic of Germany.

³The following abbreviations are used: DCMU [3-(3,4-dichlorophenyl)-1, 1-dimethylurea]; DCPIP (2,6-dichlorophenolindophenol); GA (glutaraldehyde); MA (methylamine hydrochloride); MV (1,1'-dimethyl-4,4'-dipryridylidium dichloride or methyl viologen); Tricine [N-tris (hydroxymethyl) methyl glycine]; Triton (Triton X100).
formed at room temperature following a preillumination period. A Cary model 14 spectrophotometer, modified according to Sauer and Biggins (7) was used for measuring both light reactions and determining quantum requirements for the DCPIP Hill reaction. Photosystem II was assayed at 580 nm and photosystem I at 395 nm. Both reaction mixtures were illuminated by an actinic beam at 678 nm. Rates are presented as changes in optical density (OD). The maximum photosystem II rate in Fig. 1 is about 80 μmoles DCPIP reduced per mg chlorophyll per hr. The saturation rate is about twice this value (Fig. 3). The initial rate of photosystem I activity as reported in Fig. 2 is about 84 μequivalents per mg chlorophyll per hr.

Results and Discussion

Fig. 1 shows a typical recording of DCPIP reduction by 2.5% GA-fixed thylakoids. The variations in slope are a result of varying incident light intensity and illustrate the intensity dependence of the photosystem II reaction. Fig. 2 shows a typical recording for MV reduction by spinach thylakoids fixed in 2.5% GA. In GA-fixed material this photochemical activity decreases only slowly with time and is, under favorable storage conditions, retained for weeks.

This retention of both photosystems I and II in isolated spinach thylakoids after proper aldehyde fixation suggests that such membranes may be useful starting material for separation of the thylakoid into its functional components. Crosslinking of the proteins by glutaraldehyde would yield fragments which retain the original protein associations and can be related to structures found in the starting material. We started such experiments by investigating the effect of the detergent triton on GA-fixed spinach thylakoids (Fig. 3). We treated unfixed and GA-fixed thylakoids with a 1% (v/v) triton solution and studied its effect on the photosystem II activity. After investigating the photosystem II rates as a function of actinic light intensity for 10 μg chlorophyll per ml (exception see below), we made reciprocal plots shown in Fig. 3. Maximum photosystem II rates are calculated from the intercept on the vertical axis. The increasing slope of the curves in detergent treated material is most easily explained by uncoupling of chlorophyll from the photosystem II reaction sites. Though this chlorophyll is still present in the reaction mixture, light absorbed by it is ineffective in driving the Hill reaction.

Curve C, the photosystem II activity of unfixed thylakoids has a very low intercept (less than 0.3 or a change in OD per min of about 3), which corresponds to a rate of greater than 100 μmoles DCPIP reduced per hr per mg chlorophyll when corrected for the assay wavelength of 580 nm. This rate is approached at relatively low light intensity.

Unfixed thylakoids treated with triton for 3 hr at 0°C show the opposite extreme. The slope of this curve, C+T, indicates that compared with the un-
Fig. 3. Effect of GA fixation and treatment with triton X-100 on the photosystem II activity of isolated spinach chloroplasts. Reaction mixtures are given under methods. Chlorophyll (as chloroplasts) 8 µg/ml except for sample P(FC + T) which contained 5 µg/ml. Total volumes 2.5 ml, pH 7.4. Treatments: C = unfixed chloroplasts. C + T = unfixed chloroplasts in 1% (v/v) triton. FC = fixed chloroplasts (20 min fixed in 5% GA, pH 7.4). FC + T = fixed chloroplasts in 1% triton. P(FC+T) = washed precipitate of FC + T. The reaction mixtures were illuminated with 678 nm light at the relative intensities shown. For comparison, the rates presented in this plot are based on original thylakoid material containing 10 µg chlorophyll. Intensity is given in millivolts output from the silicon photo diode. Fifty millivolts (0.02 on the reciprocal scale) correspond to an incident intensity of 3.2 nanoeinsteins cm⁻² sec⁻¹. Rates are given as ΔOD/min. Thus an intercept of 10 corresponds to a ΔOD/min of 0.1.

Acknowledgments

We thank the German Academic Exchange Service for the grant supporting this work and the Nuclear Research Center in Juelich for granting leave to work at the University of California, Berkeley.

Literature Cited