Quantum Yields for CO₂ Uptake in C₃ and C₄ Plants

DEPENDENCE ON TEMPERATURE, CO₂, AND O₂ CONCENTRATION

JAMES EHLEINGER AND OLLE BJÖRKMAN
Department of Plant Biology, Carnegie Institution of Washington, Stanford, California 94305
Department of Biological Sciences, Stanford University, Stanford, California 94305

ABSTRACT

The quantum yields of C₃ and C₄ plants from a number of genera and families as well as from ecologically diverse habitats were measured in normal air of 21% O₂ and in 2% O₂. At 30°C, the quantum yields of C₃ plants averaged 0.0524 ± 0.0014 mol CO₂/absorbed einstein and 0.0733 ± 0.0008 mol CO₂/absorbed einstein under 21% and 2% O₂. At 30°C, the quantum yields of C₄ plants averaged 0.0534 ± 0.0009 mol CO₂/absorbed einstein and 0.0558 ± 0.0011 mol CO₂/absorbed einstein under 21% and 2% O₂. At 21% O₂, the quantum yield of a C₃ plant is shown to be strongly dependent on both the intercellular CO₂ concentration and leaf temperature. The quantum yield of a C₄ plant, which is independent of the intercellular CO₂ concentration, is shown to be independent of leaf temperature over the ranges measured. The changes in the quantum yields of C₃ plants are due to changes in the O₂ inhibition. The evolutionary significance of the CO₂ dependence of the quantum yield in C₃ plants and the ecological significance of the temperature effects on the quantum yields of C₃ and C₄ plants are discussed.

Since the discovery of the C₄ pathway (16), it has become well established that this pathway enables the plant to photosynthesize at a higher rate under conditions where, in the absence of this pathway, the photosynthetic rate would be severely limited by the CO₂ concentration in the intercellular spaces (4, 5, 8). The advantages of C₄ photosynthesis over C₃ photosynthesis have been shown to be maximal under conditions of high light intensities, high temperatures, and limited water supply (5, 8, 10). These climatic conditions are prevalent in many of the deserts, grasslands, and other subtropical regions of the world. It is thus not surprising to find that C₄ plants commonly occur in these habitats.

In the cooler and more temperate climates, C₄ plants occur only infrequently and can be considered relatively rare (25). In view of the relative abundance of C₃ plants in some habitats and their paucity in others, it is interesting to ascertain what physiological factors associated with the C₄ pathway might make it unfavorable in those environments where it is uncommon.

Hatch (15) discussed the possibility that the higher intrinsic energy requirement of C₄ photosynthesis (2 additional ATP/CO₂ fixed) in comparison with the conventional C₃ pathway might result in lower efficiency of light utilization at low light intensities by C₄ plants. A lower quantum efficiency for CO₂ fixation would, of course, be an important disadvantage in shaded habitats. It could also have a marked effect under moderate light intensities since the rate of primary production of many plant canopies is light-limited (26).

Björkman et al. (7) have measured the quantum yields for CO₂ uptake in a C₃ and a C₄ Atriplex species and observed no differences between them in normal air. However, Bull (13) measured the light dependence of photosynthesis of several C₃ and C₄ crop species and found that the C₄ plants had markedly higher rates both at high and low intensities than the C₃ species. This would indicate that the C₄ species possessed a higher quantum efficiency of CO₂ uptake. McKee (21) measured the spectral quantum yield between 350 and 750 nm for several C₃ and C₄ crop species, and found no significant differences between them.

To elucidate this question and to ascertain what effects CO₂ and temperature might have on the quantum yield, precise measurements of the quantum yield for CO₂ uptake at rate-limiting light intensities of photosynthetically active radiation (400–700 nm) were made on intact, attached leaves of a number of C₃ and C₄ plants. These included C₃ species from three families: Chenopodiaceae (Atriplex glabriscula, A. hetero-sperma, A. hortensis, A. triangularis), Polygonaceae (Plantago lanceolata) and Compositae (Encelia californica, E. farinosas). The C₄ plants measured were of two types, those utilizing NADP malic enzyme for decarboxylation of C₄ acids in the bundle sheath cells, and those utilizing NAD malic enzyme for this step (17). Tidestromia oblongifolia (Amaranthaceae) utilizes NADP malic enzyme, whereas the other C₄ plants, Atriplex argentea, A. rosea, A. sabulosa, and A. seranana, utilize the NAD malic enzyme. The native habitats of the plants in this study were ecologically quite diverse and included coastal strand, coastal sage, grassland, and desert habitats.

