A Constitutive Enzyme System for Glucose Transport by Chlorella sorokiniana

ROBERT L. HEATH
Department of Botany and Plant Sciences, University of California, Riverside, California 92521

ABSTRACT

It was found that the transport system for glucose (as measured by deoxyglucose uptake) in the high temperature strain of Chlorella (strain 07-11-05 or C. sorokiniana) was constitutive and the rate of uptake did not increase upon incubation of autotrophically grown cells with either deoxyglucose or glucose. The uptake obeyed Michaelis-Menten type kinetics with a concentration of 200 micromolar for half-saturation. The maximum rate of uptake was nearly 10 times faster per cell (at 38 °C) than that reported for any other Chlorella. This rapid accumulation of deoxyglucose causes the passive efflux to become significant compared to the pump-driven influx and nonlinear uptake appears even after only 3 to 4 minutes.

Received for publication July 31, 1978 and in revised form March 7, 1979

All ± values reported in this paper represent standard deviations.

RESULTS AND DISCUSSION

The amounts of deoxyglucose found within the cells after varied preincubation periods (0, 1 or 2 h) are shown in Figure 1 and are nearly identical. The amount of uptake is not linear (Fig. 1A), but appears to be exponential (Fig. 1B). This differs from the linear uptake observed by Tanner and Komor (6, 12). The uptake appears to be completed after 8 to 10 min. Longer time periods were not measured in order to avoid the possibility of induction by deoxyglucose.

As shown in Table I, the kinetic coefficients for an exponential fit of the uptake do not vary with the time of preincubation with glucose. Thus, the system for taking up glucose in this species of Chlorella appears to be fully functional at all times and is not inducible. This table also demonstrates that the amount of uptake at 7 min is nearly 90% complete (last column).

The nonlinear kinetics can be understood by examining the initial rate of uptake and the total amount of deoxyglucose taken up after 7 to 10 min. The initial rate is 5.9 ± 0.9 x 10⁻¹⁰ mol cell⁻¹ min⁻¹ (Table I). The rate for other Chlorella can be calculated to be 4.5 x 10⁻¹⁰ mol cell⁻¹ min⁻¹ from Tanner's data (4, 6, 12) or only 10% of the rate reported here. Further, the amount of deoxyglucose accumulated is 1.4 ± 0.1 x 10⁻¹⁰ mol cell⁻¹. For an average cell volume of 2 x 10⁻¹⁴ l (2), the internal concentration is 70 mm, much higher than the amount of glucose present within the cells. (Using fluorometric and enzymic assays for glucose [7], it was found that autotrophically grown cells contained 5.2 ± 2.4 x 10⁻¹⁰ mol glucose cell⁻¹ or 2.6 x 10⁻⁸ M, similar to that measured in other Chlorella species [13].) Thus, if an inward pump, operating 10 times faster than in other Chlorella, rapidly builds up the internal concentration of deoxyglucose to a level where a passive efflux becomes significant, such exponential-like kinetics would be observed (8).

The net rate of deoxyglucose uptake would be (8):

\[
\frac{1}{a} \cdot \frac{d[D]}{dt} = \frac{V_m [D]_o}{K_m + [D]_o} - \frac{P [D]_c}{v_c} - 10^{-3} [D]_o
\]

where a = the cell surface area in cm² cell⁻¹, [D] = internal concentration of deoxyglucose in mol cell⁻¹, t = time in min, Vₘ = maximum rate of the pump in mol cell⁻¹ min⁻¹, [D] = external concentration of deoxyglucose in m, Kₘ = pump affinity constant in m, P = permeability coefficient in cm min⁻¹, and vₙ = internal cellular volume in cm³ cell⁻¹. The solution to this equation is:

\[
[D] = \left(\frac{V_m [D]_o}{K_m + [D]_o} + 10^{-3} P_o [D]_o \right) \left(\frac{v_c}{P_o} \right) \left\{ 1 - \exp\left(-P/t \right) \right\}
\]

