Characterization of Three Photosystem II Mutants in Zea mays L. Lacking a 32,000 Dalton Lamellar Polypeptide

KENNETH J. LETO and DONALD MILES
Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211

ABSTRACT
Two fully blocked and one partially blocked photosystem II nuclear mutants have been selected in Zea mays. The fully blocked mutants lack photosystem II activity, variable fluorescence, the light-inducible C-550 signal, the high potential form of cytochrome b-559, and most or all of the low potential form of the cytochrome. The block in these mutants may primarily affect the reducing side of photosystem II, inasmuch as chloroplasts isolated from both mutants exhibit an elevated F695 fluorescence emission peak. The partially blocked mutant exhibits partial photosystem II activity and a reduction, but not the total loss of the variable fluorescence yield, the C-550 signal, and the high potential form of cytochrome b-559. Lamellae isolated from the fully blocked mutants are greatly deficient for a major lamellar polypeptide with an apparent molecular weight of 32,000 daltons, whereas lamellae from the partially blocked mutant show the partial loss of this same polypeptide, suggesting that the 32,000 dalton polypeptide is necessary for the proper function of photosystem II.

Received for publication June 29, 1979 and in revised form February 15, 1980

Genetic mutants are useful tools for the study of photosynthesis, as has been amply documented in the classic work with algal photosynthetic mutants (22). However, with the exception of the large collection of well characterized pigment mutants in barley (17, 36), the number of photosynthesis mutants studied in any single species of flowering plant has been relatively small. To date, most higher plant photosynthesis mutants are characterized by gross pigment losses which are often accompanied by major alterations in thylakoid membrane morphology and the loss of many lamellar polypeptides (9, 15, 36, 37). Recently, a large collection of photosynthesis mutants was obtained in Zea mays (28) using elevated levels of Chl fluorescence to screen specifically for mutants blocked in photosynthesis (29). By employing this technique, both fully green and yellow-green nuclear mutants with blocks in electron transport, photophysiology, and dark reactions have been identified (26, 28).

The present study describes the characteristics of three nuclear photosynthesis mutants in maize. Two of these mutants, hcf*-3 and hcf*-19G, are fully blocked in PSII, whereas a third mutant, hcf*-19YG, is partially blocked in PSII. All three mutations affect not only PSI activity, but also cause the loss of one or both redox forms of Cyt b-559 and the loss of a major lamellar polypeptide with an apparent mol wt of 32,000 daltons. Allelism tests reveal that hcf*-3 is genetically distinct from both hcf*-19 G and hcf*-19YG, although the allelic relationship between the latter two mutants is unclear (20). This suggests that at least two and possibly three nuclear loci necessary for the proper assembly and function of PSI in maize plastids have been identified.

MATERIALS AND METHODS
Plant Material. Maize (Zea mays L.) seedlings were grown to the three-leaf stage in controlled environment chambers as described previously (28). The mutants hcf*-3, hcf*-19G, and hcf*-19YG were originally assigned the isolation numbers E-846, E-1257A, and E-1257B, respectively, by M. G. Neuffer, who recovered the plants after treatment of pollen with the alkylating agent ethyl diethane sulfonate (30), and who supplied the original M2 seed as accession material. All mutants were originally selected on the basis of hcf upon irradiation with a long wave UV source. Inheritance and transmission studies indicate that hcf*-3, hcf*-19G, and hcf*-19YG behave as would be expected for nuclear mutations (20).

Fluorescence Induction. Whole leaf fluorescence induction kinetics were measured by a modification of the methods of Miles and Daniel (28). Leaf segments were excised and placed in a mask exposing a 6×20-mm area of the upper leaf surface. The mask was placed at a 45° angle to a stable DC-powered tungsten light source. Actinic light was provided by passing light through the tungsten lamp through a blue plastic broad bandpass filter (peak transmission, 450 nm) providing an intensity of 6×10^4 erg cm^-2 s^-1 at the leaf surface. Fluorescence was measured at 45° to the leaf surface with an EMI-9558B photomultiplier (S-20 response) powered by a Pacific Photometric model 203 negative high voltage supply. The photomultiplier was protected from scattered light by a Corning 2030 and a Schott RG-N9 filter, the combination giving a sharp 10% cut off at 711 nm. The anode signal was amplified by a Keithley 414 picoamperometer and displayed on a Houston 2000 X-Y recorder.