MATERIALS AND METHODS

Plants were grown from seed in 10-cm pots containing Perlite. These were placed in trays of nutrient solution (22). Nutrient solution levels were adjusted daily and the solution replaced weekly. The plants were grown in controlled environment cabinets with a 16-hr, 30°C day and a 8-hr, 20°C night regime. Light was provided by a bank of Sylvania VHO cool white fluorescent lamps. The quantum flux (400–700 nm) incident on the plants was 40 nanomoleinstein cm⁻² sec⁻¹.

For gas exchange measurements on an incident light basis, a single attached leaf was inserted in a ventilated open system leaf chamber (total volume 150 ml) similar to that described by Björkman and Holmgren (6). Light was provided from a 2.5-kW short arc xenon lamp (Christie Electric Corp., Los Angeles) in conjunction with appropriate lenses, heat filters, and neutral density filters. Quantum flux incident on the leaves was continuously measured with silicon cells that had been specially calibrated against a quantum sensor (model LI 190-SR, Lambda Instruments, Lincoln, Neb.). Over 95% of the radiant energy was in the 400 to 700 nm waveband. Leaf temperature was measured with very fine copper-constantan thermocouples at

1 C.I.W.-D.P.B. Publication No. 577.
tached to the lower surface and was adjusted by means of water jackets. Gas from a cylinder containing 2 or 21% O₂ in N₂ (CO₂ free air) was continuously and precisely mixed with 1% CO₂ in N₂ by a high capacity gas mixing pump (model G-27/3-F, Wöss- toff OHG, Bochum, Germany). The resulting gas stream was humidified by passing through a vessel, maintained at 5°C above the desired dew point temperature, and containing a large area of Miracloth and wetted by capillary uptake of water which was slightly acidified with H₂SO₄. The gas stream was then passed through a dual coil water-jacketed condenser whose temperature was kept at the desired dew point. A small portion of this humidified gas stream was passed at a constant rate (250 ml min⁻¹) through a humidity sensor (hygrometer HM-111, Weathermeasure Corp., Sacramento, Calif.) and then through the reference cell of a differential CO₂ analyzer (model 865, Beckman Instruments, Fullerton, Calif.). Another portion (300–800 ml min⁻¹) was passed via an electronic flowmeter (model DP45, Validyne Corp., Northridge, Calif.) to the leaf chamber. A portion (250 ml min⁻¹) of the gas returning from the chamber was passed through another humidity sensor, the sample cell of the differential CO₂ analyzer, and then through an O₂ analyzer (model 209, Westhunting Electric Corp., Pittsburgh, Pa.). All sensor inputs were connected to a real time computer based data acquisition system (model S-9, Non-Linear Systems, Del Mar, Calif.) briefly described earlier (9). The system averaged 10 to 50 scans of each data point and was programmed to make appropriate linearizations, corrections, and conversions and to compute immediately rates of CO₂ and water vapor exchange, stomatal conductance to gaseous diffusion, and intercellular CO₂ pressure. It also provided a record of the incident quantum flux, leaf temperature, and of the O₂, CO₂, and water vapor partial pressures in the leaf chamber. Several parameters were continuously displayed on analogue recorders, providing a back-up record and permitting qualitative assessment of the experimental manipulations.

Light-absorptance values for individual leaves used in the gas exchange experiments were determined with an Ulbricht integrating sphere. The light source for the sphere was a xenon lamp with the same spectral distribution as used in the photosynthetic measurements. Quantum absorption to photosynthetically active radiation was measured with a quantum sensor (Lambda Instruments) attached from the outside to the inside wall of the integrating sphere. Further details about the Ulbricht integrating sphere and setup have been described by Rabideau et al. (24). Quantum absorbances varied between 76 and 88% depending on the species, but less than 3% within a species.

In these experiments, leaves were first exposed to light an an intensity of 30 nanoeinstins cm⁻² sec⁻¹ (400–700 nm). After a constant photosynthetic rate was achieved, the light was lowered in eight steps to total darkness, at each step achieving a constant photosynthetic rate before advancing to the next lower light intensity. Leaf temperature was held constant during each experiment. The CO₂ partial pressure was that of normal air (310–330 µbar), except for the series of experiments in which CO₂ concentration was varied. Since photosynthesis in C₃ plants is inhibited by O₂ at atmospheric concentrations even at rate-limiting intensities (2), quantum yields were determined in both 21 and 2% O₂.