For a volume of 2 x 10⁻¹¹ cm³ cell⁻¹ and an area of 3.56 x 10⁻⁷ cm², the values for the exponential coefficient (0.41 min⁻¹ in Table

1 Supported in part by Grant ESO1204 from the United States National Institute of Environmental Health.
The plot of initial rate of uptake as a function of external deoxyglucose concentration fits Michaelis-Menten kinetics (Fig. 2). Again, there is little difference (10%) for cells preincubated in glucose compared with cells taken from an autotrophic culture, except that the rate seems to be slightly lower after a 3-h preincubation. An Eadie-Scatchard (V/S versus V) plot (9) shows that the K_m is 110 μM, and 183 μM for 0 and 3-h preincubated cells, respectively, similar to that for other Chlorella (4, 6, 12). The V_m is 5.6×10^{-16} mol cell$^{-1}$ min$^{-1}$ and 4.5×10^{-16} mol cell$^{-1}$ min$^{-1}$ for 0 and 3-h preincubated cells, respectively. The exponential coefficient for the fit of these data to equation 2 (Fig. 2) is 0.40 \pm 0.04 min$^{-1}$, which is identical to that calculated in Table I.

From the data of Figure 2, we can calculate the total expected uptake, which is the time-independent factor in equation 2, to be 1.44×10^{-15} mol cell$^{-1}$ and 1.16×10^{-15} for 0 and 3-h preincubations, respectively.

The efflux of deoxyglucose out of preloaded cells is shown in Figure 3. The half-time of the efflux is about 2 to 2.5 min, similar to that measured for the influx (Fig. 1). The initial rates for the two experiments shown here were used to calculate the permeability coefficient P_{OG} with the equation $P_{OG} = \frac{E_{OG} - E_{OG0}}{c}$, where E_{OG} is the efflux at time t, E_{OG0} is the initial efflux, and c is the concentration of deoxyglucose.

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>10$^{-14}$ mol cell$^{-1}$ min$^{-1}$</th>
<th>10$^{-16}$ mol cell$^{-1}$ min$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.39</td>
<td>5.6</td>
</tr>
<tr>
<td>0.5</td>
<td>-0.45</td>
<td>7.3</td>
</tr>
<tr>
<td>1</td>
<td>-0.43</td>
<td>6.7</td>
</tr>
<tr>
<td>1.5</td>
<td>-0.40</td>
<td>5.0</td>
</tr>
<tr>
<td>2</td>
<td>-0.41</td>
<td>5.3</td>
</tr>
<tr>
<td>2.5</td>
<td>-0.39</td>
<td>5.5</td>
</tr>
<tr>
<td>Average</td>
<td>14.3 \pm 1.4</td>
<td>5.9 \pm 0.9</td>
</tr>
</tbody>
</table>

Table I. Calculated Kinetic Coefficients for Uptake of Deoxyglucose by C. sorokiniana

Uptake was measured as described under "Materials and Methods." Cell number was determined after preincubation in glucose since the medium allowed a small amount of cell growth. Rate constants were calculated by least-squares fit of the kinetics of the uptake of deoxyglucose, similar to Figure 1. Maximum uptake is extrapolated intercept of ordinate of Figure 1B, which corresponds to the maximum uptake of deoxyglucose. Square of regression coefficient for the five data points in each time period was always greater than 0.96. Initial rate is given by the product of maximum uptake and exponential coefficient.