Chloroplast Isolation. Chloroplasts used for the measurement of photoreactions were isolated by grinding 10 g washed maize leaves in a chilled Sorvall Omni-Mixer with 60 ml of cold isolation buffer containing 30 mM Na-Tricine (pH 8.0), 0.33 M sucrose, 1 mM EDTA, 1 mM MgCl2, 5 mM 2-mercaptoethanol, and 0.1% (w/v) BSA. A small amount of solid polyvinylpolypyrrolidone was added just prior to grinding. The preparation was filtered through Miracloth, centrifuged briefly at 1,500 g to remove debris, and the chloroplasts collected from the supernatant by centrifugation at 1,500g for 10 min. After isolation, chloroplasts were suspended in the grinding medium and Chl determined using the absorption coefficients of MacKinney (25).

Chloroplasts used in all other assays were isolated by grinding washed maize leaves in the Omni-Mixer with 20 mM Na-Tricine (pH 7.8), 0.8 M sucrose, and 10 mM NaCl (STN medium). The
homogenate was filtered through eight or more layers of Miracloth and the pellet collected by centrifugation at 4,500g for 8 min. The pellet was judged free of significant mitochondrial contamination by the absence of an A maximum at 598 nm attributable to Cyta. Dithionite in a dithionite minus ferricyanide difference spectrum. The STN pellet was resuspended in various media as described below.

For the analysis of lamellar polypeptides, thylakoid membranes were prepared by grinding washed maize leaves in a Waring Blendor with 100 mM Na-Tricine (pH 7.8), 0.4 M sorbitol, 10 mM NaCl, and 5 mM MgCl₂ followed by three washes in a medium consisting of 10 mM Na-Tricine (pH 7.8) and 10 mM NaCl.

Photoreactions. Light-dependent electron transport was measured polarographically using a Yellow Springs Instruments 404 Clark electrode. Actinic light (1.9 x 10⁶ erg cm⁻² s⁻¹) was provided by unfiltered light from a 750-w AC projection lamp. For measurements of O₂ evolution, chloroplasts were isolated as described above and aliquots containing 15 μg Chl were resuspended in a reaction mixture containing 40 mM Tricine (pH 7.8), 10 mM NaCl, 4 mM MgCl₂, 5 mM NaH₂PO₄, and 2 mM K₂Fe(CN)₆ in a total volume of 5.4 ml. PSI-dependent O₂ uptake was measured as above, using 100 mM MV as terminal electron acceptor and 80 μM DCIP and 1 mm ascorbate as an electron donor system. PSI1 contributions were eliminated with 30 μM DCMU. PSI1-dependent O₂ uptake in the presence of DBMB and Mn⁺² was assayed as described by Miles (27).

C-550. The low temperature, light-induced C-550 signal was measured in a DW-2 recording spectrophotometer equipped with a low temperature accessory. Chloroplasts were isolated in STN medium and the pellet resuspended in a small volume of reaction mix containing 20 mM Hepes (pH 7.7), 0.25 mM sorbitol, and 1 mM MgCl₂. The suspension was made 75% (v/v) in glycerol, incubated in the dark for 5 min, and frozen with liquid N₂ in the dark. The baseline was recorded and corrected after 20–30 min in the dark and the light minus dark difference spectrum subsequently scanned from 538 to 575 nm. Actinic illumination (7 x 10⁶ erg cm⁻² s⁻¹) was provided for 10–20 s by white light from a microscope illuminator. Large signals were observed using a final Chl concentration of 200–500 μg/ml in a cell of 2-mm optical path length.