In the series of experiments in which atmospheric CO₂ partial pressures were varied, the results are expressed as a function of the intercellular CO₂ concentrations. This expression allows for the removal of CO₂ gradients associated with low stomatal conductances. The intercellular CO₂ concentration is calculated as

\[\text{CO}_2\text{ int} = \text{CO}_2 \text{ amb} - \frac{P}{C} \]

where CO₂ int and CO₂ amb are the intercellular and ambient CO₂ partial pressures, respectively, P is the net photosynthetic rate, and C is the leaf conductance to CO₂.

RESULTS

Quantum Yields of C₃ and C₄ Plants. The typical responses of C₃ and C₄ plants to changes in the quantum flux absorbed by the leaves in the light-limiting range and at 30°C are shown in Figure 1. In the C₃ species, A. glabriuscula, the quantum yield (slope of curve) is 0.051 mol CO₂/absorbed einstein in normal air (325 µbar CO₂ and 21% O₂). A decrease in the O₂ concentration to 2% results in an increase in the quantum yield to 0.073 mol CO₂/absorbed einstein. In the C₄ species, A. argentea, the absorbed quantum yield is 0.052 mol CO₂/absorbed einstein in normal air and no enhancement is observed when the O₂ concentration is reduced.

The measured values of the absorbed quantum yields within the C₃ species and also within the C₄ species in normal air and at 30°C are similar (Table 1). This internal consistency within each photosynthetic type is expected since no biochemical pathway changes that would alter the requirement for NADPH₂ and ATP per CO₂ fixed are thought to occur within the C₃ or the C₄ pathway.

The values of the quantum yields averaged 0.0524 mol CO₂/absorbed einstein for the C₃ species. However, under low O₂ (2%), the mean quantum yield rises to 0.0733 mol CO₂/absorbed einstein. This 39% enhancement in the photosynthetic rate under low O₂ is typical of the enhancement rates observed in other studies (2, 7).

In normal air, the quantum yield of the C₄ species averaged 0.0534 mol CO₂/absorbed einstein, very close to that of the C₃ species. When measured under low O₂ conditions, there was no

![Fig. 1. Rate of CO₂ uptake in A. glabriuscula (C₃) and A. argentea (C₄) versus absorbed quantum flux in 21 and 2% O₂. Leaf temperature was 30°C and CO₂ pressure was 325 µbar.](https://plantphysiol.org)
Table 1. Quantum Yields for CO₂ Uptake (Mol CO₂/Absorbed Einstein) of Different C₃ and C₄ Species Measured at a Leaf Temperature of 30°C and an Atmospheric CO₂ Pressure of 325 μbar

<table>
<thead>
<tr>
<th>CO₂ concentration</th>
<th>C₃ species</th>
<th>C₄ species</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Atriplex glabrissima</td>
<td>0.072</td>
</tr>
<tr>
<td></td>
<td>Atriplex heteropracta</td>
<td>0.073</td>
</tr>
<tr>
<td></td>
<td>Atriplex hortensis</td>
<td>0.073</td>
</tr>
<tr>
<td></td>
<td>Atriplex triangularis</td>
<td>0.073</td>
</tr>
<tr>
<td></td>
<td>Encelia californica</td>
<td>0.074</td>
</tr>
<tr>
<td></td>
<td>Encelia farinacea</td>
<td>0.074</td>
</tr>
<tr>
<td></td>
<td>Plantago lanceolata</td>
<td>0.074</td>
</tr>
<tr>
<td>mean and standard deviation</td>
<td>0.073 ± 0.0008</td>
<td>0.0524 ± 0.001A</td>
</tr>
</tbody>
</table>

significant change in the quantum yield, indicating a lack of O₂ inhibition in these plants. There appear to be no differences in the quantum yields of C₃ species utilizing NADP and those utilizing NADP malic enzyme decarboxylating systems.

At a leaf temperature of 30°C, the quantum yields of the C₃ species were consistently about 39% higher than those of the C₄ species under low O₂ conditions. This higher energy requirement by C₃ species is consistent with the notion that C₃ photosynthesis requires more ATP per CO₂ fixed than does C₄ photosynthesis. These extra ATP molecules are needed for the regeneration of the CO₂ acceptor phosphoenolpyruvate from pyruvate.

