Enzymic Mechanism of Starch Breakdown in Germinating Rice Seeds

II. Scutellum as the Site of Sucrose Synthesis

Takeo Nomura, Yasuhiro Kono, and T. Akazawa
Seikagaku Seigyo Kenkyu Shisetsu and Department of Agronomy,
Nagoya University, Chikusa, Nagoya, Japan

Received January 24, 1969.

Abstract. In a close parallel to the developmental pattern of α-amylase activity, a rapid increase of maltase activity occurred in the endosperm tissue of germinating rice seeds after about 4 days of the seed imbibition. The overall pattern of the 2 hydrolytic enzyme activities strongly suggest that amylolytic breakdown is the major metabolic route of starch utilization in the germinating rice seeds. Results of the chemical analyses of sugar constituents as well as the measurements of sucrose synthetase activity show that the scutellum is the site of sucrose synthesis in the germinating rice seeds. It is thus supported that glucose derived from the reserve starch in endosperm is transported to scutellum, where it is converted to sucrose. Sucrose is further mobilized to the growing tissues, shoots and roots.

Materials and Methods

Rice Seed Germination. Throughout the study, the same procedure of sowing rice seeds (Oryza sativa L. var. Fujimini) and growing in the dark chamber as reported previously were used (10).

Enzyme Assay. Maltase was assayed by the following procedure. Endosperm tissues of 40 rice seeds devoid of roots, roots and scutella (approximately 1.3 g fresh wt) were ground with 4 ml of 0.01 M tris-HCl buffer (pH 7.5) in a chilled mortar and the whole homogenate centrifuged at 4°. An aliquot (1.5 ml) of the supernatant fraction was applied onto a column of Sephadex G-25, which was equilibrated by 0.01 M tris-HCl buffer (pH 7.5), and the eluate (4.5 ml) was used as the enzyme source. The reaction mixture contained (in μmoles): Na-acetate buffer (pH 4.5), 2.5; maltose, 0.25; and enzyme preparation, 20 μl, in a total volume of 30 μl. The reaction (35° for 60 min) was stopped by adding 0.5 ml of 0.1 N NaOH. The amount of glucose formed was analyzed by determining the increase in the reducing sugar content using the Somogyi-Nelson method (11). It was confirmed that crystalline bacterial α-amylase (Nagase Sangyo Company Ltd., Osaka) did not hydrolyze the maltose molecule.

In the analysis of sucrose synthetase, 100 scutella of germinating rice seeds were homogenized in a chilled small-size glass homogenizer using 0.8 ml of 0.01 M tris-HCl buffer (pH 7.5). The whole homogenate was centrifuged and a 0.5 ml aliquot of the supernatant fraction was passed through a column of Sephadex G-25 which was equilibrated by 0.01 M tris-HCl buffer (pH 7.5). The eluate (2.5 ml)

1 Supported in part by research grant of Agricultural Research Services of United States Department of Agriculture, under the PL 480 grant (FG JA-126) administered by T. Akazawa.
The enzyme preparations described above were used for the measurement of invertase activity. The reaction mixture contained (in μmoles): Na-phosphate buffer (pH 6.0) 50; sucrose, 12.4; 0.5 ml enzyme solution in a total volume of 1.0 ml. The reaction was at 35°C for 60 min and the amount of sucrose hydrolyzed was determined by the Somogyi-Nelson method (11).

Carbohydrate Analysis. Dowex-I ion exchange column chromatography was used to fractionate the sugar component following the method reported previously (9, 10). Scutella of 250 rice seeds at various germination stages were ground with 1 ml of 0.6 N HClO₄ in a chilled small-size glass homogenizer. The extraction was repeated again in the same manner. The insoluble material was washed 3 times with H₂O and 2 times more with acetone. The whole extract (about 5 ml) was neutralized with 5 N KOH to pH 6.0, and placed in the deep-freeze. Afterwards, the precipitate was removed by centrifugation. The supernatant fraction was diluted to 8 ml with 0.005 M Na₂B₄O₇. It was then applied to a column of Dowex-I anion exchange resin (borate form, 0.9 × 5 cm), and chromatographed by stepwise elution with 0.005 M, 0.02 M, and 0.03 M Na₂B₄O₇. Both sucrose and fructose were assayed by the resorcinol method (12). Malto-oligosaccharides and glucose were measured by the Somogyi-Nelson method (11).

Microscopic Experiment. A median longitudinal section of developing rice seed (2 days after imbibition) was prepared after the method of Jensen (7), employing the iron-haematoxylin staining.