Low Temperature Fluorescence Emission. Low temperature fluorescence emission spectra from isolated chloroplasts were measured in an Amino-Bowman spectrophotofluorometer modified as described by Newman and Sherman (31). Chloroplasts were isolated in STN medium and resuspended in 50 mM NaH₂PO₄ (pH 6.5) and 0.15 M sorbitol. Small aliquots of the sample were added directly to 75% glycerol to give a final Chl concentration of 5–10 μg/ml. Chl was excited at 430 nm by light from a xenon lamp and the fluorescence emission recorded from 550 to 790 nm.

Cyt Determinations. Room temperature Cyt difference spectra were measured in an Amino DW-2 spectrophotometer. The STN pellet was resuspended in 50 mM NaH₂PO₄ (pH 6.5), and 0.15 M sorbitol to a final Chl concentration of 1–2 mg/ml. Aliquots from this stock suspension were diluted to 40 μg/ml Chl in the resuspension buffer and spectra recorded in the split-beam mode.

Estimations of Cyt content were made from room temperature reduced minus oxidized difference spectra using a procedure modified after that of Henningsen and Boardman (14) with 60 μM potassium ferricyanide, freshly recrystallized 0.2 mM hydroquinone, and a few grains of solid dithionite used as redox mediators. These low concentrations of oxidant and reductants were saturating; higher concentrations resulted in apparent bleaching at the long wavelength end of the spectra. Cyt b₅₅₉HP was determined from the A change at 559 nm in hydroquinone minus ferricyanide difference spectra. Total Cyt b₅₅₉ and Cyt b₆ were determined from A differences at 559 and 563 nm, respectively, in dithionite minus ferricyanide difference spectra. Cyt f was determined at 554 nm as the average of the values calculated from dithionite minus ferricyanide and hydroquinone minus ferricyanide difference spectra. Cyt b₅₅₉LP was estimated as the calculated difference between total Cyt b₅₅₉ and Cyt b₅₅₉HP. Direct calculation of Cyt b₅₅₉LP from dithionite minus hydroquinone difference spectra were not considered reliable because of the difficulty of obtaining reproducible spectra from the yellow-green mutants. In all cases the amplitude of the A change was calculated as the difference between the spectral envelope at the measuring wavelength and a baseline joining the troughs as about 545 and 570 nm. Cyt contents were calculated from measured A changes using the wavelength equations of Heber et al. (13).

The time course of Cyt b₆ reduction was followed using a modification of the procedure of Bennett et al. (3). The progressive reduction of Cyt b₆ in a dithionite minus ferricyanide difference spectrum was followed by repeatedly scanning the spectrum in the region from 535 nm to 575 nm after the addition of a few grains of solid dithionite.

Electrophoresis. Thylakoid membrane samples were analyzed by SDS-gradient gel electrophoresis using the discontinuous buffer system of Laemmli (18). The gel consisted of a 1.5-cm stacking gel made 5% (w/v) in acrylamide and a 9-cm analyzing gel incorporating a 10% to 15% (w/v) linear acrylamide gradient accompanied by a 0.9% to 9% (w/v) linear sucrose gradient. Gels were formed between two glass plates (either 17.5 x 20 cm or 17.5 x 30 cm) separated by 1-mm thick spacers. The sandwich was mounted and the experiment executed in a locally constructed vertical slab gel apparatus. Power was provided by either a Heathkit IP-17 constant voltage power supply or a Brinkmann 1-kv voltage and current-regulated power supply.

Samples (thylakoids isolated as described) were prepared by boiling for 2 min in the sample buffer described by Laemmli (18). Phosphorylase A (92,000 daltons), BSA fraction V (67,000 daltons), ovalbumin (45,000 daltons), chymotrypsinogen (25,500 daltons), and Cyt c (12,400 daltons) were used as molecular weight standards. Samples to a separate well for mol wt calibration. Gels were stained for 30–45 min in 0.1% (w/v) Coomassie brilliant blue R-250, 50% (v/v) methanol, and 7% (v/v) glacial acetic acid and were destained overnight in 20% (v/v) methanol, 7% (v/v) glacial acetic acid, and 3% (v/v) glycerol.