CO₂ Dependence of the Quantum Yield. Since at atmospheric O₂ concentrations the rate of net photosynthesis in C₃ plants but not C₄ plants (2) is dependent on the atmospheric CO₂ concentrations, the quantum yield of a C₃ plant was determined as a function of the intercellular CO₂ concentration. Figure 2 illustrates the dependence of the quantum yield in *E. californica* (C₃) as the intercellular CO₂ pressure is increased. As with previous experiments, leaf temperature was held constant at 30°C and the quantum yield was determined in both 21% and 2% O₂. Over the range of intercellular CO₂ concentrations normally encountered by leaves (8-14 μM, equivalent to a partial pressure of 200-350 μbar) the quantum yield in 21% O₂ is markedly dependent on CO₂ concentration, ranging from 0.042 to 0.059 mol CO₂/absorbed einstein over this span. Even at intercellular CO₂ pressures as high as 1500 μbar, the quantum yield is still measurable inhibited by 21% O₂. At low CO₂ intercellular pressures (less than 200 μbar), the dependence of quantum yield is quite high, and the quantum yield extrapolates to zero at the CO₂ compensation point. In contrast, when O₂ concentration is lowered to 2%, no changes in the quantum yield were observed between 300 and 1500 μbar CO₂ intercellular pressure.

Oxygen inhibition of the quantum yield decreases in an asymptotic fashion as the intercellular CO₂ pressure is increased (Fig. 2). Oxygen inhibition of CO₂ uptake in *E. californica* at 88 μbar CO₂ is 72%, but by an intercellular CO₂ pressure of 1510 μbar has fallen to 6%. The kinetics of the decrease of O₂ inhibition of the quantum yield as CO₂ pressure is increased follow Michaelis-Menten competition kinetics. From these data on O₂ inhibition, 50% inhibition of the quantum yield in 21% O₂ occurs at approximately 200 μbar CO₂. Under normal atmospheric conditions (325 μbar CO₂) and a leaf temperature of 30°C, inhibition by 21% O₂ of the quantum yield was approximately 35%.

Temperature Dependence of the Quantum Yield. The temperature dependence of the quantum yield for CO₂ uptake in the C₃ species, *E. californica*, was compared with the C₄ species, *A. rosea*, in normal air of 325 μbar CO₂ and 21% O₂ (Fig. 3). The quantum yield actually measured for *E. californica* is denoted by curve A in Figure 3. It is possible that changes in the quantum yield at different temperatures may arise because the solubilities and therefore the concentrations of CO₂ and O₂ in solution vary with temperature. To account for this, curve B of *E. californica* represents the quantum yield adjusted for changes in the liquid phase solubilities of CO₂ and O₂ relative to the reference temperature of 30°C. The solubility adjustments were made utilizing the CO₂ dependence of the quantum yield from Figure 2 and values of the solubilities of CO₂ and O₂ at different temperatures.

These data show clearly that the observed quantum yield of *E. californica*, the C₃ plant, is superior to that of *A. rosea*, the C₄ plant, at leaf temperatures below 30°C. Yet above 30°C, the quantum yield of the C₄ plant is superior to that of the C₃ plant.

Fig. 2. Quantum yield for CO₂ uptake in *E. californica* (C₃) determined as a function of intercellular CO₂ pressure in 21% and 2% O₂ (●) and O₂ inhibition of quantum yield in 21% O₂ as a function of intercellular CO₂ pressure (○). Leaf temperature was 30°C.

Fig. 3. Quantum yield for CO₂ uptake in *E. californica* (C₃) and *A. rosea* (C₄) as a function of leaf temperature. Curve A of *E. californica* represents the measured quantum yields and curve B represents the quantum yields adjusted for changes in liquid phase solubilities of CO₂ and O₂. The CO₂ pressure was held constant at 325 μbar and O₂ concentration was 21%.
The quantum yield of *E. californica* is strongly dependent on leaf temperature, ranging from 0.069 mol CO₂/absorbed einstein at 14°C to 0.042 mol CO₂/absorbed einstein at 38°C. However, the quantum yield of *A. rosea* is independent of leaf temperature over the range of 12 to 39°C, remaining constant at a value of 0.053 mol CO₂/absorbed einstein. This change in the quantum yield of *E. californica* is not due to changes in the liquid phase solubilities of CO₂ and O₂ over the temperature span in which they were measured, since adjustments for changes in solubility of these gases fail to account for the changes in the observed quantum yield. The quantum yield of *E. californica* in 2% O₂ remained constant between 14 and 38°C.

