Short Communication

3-(3,4-Dichlorophenyl)-1,1-dimethylurea Effect on Cytochrome \(b_{559} \) Photooxidation and Q Reduction at Temperatures Near 0 C

Robert A. Floyd
Johnson Research Foundation, University of Pennsylvania, Philadelphia, Pennsylvania 19104

The position and interaction of cytochrome \(b_{559} \) with the electron transport chain in green plant photosynthesis has remained obscure. Levine et al. (13) and Levine and Gorman (12) first demonstrated the presence of cytochrome \(b_{559} \) in the photosynthetic electron transport chain. Their results (12, 13), showing that photosystem II reduced cytochrome \(b_{559} \) but that it was oxidized by PS I in a DCMU-insensitive reaction at room temperature, suggest that cytochrome \(b_{559} \) is closely associated with PS II. Vernon et al. (14), Boardman and Anderson (3) and Huzisige et al. (9) have isolated particles having PS II properties which have cytochrome \(b_{559} \) as an integral part. Our recent findings (8) showing that cytochrome \(b_{559} \) is oxidized by PS II (PS II reaction center) in a temperature-insensitive reaction at low temperature point clearly to the conclusion that cytochrome \(b_{559} \) can interact with PS II under certain conditions. Knaff and Arnon (11) discovered a PS II driven decrease in absorbance with a peak at 550 nm. Erixon and Butler (6) recently observed, using potential poising, a component having a peak at 550 nm. The midpoint potential of this component was \(-50 \text{ mV} \) and prompted them (6) to suggest that the 550 nm component was \(Q_b \), the acceptor of PS II. I report here that in chloroplasts maintained near 0 C, cytochrome \(b_{559} \) photooxidation by 680 nm light is inhibited by DCMU with the concomitant appearance of a 550 nm component. These results can be explained by cytochrome \(b_{559} \) photooxidation and Q reduction by PS II reaction center.

Materials and Methods

Chloroplasts were isolated from spinach (Spinacia oleracea) as described by Cramer and Butler (5). Absorption changes were determined on a dual wavelength type apparatus as described by Chance (4). The reference wavelength was 540 nm. The temperature of the chloroplast solution, while photo-induced absorbance changes were being recorded, was kept near 0 C (approximately 2 C) by dipping the aluminum tongue of the cuvette in an ice-water solution. The cuvette had a total volume of 0.225 cm³ with a path length of 1 mm. Chlorophyll was determined by the method described by Arnon (1).

Results

Figure 1 presents the light minus dark difference spectra of spinach chloroplasts maintained at or near 0 C. Strong 680 nm light was the actinic source. In the control chloroplasts the peak at 554 nm corresponds to cytochrome \(f \) photooxidation, whereas the shoulder at 560 nm indicates photooxidation of cytochrome \(b_{559} \). There is also a shoulder at 550 nm which is apparently due to partial reduction of Q (see below). The addition of DCMU caused the elimination of cytochrome \(b_{559} \) photooxidation but a concomitant increase in the 550 nm component, which, following Erixon and Butler (6), is apparently due to the reduction of Q. DCMU did not exhibit the photooxidation of cytochrome \(f \). The computed difference spectrum between the control and DCMU-treated chloroplast data of Figure 1 is shown in Figure 2. The major differences between the two occur at 550 and 560 nm, thus indicating that DCMU inhibited the photooxidation of cytochrome \(b_{559} \) with a concomitant reduction of Q.

Discussion

The observations that DCMU inhibits cytochrome \(b_{559} \) oxidation and the appearance of a 550 nm component can be explained by the scheme presented in Figure 3. In this scheme it is expected that electron transfer from PS II to PS I is blocked or considerably diminished at 0 C and hence cytochrome \(b_{559} \) will be fully reduced and will be oxidized by the PS II reaction center. In this respect, it is competing with \(H_2O \) as the electron donor of PS II. As temperature is lowered from 25 C to 0 C it would be expected that \(O_2 \) evolution would decrease by 2-fold since the \(Q_b \) is 1.4 (7), whereas the photon peak of 545 nm.

![Figure 1](https://example.com/figure1.png)

Figure 1. Spectra of control and DCMU (5 \(\mu \text{M} \)) treated chloroplasts. The reference wavelength was 540 nm. Temperature was 0 C. Actinic light was 680 nm (bandwidth halfheight 10 nm, intensity 0.55 \(\times 10^{-4} \text{nano einstein/cm}^2\text{-sec} \)). Chlorophyll content was 250 \(\mu \text{g/sample} \). Pathlength was 1 mm. Each point is the average of three determinations on one sample. The values were taken 10 sec after the actinic light was switched on. A new sample was taken for each point.
would then be of Bennoun
the one only there without reducing
nm as was
b. cytochrome II PS
by bolized
donating is passed
In FIG. 3.
FIG. DCMU it
(2)
reaction
Q
it closes
Q, cytochrome II is
reduction of Q, it is possible to see cytochrome b_{559} oxidation only if most of the electrons Q accepts are passed on to components between Q and cytochrome b_{559} without reducing the b cytochrome. The small band at 550 nm in the control chloroplasts (Fig. 1) indicates there is some reduced Q in the absence of DCMU, suggesting that the steps between Q and cytochrome b_{559} are to some extent slower at 0 C.

The results of this study indicate that cytochrome b_{559} is functionally closely associated with PS II and thus corroborate our previous observation (8) and those of Knaff and Arnon (10) that PS II can oxidize cytochrome b_{559}. The results also corroborate the findings of Knaff and Arnon (11) that the 550 nm component is best explained by a component involved in the primary process of PS II and specifically as Erixon and Butler (6) suggested as being due to Q, the acceptor of PS II.

Acknowledgments—I would like to thank Dr. E. Keyhani for helping with the original observations and Professor B. Chance and Dr. D. DeVault for discussion of the data and ideas involved. This work was supported by United States Public Health Service Grant I260.

LITERATURE CITED
13. Levine, R. P., D. S. Gorman, M. Arnon, and W. L. Butler. 1968. Light-induced absorbance changes in wild-type and mutant strains of Chlamydo-