Distribution of Protein-bound Hexosamine in Chloroplasts

Received for publication July 22, 1975 and in revised form August 11, 1975

DAVID RACUSEN
Department of Microbiology and Biochemistry, The Vermont Agricultural Experiment Station, Burlington, Vermont 05401

RAYMOND P. POINCELOT
Department of Biochemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504

ABSTRACT

Intact chloroplasts of spinach (Spinacia oleracea L.), sunflower (Helianthus annuus L.), and maize (Zea mays L.) mesophyll cells contained 0.33, 0.50, and 0.14% of bound hexosamine on a protein basis, respectively. Undifferentiated maize chloroplasts contained 0.19%. Values for chloroplast lamellae were, respectively, 0.16, 0.18, 0.12, and 0.06% and for envelope membranes they were 1.6, 2.5, 3.8, and 2.7%. Thus most of the hexosamine of chloroplasts is located in the envelope membrane.

Hexosamine and Protein Assays. Protein was determined with Folin reagent (9) with BSA as a standard. Protein-bound hexosamine was measured by the Cessi modification of the Elson-Morgan reaction as described previously (6, 17). The protein-bound hexosamine was separated from hexosamine associated with lipids and low mol wt polar compounds by extraction with 80% acetone to remove the latter. After acid hydrolysis in 1 N HCl at 100 C for 18 hr, the liberated hexosamine was converted to 2-methylpyrrole and steam distilled into p-dimethylbenzaldehyde. The resulting chromogen was determined colorimetrically at 548 nm with glucosamine as a standard.

RESULTS AND DISCUSSION

In the only previous investigation of hexosamine in chloroplasts (4), its location within the chloroplast was uncertain. The present value of 0.33% for intact spinach chloroplasts agrees with that determined by Izumi (4). Table I shows that most of the protein-bound hexosamine of spinach, sunflower, and maize chloroplasts (1.4–5 µg/mg protein) is present in the envelope membranes (16–38 µg/mg protein) as opposed to the lamellae (0.6–1.8 µg/mg protein). This and other differences between the two kinds of membranes in Chl content, the lipid composition, and the types of ATPase undoubtedly reflect their functional differences; i.e., the involvement of the envelope membrane in CO₂ assimilation and metabolite transport, and of lamellar membranes in photosynthetic electron transport (1, 10, 13–16).

The relatively low hexosamine content of the young maize lamellae (Table I) would appear to correlate with the immaturity of these membranes, since undifferentiated maize chloroplasts have poorly developed lamellae (11). The mesophyll maize chloroplasts, with fully developed lamellae, have lamellar hexosamine contents twice as great (Table I).

An approximation of the envelope membrane protein and protein-bound hexosamine content given as a percentage of the total protein and hexosamine present in the chloroplast is shown in Table II. These estimates are based on the data in Table I and the assumptions that thestromal protein contains no hexosamine and it constitutes 50% of the total chloroplast protein. These values (Table II) indicate that most of the protein-bound hexosamine of the chloroplast is located in the envelope membrane.

These results are only estimates, because of the possible contamination or loss of material during the isolation of the subcellular fractions. Another possible source of error results from the use of six analyses (three for hexosamine and three for protein); thus the errors may be additive. Another uncertainty results from the above assumptions regarding the stromal protein content.
As noted earlier, the major protein of the stroma is not a glycoprotein, but still there may be small amounts of other stromal protein that are rich in hexosamine. The other assumption that one-half of the mesophyll chloroplast protein is in the stroma is a reasonable approximation for spinach and maize (7, 8). This is probably true for sunflower chloroplasts also, but less certain for undifferentiated maize chloroplasts with their poorly developed lamellae and perhaps a correspondingly higher stromal content (11). However, the major conclusion shown in Table II is not changed even if the assumptions err. Calculations assuming 50% stromal protein compared to those assuming no stromal protein do not alter the conclusion that the envelope membrane contain most of the hexosamine.

Direct estimates from sucrose gradients of the percentage of envelope membranes protein on a total chloroplast protein basis range from 2 to 4% for the species under discussion (16a). These are lower than the calculated values (Table II), but may suffer from uncertainties in total recovery of envelope membrane protein. Assuming lower values estimated from protein recovery are correct, significant amounts of hexosamine are still bound to the envelope membrane protein.

The high levels of protein-bound hexosamine and glycolipids present in the chloroplast envelope membrane (Table I; refs. 1, 10, 13) in comparison to the low levels of phospholipids indicate a predominantly glycoprotein structure. This is in contrast to animal mitochondria, where the envelope membrane appears to be primarily lipoprotein, with the bulk of the lipids being phospholipids (19). What effect these differences in composition of the membrane have upon structure and permeability is presently unknown.

Acknowledgments.—We thank I. Zelich for his helpful discussions. We also thank R. Shapiro for excellent technical assistance and G. Smith for growing the plants.

LITERATURE CITED