The change in the quantum yield of *E. californica* with leaf temperature reflects changes in the O₂ inhibition of the quantum yield (Fig. 4). The O₂ inhibition is again calculated from the reduction of the quantum yield in 21% O₂ relative to the quantum yield at that temperature in 2% O₂. Oxygen inhibition of the quantum yield increases in a logarithmic fashion over the range of 10 to 40°C. At 14°C, O₂ inhibition is only 14%, but is 47% at 38°C.

An Arrhenius plot of the change in the quantum yield between 21 and 2% O₂ in *E. californica* reveals an apparent energy of activation equivalent to ~8.1 Kcal mol⁻¹ (Fig. 5), which is quite similar to the “activation energy” of the CO₂ compensation point of C₃ plants (7). The compensation point is not a rate, and can therefore not have an activation energy. However, an Arrhenius plot of the CO₂ compensation in 21% O₂ does yield a linear relationship, with a slope equivalent to ~7.6 Kcal mol⁻¹ (7). This activation energy was determined under conditions in which net photosynthesis was linear with light intensity and should not be confused with the temperature dependence of photosynthesis under light-saturating conditions.

DISCUSSION

The values of the quantum yield presented in this study suggest that there are no differences among species within the C₃ type and among species within the C₄ type. Moreover, there are no significant differences between C₃ and C₄ species at 25 to 30°C in normal air (325 μbar CO₂ and 21% O₂). These results are consistent with the earlier observations of quantum yields of *A. patula* (C₄) and *A. rosea* (C₃) by Björkman et al. (7). In that study, quantum yield of the C₃ species was found to be equivalent to that of the C₄ species in normal air. Our results, however, are in conflict with those of Bull (13), whose results suggest that the quantum yields of C₃ plants were higher than those of the C₄ plants studied. In fact, Bull’s measurements indicated that the quantum yields of C₃ and C₄ species were equivalent only under low O₂ conditions. His measurements were made at a leaf temperature of 26°C. Measurements from this study as well as those of Björkman (3, 7) show that the quantum yield and, consequently, the photosynthetic rate at low light intensities of C₃ species are greatly enhanced under conditions of low atmospheric O₂. Under these low O₂ conditions, the quantum yields of C₃ plants are significantly greater than those of all C₄ species.

The C₄ photosynthetic pathway requires at least two additional ATP more than the C₃ pathway to complete each cycle (15). For this reason, Hatch (15) speculated that the quantum requirement of C₄ plants may be higher than that of C₃ plants. Evans (14), however, pointed out the data of Björkman (7) concerning this point. He speculated that it was possible that the lack of photosipiration by C₄ plants offset the increased ATP requirement, so that in effect, the quantum requirements of C₃ and C₄ plants in normal air would not be different from each other. The results from this study show that the quantum requirements of C₃ and C₄ plants in normal air are equivalent only when leaf temperatures are approximately 30°C.

The absence of a CO₂ dependence of the quantum yield under low O₂ in the C₃ plant suggests that the carboxylase activity of RuDP carboxylase-oxygenase in vivo is saturated by 300 μbar CO₂ at rate-limiting light intensities. Our results are discussed in relation to the widely held view that O₂ inhibition of net CO₂ uptake is primarily caused by the oxygenase activity of RuDP carboxylase-oxygenase (11, 12). Although our results are consistent with this view, we wish to point out that they are not necessarily inconsistent with certain other proposed mechanisms of O₂ inhibition. Plants possessing the C₄ pathway do not show oxygenase activity in vivo under atmospheric O₂ concentrations, and therefore, their quantum yields *should not* show a dependence on CO₂ concentration (3, 23).

Similarly, the absence of a temperature dependence of the quantum yield under low O₂ conditions in the C₃ plant and under normal atmospheric conditions for the C₄ plant would suggest that under low light intensities, the carboxylase activity of RuDP carboxylase-oxygenase is temperature-independent between 13 and 39°C. Under 21% O₂ conditions, however, the quantum yield of the C₃ plant showed a marked dependence on leaf temperature. This dependence in the quantum yield in the C₃ species cannot be accounted for by changes in the liquid phase solubilities of CO₂ and O₂ over the temperature span, since adjustments for changes in the solubilities of these gases fails to significantly alter the observed quantum yields. A similar increase in the quantum yield with decreasing temperature can be found in the data of McKee (21) for *Avena sativa*, a C₃ plant.