Results and Discussion

Results presented in Fig. 1 show a rapid increase of the maltase activity in the endosperm after about 4 days of the seed imbibition. The activity reached a maximum at around the tenth day, and declined gradually thereafter. The developmental pattern of maltase was analogous to the one of α-amylase as reported previously (10), and the overall results strengthen our view on the amyloytic breakdown of starch reserve in the germinating seed. In contrast to α-amylase, however, we observed an initial increase in maltase activity, then a loss of activity during the next 3 to 4 days followed by a notable increase of the enzyme activity. Swain and Dekker (14) have reported that the activity of maltase was detectable in the dry pea seeds. A study of Briggs (2) has shown a marked increase of maltase activity

in germinating barley endosperm under the influence of gibberellic acid, indicating the hormone-induced de novo enzyme synthesis. At the tenth day, it can be estimated that about 5 mg maltose are hydrolyzed per 10 grains. Hydrolytic activity being much lower than the amount of starch broken down by the action of α-amylase (about 30 mg per 10 grains, cf. (10)). It will be noted, however, that in the latter enzyme assay system the measurements of the unit enzyme activity were based on aichromatic colorimetry and the net amount of maltose formed was not estimated.

Our earlier analytical results on the sugar constituents showed that glucose is the major soluble sugar component in the rice endosperm at later stages of germination, although sucrose comprised the major sugar in the dry seed. A question was then raised as to the form of sugar transport from endosperm to embryonic tissues. As in the case of most other plant tissues sucrose is considered to be the form of transport. We detected a slight but a gradual increase in the content of sucrose in the endosperm, but we could not detect the activity of sucrose synthetase in the endosperm throughout the germination stage. In order to examine the possibility that glucose is transported from endosperm to scutellum, where it is converted to sucrose and mobilized into embryo, we measured the sucrose...
synthetase activity as well as the sugar content of the scutellum.

Microscopic section of the median longitudinal plane of germinating rice seed (2 day) clearly shows the close contact of scutellum to endosperm (Fig. 2). Often speculation has been made concerning the role of scutellum in the embryonic development of gramineae based on such plant anatomical studies. But there is also experimental evidence that the scutellum secretes digestive enzymes that hydrolyze the reserve starch in the endosperm, and eventually the scutellum translocates soluble sugars to the growing parts of embryo (4). Results shown in Fig. 3 present the

<table>
<thead>
<tr>
<th>Table I. Content of Sugars in Scutellum of Germinating Rice Seeds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugars</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
day, the sucrose content remained roughly constant. Afterwards it declined rather abruptly (table I).

The activity of sucrose synthetase in extracts of scutellum taken from seeds at different germination stages was measured employing fructose and fructose 6-phosphate as the glucose-accepting molecules (Fig. 4). It can be seen that the enzyme activity of the scutellum was potent from the early germination stage, the unit enzyme activity (mg sucrose formed per single organ) being much superior to that in shoots or roots [cf. table I of (10)]. Two notable observations emerge from the results. One, it can be seen that the decline of the enzyme activity occurring after the eleventh day was more marked than that in the preceding period. Thus, comparing the enzyme activity with the results of sucrose analysis (table I), it is interesting that the rate of the sucrose synthesis in the scutellum appears to parallel the rate of movement of sucrose from scutellum to the embryonic axis, assuming the in vitro enzyme assay reflects the synthesis of sucrose in vivo. Two, the enzymic synthesis of sucrose-P appears to be more dominant than sucrose synthesis in the early germination stage. Nobody has succeeded in resolving 2 different enzymes distinguishing between the synthesis of sucrose and sucrose-P (1,3), although a study of Slabnik et al. (13) has indicated that there are some different properties between the 2 enzyme reactions. We have not examined the problem further, and it remains obscure whether or not sucrose-P is synthesized predominately in the scutellum of germinating rice seeds. Results further support our previous implication (10) that a transient increase of the sucrose content in endosperm after about 4 days of the germination may be due to the possible “backflow” of sucrose from embryonic tissue to the endosperm.

Simultaneous measurement of the invertase activity in the scutellum shown in the lower part of Fig. 4, indicates that the hydrolytic breakdown of sucrose is not particularly potent in the tissue as compared to its synthesis throughout the germination stage.

Edelman et al. (5) reported that the set of enzymes necessary for the synthesis of sucrose from glucose, i.e., hexokinase, phosphoglucoisomerase, phosphoglucomutase, UDP-glucose pyrophosphorylase, sucrose synthetase and UDP-ATP kinase, occur in the scutellum of germinating wheat and barley seeds. But they have not conducted the time-sequence analyses of the enzyme as well as the sugar contents in the tissue. Thus our present findings, basically in agreement with their report, strengthen the notion that glucose derived from the endosperm by amylolytic breakdown is mobilized in the scutellum, where it is resynthesized to sucrose. The latter is then transported to the embryonic axis, i.e., shoots and roots, for further metabolic purposes.

Acknowledgment

The authors are most grateful to Dr. Tsune Kosuge, University of California, Davis, for his kind help during the preparation of this paper.

Literature Cited

NOMURA ET AL.—STARCH BREAKDOWN IN GERMINATING RICE SEEDS