MV was obtained from Sigma. DBMB was synthesized by the procedure outlined by Trebst et al. (38).

RESULTS

We report here the further characterization of hcf*-3 (28) and the initial characterization of two new mutants, hcf*-19G and hcf*-19YG. All three mutants appear to be similarly blocked in PSI. The designations -G and -YG refer to the seedling phenotype upon emergence; typically, hcf*-19G and hcf*-19YG were both slightly yellow-green at the three-leaf stage of seedling growth. For subsequent biochemical characterization hcf*-19G and hcf*-19YG were separated on the basis of differences in whole leaf fluorescence induction kinetics or delayed luminescence (20). In contrast, hcf*-3 remains fully green to the three-stage. All three mutants are seedling lethal, growth to the three-leaf stage presumably supported by kernel storage products.

Three lines of evidence suggest that hcf*-3, hcf*-19G, and hcf*-19YG are nuclear mutants. First, all three mutants were recovered following mutagenic treatment of mature pollen grains. Since extranuclear genetic information is not passed through the pollen in maize, all mutations transmitted by the treated pollen are presumed to be nuclear. Second, all three lesions are pollen transmissible in outcrosses, arguing against maternal inheritance. Finally, hcf*-3 and hcf*-19YG have been mapped to the nuclear genome (19). Allelism tests indicate that hcf*-3 is not allelic to either hcf*-19G or hcf*-19YG, although the genetic relationship between the latter two mutants is unclear (20). Taken together, this suggests that the mutants hcf*-3, hcf*-19G and hcf*-19YG represent mutations at least two, and possibly three, nuclear
Photoreactions. Chloroplasts isolated from hcf*-3 and hcf*-19G exhibit very low rates of O₂ evolution with ferricyanide as terminal electron acceptor (Table I). In contrast, chloroplasts isolated from hcf*-19YG are only partially blocked under the same conditions. Since ferricyanide is believed to accept electrons from both photosystems under certain conditions (10), the PSII specific reaction catalyzed by low concentrations of DBMIB in the presence of Mn⁴⁺ (27) was employed as a further test for PSII independent electron transport. The Mn⁴⁺-dependent PSII rates seen with chloroplasts isolated from hcf*-3, hcf*-19YG and wild-type sibs agree well with the rates of O₂ evolution seen with ferricyanide (Table I). Despite being fully blocked in PSII, chloroplasts isolated from hcf*-3 and hcf*-19G exhibit high rates of PSI activity. PSI-dependent electron transport is reduced in chloroplasts isolated from hcf*-19YG relative to sib controls, but this reduction is less than that measured for PSI-dependent electron transport.

Whole-Leaf Fluorescence Induction Kinetics. Whole leaves excised from wild-type maize seedlings show the typical complex induction kinetics (Kautsky effect) characteristic of isolated plant and algal cells (Fig. 1). The rise to 0 represents a component of fluorescence which is insensitive to physiological processes, whereas the O-P rise, termed the variable fluorescence, is largely a reflection of the kinetics of reduction of the Q-A pool by PSI (32). Whole leaf induction transients from hcf*-3 and hcf*-19G show an elevated 0 level and the complete loss of the variable fluorescence yield. Transients from hcf*-19YG also exhibited an elevated 0 level but retained a portion of the variable fluorescence yield, although the amplitude of the rise differed somewhat from plant to plant. The decreased amplitude of the O-P rise in this mutant is consistent with the observed reduction in PSII electron transport activity (Table I), while the presence of the P-S decline suggests that PSI is at least partially active. The complete loss of the variable fluorescence yield in the fully blocked mutants hcf*-3 and hcf*-19G suggests that primary charge separation is not possible in these mutants due either to the loss or inactivation of Q, or a similar loss of inactivation of the reaction center pigment of PSI.