Jolliffe and Tregunna (18, 19) have shown that there is an increase in O₂ inhibition with temperature at higher light intensities in wheat. Our quantum yield data for the C₃ plant *E. californica* also show an increase in O₂ inhibition with temperature. The similarity of the temperature dependence of the O₂ inhibition of the quantum yield has been noted. The CO₂ com-

![Fig. 4. Oxygen inhibition of *E. californica* in 21% O₂ as a function of leaf temperature. The CO₂ pressure was held constant at 325 μbars.](https://plantphysiol.org)
pensation point has been suggested to be a measure of the balance between the carboxylase and oxygenase activities of RuDP carboxylase-oxygenase (1, 20); therefore, it is possible that the temperature and O₂ effects upon the quantum yield reported here are also reflective of the balance between the carboxylase and oxygenase activities of RuDP carboxylase-oxygenase.

If it is the oxygenase activity of RuDP carboxylase-oxygenase which is responsible for changes in the quantum yields of C₃ plants as both CO₂ concentration and/or temperature vary, then the CO₂ concentration at the Calvin cycle carboxylation sites of C₄ plants (which do not exhibit O₂ inhibition of net CO₂ uptake at 21% O₂) must be high enough to overcome this competitive inhibition. In the C₃ plant under 21% O₂, O₂ inhibition is not quite completely removed at an intercellular CO₂ concentration of 1500 μbar (61 μM). Presumably, this concentration is slightly lower at the site of carboxylation within the chloroplast, but since net photosynthesis was determined close to the light compensation point, the CO₂ gradient between the intercellular air spaces and the carboxylation sites must be small. By inference, the CO₂ concentration at the Calvin cycle carboxylation sites of C₄ plants under normal atmospheric conditions must be at least 61 μM since no O₂ inhibition was observed.

The steep dependence of the quantum yield in C₄ plants such as *E. californica* on CO₂ concentration under normal atmospheric O₂ concentration and the independence of the quantum yield on CO₂ in C₃ plants (3, 23) such as *A. rosea* point out two of the selective pressures favoring the evolution of the C₄ pathway. The ability of the C₄ pathway to concentrate CO₂ at the Calvin cycle carboxylation sites effectively makes light-limited photosynthesis of C₄ plants independent of intercellular pressure over a very wide range. However, in a primitive atmosphere of high CO₂ concentration, low O₂ concentration, or both, selective pressures would strongly favor the C₃ pathway because of its lower intrinsic quantum requirement for CO₂ fixation. Under present atmospheric conditions, the O₂ inhibition of the quantum yield in C₃ plants almost precisely offsets the additional ATP requirement of the C₄ pathway at 25 to 30°C, resulting in nearly identical quantum yields.

The distribution of C₃ and C₄ species in nature correlates generally with daylight temperature, i.e., C₄ species are more common in hot climates than in cool or cold climates. Since the rate of photosynthesis and primary production in many plant canopies is strongly light-limited (26), the observed difference in quantum yield between C₃ and C₄ species as a function of leaf temperature may be an important factor in determining their distributions. Under conditions of sufficient soil moisture, a C₃ plant will have greater potential for C₄ gain at low temperatures. Conversely, a C₄ plant will have greater potential for C₄ gain at high temperatures with a crossover point at approximately 25 to 30°C. This would imply that C₄ photosynthesis would be at a disadvantage in cool low light habitats such as the floor of cool temperate forests and the arctic tundra. On the other hand, the C₄ pathway would be selectively more advantageous in shaded habitats of high temperature and in dense stands in high light, high temperature habitats such as tropical grasslands. C₄ photosynthesis would, of course, be particularly advantageous in hot sunbaked desert habitats where little mutual shading of the leaves occurs within the plant stands. However, under these conditions, the advantage of C₄ photosynthesis is largely due to the increased capacity for photosynthesis at high light intensities. Nevertheless, the higher quantum yield at high temperatures would also be expected to confer a significant advantage. It is apparent that both the increased capacity for photosynthesis at high light intensities and the higher quantum yield at high temperatures are the results of the same mechanism, namely, the ability of the C₄ pathway to increase the concentration of CO₂ at the site of fixation by RuDP carboxylase-oxygenase.

Acknowledgments — We thank J. A. Berry, M. Badger, and A. Kaplan for their comments on this manuscript and E. Ehleringer for her encouragement.

Literature Cited