Table II. Reproducibility of the Uptake of Deoxyglucose by C. Sorokiniana

A separate batch culture of the algae was used for each experiment. Individual initial rates were calculated from extrapolated uptake and the rate constant as in Figure 1 and Table I. Cells were suspended in standard medium (see under "Materials and Methods") but were bubbled with pure O$_2$. Grand average of all 26 data points was 4.3 ± 1.2 (SD) $\times 10^{-16}$ mol cell$^{-1}$ min$^{-1}$. Averages of extrapolated uptake and rate constants were 12.2 ± 1.9 $\times 10^{-14}$ mol cell$^{-1}$ and 0.35 ± 0.08/min, respectively.
There are several possible explanations for this low value of P: (a) the uptake and efflux of deoxyglucose might be more complex than the model shown by equations 1 and 2; (b) there might be a real difference in the permeability coefficient with direction of flow; (c) the internal concentration of deoxyglucose may be calculated too high due to the existence of metabolically modified deoxyglucose, multiple pools, or a smaller cell volume; (d) the unstirred layer near the plasma membrane might be larger inside the cell than outside; (e) the uptake of the label may be more significant than calculated (about 7–10% at zero time) if the cell pumps in the deoxyglucose molecules which have just left the cell. At this stage of investigation it is very difficult to evaluate any of the above explanations. For this paper the values of P seem to be near enough to suggest that the simple model is fairly accurate.

CONCLUSION

The high temperature strain of Chlorella grows at a rate nearly 3.5 times faster than the Emerson strain (10) at the respective temperature optima (38 C versus 26 C). Since the respiration rate of Chlorella is likewise nearly 3 times higher (10), the high activity of its glucose pump (per cell at 38 C) is not totally unexpected (Figs. 1 and 2) although its constitutive nature seems unusual. The high pump rate and small size of these cells are the major causes of the pronounced deviation from linear kinetics. Within minutes, the internal concentration of deoxyglucose rises rapidly to a level at which the outward passive leak becomes significant (Fig. 3) and the net gain in internal deoxyglucose per unit time declines.

Another possible interpretation of the nonlinear kinetics is that there is a lack of ATP to drive the pump. The work of Komor and Tanner (5) showed nonlinear kinetics when the levels of ATP

Fig. 2. Dependence of deoxyglucose uptake on external concentration of deoxyglucose. Initial rate (0-4 min) of deoxyglucose uptake for various external concentrations, for no preincubation (O, △) and 180-min preincubation (●, ▲) with glucose. Rates were calculated according to equation 2 as in Table I. Circles were based on uptake at 7 min; triangles were based on maximum uptake. S = external concentration (in mM). V = initial rate in 10^{-16} mol cell$^{-1}$ min$^{-1}$. A: linear plot of initial rate; B: plot of exponential coefficient. Calculations were carried out as described in Table 1 and in text. C: Eadie-Scatchard plot of initial rate (9).

Fig. 3. Efflux of deoxyglucose from Chlorella. Chlorella cells were prepared and incubated for 8 min in 3 mM deoxyglucose with 0.14 μCi ml$^{-1}$ [14C]deoxyglucose in phosphate buffer, as under "Materials and Methods." Cells were then rapidly washed twice by centrifugation to remove radioactive supernatant (total time, 10 min). After suspension in the same medium as above without tracer, the label was assayed in both cells and supernatant as described under "Materials and Methods." Two experiments (O, △) are shown in the figure. Total amounts of label present are 3.4 and 2.6 × 10$^{-7}$ mol deoxyglucose ml$^{-1}$, respectively. Radioactivity is found in the supernatant even at zero time due to the efflux during the last stages of washing.

Permeability coefficients of 1.6 and 1.8 × 10$^{-7}$ cm s$^{-1}$ according to Fick's law. This value of P is about one-half the value measured from the influx experiment.
within the cells were lowered by anaerobiosis. The cells in the present report are incubated in the absence of an energy source except for endogenous metabolite pools and thus, after accumulating nearly 100 mM internal deoxyglucose, the energy derived from pools could be depleted to such an extent that further accumulation could not occur. However, the same type of exponential kinetics is obtained when the cells have been preincubated for 3 h in deoxyglucose (Fig. 2) and when the cells are preloaded with [14C]deoxyglucose, washed free of the supernatant and allowed to lose the radioactive deoxyglucose to medium with unlabeled deoxyglucose (Fig. 3). Thus, the coefficients of the passive and active component are nearly the same, indicating that energy must not be limiting.

Acknowledgment—The technical help of Ms. Kathy Magnusson is gratefully acknowledged.

LITERATURE CITED