C-550. Spectra of the light-induced low temperature C-550 signal from chloroplasts isolated from hcf*-3, hcf*-19G, hcf*-19YG, and control plastids are shown in Figures 2 and 3. The C-550 signal (seen as a carotenoid bandshift at 542 and 574 nm) has been shown to be a good but indirect indicator of the redox state of Q (6). At low temperature this signal is accompanied by an A decrease at 557 nm corresponding to the photooxidation of Cyt b-559⁰⁰ (6). Large signals corresponding to the photoreduction of Q and the photooxidation of Cyt b-559⁰⁰ were seen with wild-type plastids, while chloroplasts isolated from hcf*-3 and hcf*-19G did not show the C-550 signal or the photooxidation of Cyt b-559⁰⁰ (Figs. 2 and 3). Chloroplasts isolated from hcf*-19YG showed a reduction in the extent of the photoreduction of Q and photooxidation of Cyt b-559⁰⁰ relative to sib controls.

Low Temperature Fluorescence Emission Spectra. Low temperature fluorescence emission spectra for plastids isolated from the fully blocked mutants hcf*-3, hcf*-19G, and wild-type seedlings are presented in Figure 4. At 77 K, maize plastids show the characteristic three banded fluorescence emission spectrum typical of a variety of photosynthetic organisms (33) with emission peaks at approximately 685 (F685), 695 (F695), and 735 nm (F735). In wild-type maize plastids F695 is typically seen as a small shoulder (33). Plastids from the fully blocked mutants hcf*-3 and hcf*-19G show a markedly increased fluorescence yield at 696 nm relative to wild-type (Fig. 4). Since F695 has been suggested to arise from pigments closely associated with the reaction center of PSI (5), these observations suggest that the loss or inactivation of Q, rather than the reaction center pigment P680, might be responsible for the observed lack of fluorescence quenching in the fully blocked mutants.

Spectral Estimation of Cytochrome Content. Reduced minus oxidized difference spectra reported previously (26) suggested that
Fig. 4. Low temperature (77 K) fluorescence emission spectra from typical wild-type maize plastids and plastids isolated from the fully blocked mutants \textit{hcf}*-3 and \textit{hcf}*-19G. Chl concentration, 5–10 \(\mu\text{g/mL}\).

Chloroplasts isolated from \textit{hcf}*-3 are deficient in the high potential form of Cyt b-559. Interestingly, may algal mutants blocked in PSII also exhibit the loss of one or both forms of the Cyt (4, 23, 35). Spectra presented in Figure 5 suggest that chloroplasts isolated from \textit{hcf}*-3 lack all of the high potential Cyt b-559 and are also deficient for most or all of the total Cyt b-559 pool as well. Calculations based on these and a large number of similar difference spectra indicate that the dip seen at 559 nm in dithionite minus ferricyanide difference spectra cannot be due to the loss of the high potential form alone, but that most or all of the low potential form is also missing (Table II).

Table II. Estimated Cytochrome Content for Maize Mutants and wild-type Sibs Determined from Reduced Minus Oxidized Absorption Spectra

<table>
<thead>
<tr>
<th>Cytochrome</th>
<th>WT-3</th>
<th>\textit{hcf}*-3</th>
<th>WT-19</th>
<th>\textit{hcf}*-19G</th>
<th>\textit{hcf}*-19G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyt (f)</td>
<td>1.5</td>
<td>2.1</td>
<td>1.5</td>
<td>1.8</td>
<td>2.1</td>
</tr>
<tr>
<td>Cyt (b)-559(\text{HP})</td>
<td>2.2</td>
<td>0</td>
<td>2.2</td>
<td>1.6</td>
<td>0</td>
</tr>
<tr>
<td>Cyt (b)-559(\text{LP})</td>
<td>1.4</td>
<td>0.6</td>
<td>0.5</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Cyt (b)-6</td>
<td>2.6</td>
<td>3.5</td>
<td>3.6</td>
<td>4.0</td>
<td>4.3</td>
</tr>
</tbody>
</table>

Spectra presented in Figure 6 suggest the loss of all of the high potential and most of the low potential Cyt \(b\)-559 in plastids from \textit{hcf}*-19G. The small amount of Cyt \(b\)-559 present in the low potential form in this genetic background (0.5 nmol Cyt/\(\mu\text{mol Chl}\) in WT-19 versus 1.4 nmol Cyt/\(\mu\text{mol Chl}\) in WT-3) precludes an accurate measure of the extent of the loss of Cyt \(b\)-559\(\text{LP}\) in \textit{hcf}*-19G, but calculations suggest the complete loss of the low potential form. In contrast, chloroplasts isolated from \textit{hcf}*-19G show only a partial loss of Cyt \(b\)-559\(\text{HP}\) and a normal or slightly increased content of the low potential form of the Cyt as compared to wild-type sibs (Table II).

Although it is clear that chloroplasts from \textit{hcf}*-3 and \textit{hcf}*-19G are completely deficient in Cyt \(b\)-559\(\text{HP}\), it is difficult to estimate the precise extent of the loss of the low potential form of the Cyt from difference spectra due to the existence of multiple redox potential forms of the \(b\)-type Cyt (8) and the large overlap between the spectral envelopes of the different chloroplast Cyt. For the same reasons it is possible that the calculated increase of Cyt \(f\) and \(b\) associated with the loss of Cyt \(b\)-559 in \textit{hcf}*-3 and \textit{hcf}*-19G (Table II) is artifactual; these increases are not immediately apparent from the shape of the spectral envelopes.

Bendall \textit{et al.} (3) reported a method for discriminating between Cyt \(b\)-559\(\text{LP}\) and Cyt \(b\)\textit{a} based on differences in the rate of reduction of these two Cyt by dithionite. Since dithionite reduces Cyt \(b\)-559 more rapidly than it reduces Cyt \(b\)\textit{a} (3), initial rapid scans of a dithionite minus ferricyanide difference spectrum show a peak at 559 nm; in subsequent scans the peak shifts toward 563 nm as Cyt \(b\)\textit{a} becomes progressively reduced. In the case of \textit{hcf}*-3, a significant peak was never observed at 559 nm (Fig. 7).
whereas very rapid reduction of the Cyt was evident in wild-type sibs over the same time course (data not shown). Identical results were obtained with plastids isolated from hcf*-19G (data not shown). These time course studies suggest a complete loss of Cyt b-559 in the fully blocked mutants hcf*-3 and hcf*-19G.

Electrophoresis. Polypeptide profiles obtained from maize lamellae typically contained 30 to 40 bands on gradient polyacrylamide gels; not all these bands are readily seen in Figure 8. Lamellae isolated from hcf*-3 are greatly deficient for a major polypeptide of an apparent mol wt of about 32,000 daltons (Fig. 8); in some preparations, this polypeptide was completely absent. Lamellae isolated from hcf*-3 also show decreases in the staining intensity of polypeptides with apparent mol wt of 9,000, 10,000, and 11,000 daltons as compared to normal sibs. These low mol wt polypeptides may not be specifically associated with PSII since they are completely missing from lamellae isolated from hcf*-43, a maize mutant blocked primarily in PSI (Miles and Leito, unpublished). Small differences in staining intensity are also seen for minor polypeptides with apparent mol wt between 16,000 and 20,000 daltons; higher resolution runs on long (30 cm) slab gels revealed that lamellae from hcf*-3 are slightly depleted in polypeptides with apparent mol wt of 19,000 and 16,000 daltons and are slightly enriched in a 17,000 dalton species (Fig. 8, inset). Alterations in this region of the gel are never as drastic as changes seen at 32,000 daltons.

Similar losses are seen in lamellae isolated from the hcf*-19 series of mutants (Fig. 8); the 32,000 dalton polypeptide is present in the wild-type profile, is somewhat reduced in staining intensity in lamellae from hcf*-19YG, and is almost completely absent from lamellae isolated from hcf*-19G. The progressive loss of the 32,000 dalton polypeptide across the hcf*-19 series of mutants parallels the progressive loss of PSII activity also seen across the series (Table I). As was seen for hcf*-3, the staining intensity of the low mol wt triplet at 9,000, 10,000, and 11,000 daltons parallels that of the 32,000 dalton polypeptide. There are hints of alterations in the 16,000 to 20,000 dalton region of the gel, but high resolution analysis on long slab gels has not yet been carried out. None of the three PSI mutants show consistent losses of polypeptides in the 40,000 to 50,000 dalton mol wt region, the region suspected to contain the reaction center polypeptides for PSI in both Chlamydomonas (7) and barley (36, 37).

DISCUSSION

The characteristics of the PSII mutants described here are summarized in Table III. The nuclear lesions hcf*-3 and hcf*-19G result in elevated levels of Chl fluorescence and the complete loss of the light-inducible C-550 signal. The high potential form of Cyt b-559 is missing in both mutant strains, and the low potential form of the Cyt is either greatly reduced or completely absent in these mutants. As expected, both mutants lack PSI activity (Table I). In contrast, the partially blocked mutant hcf*-19YG retains a portion of the variable fluorescence yield, a reduced light-inducible C-550 signal, a reduction but not the total loss of Cyt b-559H, and a normal or slightly increased amount of the low potential form of the Cyt as compared to wild-type sibs. The fully blocked mutants hcf*-3 and hcf*-19G show a great reduction or the total loss of the 32,000 dalton lamellar polypeptide; the loss of this polypeptide is also seen, to a lesser extent, in lamellae isolated from hcf*-19YG.

It is difficult to determine from the present data whether the lesions in the fully blocked mutants cause the loss of the entire PSII reaction center (P680 and Q), or whether the reducing side of PSII is preferentially affected. A high invariant fluorescence yield would be expected if either Q, P680, or both were lost or rendered non functional by mutation (6); the loss of the light-inducible C-550 signal would follow. Chloroplasts isolated from hcf*-3 and hcf*-19G exhibit an elevated F695 emission peak (Fig. 4); according to Butler (5), this emission comes from antenna pigments closely associated with PSII. Unfortunately, this still does not reveal whether P680 is present, since no low temperature fluorescence signal has been directly attributed to the reaction center Chl (5). Nevertheless, the presence of an elevated F695 fluorescence emission peak seen in the fully blocked mutants leaves open the possibility that these lesions may primarily involve the reducing side of PSII. In contrast, the P1 mutant of Euglena (35) and several static and conditional PSI mutants in Scenedesmus (4) all lack F695 while exhibiting high, invariant room temperature fluorescence induction kinetics (4, 35). The genetic blocks in these algal mutants may lead to slightly different alterations in the structure of PSII than are seen in the fully blocked maize mutants.

The pleiotropic effect of mutations affecting PSII has been repeatedly observed in the photosynthetic algae, where it is well established that the mutational loss of PSII is almost always accompanied by the concomitant loss of Cyt b-559 (4, 7, 23, 25), and, in many cases, by the loss of lamellar polypeptides (7, 21). It is not surprising that the loss of Cyt b-559 accompanies the mutational alteration of PSII insomuch as fractionation studies (1) and the direct photooxidation of the Cyt by PSII at 77 K (6) suggest a close physical relationship between the Cyt and PSII. Unfortunately, few parallel studies exist for similarly blocked mutants in flowering plants. Yellow-green sectors from the variegated tobacco mutant, NC-95 (16) and from the variegated Oenothera plasme mutants 1 alpha, II gamma, II delta, and II gamma (9) yield chloroplasts largely or completely lacking both variable fluorescence and PSI activity; however, little is known about the Cyt content, low temperature fluorescence emission characteristics, or lamellar polypeptide composition of these mutants. Pale green sectors from the plastome mutant en.viridis-1 of...
Antirrhinum majus (15) and several nuclear barley mutants (24, 36, 37) lack both PSII activity and, in each case, several lamellar polypeptides; again, fluorescence and Cyt data are lacking for nearly all of these mutants. Further work is needed to determine the extent to which all these mutants share common functional and structural characteristics.

The present study suggests a strong correlation between the loss of PSII activity and the loss of a major lamellar polypeptide with an apparent mol wt of 32,000 daltons (Fig. 8). This association is perhaps pointed out most convincingly in the hcf*-19 family of mutants, where the progressive loss of PSII is clearly paralleled by the progressive loss of the 32,000 dalton polypeptide. A similar case was reported by Chua and Bennoun (7) for fully blocked and suppressed strains of F34, a PSII mutant in Chlamydomonas. In this case the partial restoration of PSII activity in the suppressed strain was correlated with the reappearance of two polypeptides with apparent mol wt of 47,000 and 50,000 daltons which were missing or greatly reduced in the nonsuppressed, fully blocked strain. This correlation was taken as strong evidence for the involvement of these polypeptides in PSII function. There is also evidence that a 46,000 dalton lamellar polypeptide, which cross-reacts with the 47,000 dalton Chlamydomonas polypeptide (37) is required for normal PSII activity in barley (36, 37). Several PSII-deficient barley mutants which lack the 46,000 dalton lamellar polypeptide have now been identified; in many cases the loss of the 46,000 dalton polypeptide is accompanied by the reduction or loss of a polypeptide migrating in the 32,000 dalton region of the gel (24, 36, 37). In barley these lesions are accompanied by the loss of the major subunits of the chloroplast coupling factor and several other unidentified polypeptides. Maize does not exhibit as prominent a band in the 40,000- to 50,000-dalton region as has been reported for Chlamydomonas and barley; however, the clear loss of the 32,000 dalton polypeptide in maize is not accompanied by the consistent loss of any polypeptides in the 40,000- to 50,000-dalton region of the gel (Fig. 8), suggesting an independent requirement of the 32,000 dalton polypeptide for PSII activity.

Much work has been devoted to understanding the control of the synthesis of the 32,000 dalton polypeptide in maize (2, 11, 12). This polypeptide appears to be derived from a 34,500 dalton precursor polypeptide which undergoes posttranslational modification (processing) resulting in a decrease in apparent mol wt to 32,000 daltons (12). The processing of the 34,500 dalton precursor species is presumably under nuclear control, since only the precursor is labeled by isolated chloroplasts, while both the precursor and the 32,000 dalton product are labeled when whole leaves are fed [35S]methionine (12). Bedbrook et al. (2) have shown that during greening the accumulation of a chloroplast mRNA species hybridizing to cDNA Bam restriction fragment 8 follows a similar time course as the in vitro translation of a 34,500 dalton polypeptide directed by bulk chloroplast mRNA. Taken together, this information suggests that the structural gene for the 32,000 dalton polypeptide resides on chloroplast DNA, that the transcription of the mRNA coding for the 34,500-dalton precursor is controlled by light, and that the processing of the precursor species may be under nuclear control (2). Because peptide mapping suggests that the stainable 32,000-dalton polypeptide and the 34,500-dalton polypeptide labeled in vitro are the same protein (12), it is possible that one or more of the nuclear maize loci described here may be necessary for the post translational modification of the precursor polypeptide.

LITERATURE CITED

head of bacteriophage T. Nature 227: 680-685
33. RIERSBERG CP, J AMEZ, APGM THEILEN, JA SWAGER 1979 Fluorescence emission spectra of chloroplasts and subchloroplast preparations at low temperature. Biochim Biophys Acta 545: 473-482
35. SCHWELITZ FD, RA DILLEY, FL CRANE 1972 Biochemical and biophysical characteristics of a photosynthetic mutant of Euglena gracilis blocked in Photosystem II. Plant Physiol 50: 161-165

Copyright © 1980 American Society of Plant Biologists. All rights reserved.