Light—Shade Adaptation

TWO STRATEGIES IN MARINE PHYTOPLANKTON

PAUL G. FALKOWSKI AND THOMAS G. O WENS
Oceanographic Sciences Division, Department of Energy and Environment, Brookhaven National Laboratory,
Upton, New York 11973

ABSTRACT

Using chlorophyll/P700 ratios, the size and number of photosynthetic units were estimated, as a function of light-shade adaptation in two species of marine phytoplankton: Skeletonema costatum, a diatom, and Dunaliella tertiolecta, a chlorophyte. In the diatom, light-shade adaptation is characterized primarily by changes in the size and not the number of P700 units, whereas in the chlorophyte, overall changes in chlorophyll content are related to changes in the number and not the size of P700 units. A correlation between the characteristics of P700 units and photosynthetic responses was not established. Both strategies of light-shade adaptation effectively harvest and transfer light energy to reaction centers, however, the Skeletonema strategy is more effective at subsaturating intensities. The two strategies may represent an evolutionary divergence in photosynthetic adaptation to variations in light intensity.

Received for publication March 21, 1980 and in revised form May 16, 1980

In unicellular algae, light-shade adaptation is characterized by changes in intracellular pigment content (2, 6, 17), changes in photosynthetic response (4, 18), and is often accompanied by changes in chemical composition and cell volume (17). Previous studies from our laboratory (19, 21) and that of Grumbach et al. (9) indicate that Chl metabolism is highly dynamic in some species, implying that changes in pigment content can occur within a relatively short time. Changes in pigment content may partially compensate for changes in light intensity by optimizing the ability of the cell to harvest the available light. By themselves, such changes do not confer an adaptive advantage unless the light harvested is transferred to photosynthetic reaction centers, where it can be coupled to an electrochemical gradient. Reaction centers, in conjunction with antenna Chl molecules, accessory pigments, and electron carriers comprise PSU. It is not clear whether the size or number of PSU changes in the course of light-shade adaptation (4), however, it has been suggested that changes in the characteristics of PSU are associated with changes in photosynthetic response (3, 5, 11, 20).

Chl/P700 ratios have been proposed as one method of estimating the average size of PSU (4, 22), although it has been shown that this ratio may differ (on an electron equivalent basis) from PSU sizes estimated from O$_2$ flash yields (14). Recognizing that the ratio of PS1/PSII reaction centers may not be unity, we measured Chl/P700 ratios (henceforth referred to as P700 units) and photosynthetic response to gain an understanding of: (a) the relationship between light-shade adaptation and the size and number of P700 units; (b) the relationship between changes in the characteristics of P700 units and photosynthetic response; and (c) the effect of light-shade adaptation on cell growth and division. We selected a common neritic diatom, Skeletonema costatum (Grew.) Cleve, and a motile chlorophyte, Dunaliella tertiolecta Butcher, because these two species markedly differ in pigment composition (15), chloroplast ultrastructure (8), and photosynthetic response (7).

MATERIALS AND METHODS

Culture Conditions. S. costatum (Woods Hole clone SKEL, Bacillariophyceae) and D. tertiolecta (Woods Hole clone DUN, Chlorophyceae) were cultured axenically at 15 C in natural seawater enriched with f/2 nutrients (10). Cultures were maintained in 4-liter aspirator bottles; the upper and lower surfaces were made opaque with black vinyl tape allowing light to enter only through the vertical sides. Light was provided from above by cool-white fluorescent tubes on a 14:10 h L/D cycle. In experiments with S. costatum, maximum incident light intensity (PAR), measured at the center of the culture bottles, was 130 µE m$^{-2}$ s$^{-1}$. Light was increased up to 400 µE m$^{-2}$ s$^{-1}$ for D. tertiolecta. PAR was measured in the culture bottles with a Biospherical Instruments QSL-100 quantum meter equipped with a calibrated 4-µ sensor. Neutral density screens (Perforated Products, Inc., Cambridge, Mass.) were wrapped around the bottles to attenuate the light to 50, 30, 15, 7, 2, and 0.5% I$_0$.

The cultures were constantly mixed by bubbling with sterile air and maintained at constant cell densities by dilution with fresh media for at least 72 h during log growth. For all analyses, cells were harvested during log growth at densities of 3.2 × 104 cells/ml for S. costatum and 1.2 × 105 cells/ml for D. tertiolecta. Steady-state cell densities could be maintained in a large number of culture vessels simultaneously by diluting periodically. Additional cultures were maintained at steady-state densities in a turbidostat under continuous illumination. Both culturing techniques provided a means of obtaining highly reproducible data on cellular chemical composition and characteristics of P700 units without artifacts caused by differential mutual shading.

Pigment Determinations. Chl a, b, and c were measured spectrophotometrically in 90% acetone extracts (13). Cells were filtered on Gelman type A-E glass fiber filters and immediately ground in spectral grade 90% acetone in a glass mortar with a Teflon pestle. The glass fibers were removed by filtration, reextracted with 90% acetone, and the acetone extracts pooled. The A of the acetone extracts was measured between 350 and 750 nm against 90% acetone.

P700 was measured in Triton X-100 extracts of whole cells by light-induced oxidation according to the general procedure of Marahlo and Kok (16). Cells were harvested by filtration on 47-mm Gelman type A-E glass fiber filters and were disrupted by

1 This research was performed under the auspices of the United States Department of Energy under contract DE-AC02-76CH00016.
2 Abbreviations: C$_c$, compensation light intensity for photosynthesis; I$_o$, intensity of incident light; PSU, photosynthetic unit(s); L/D, light to dark.
LIGHT-SHADE ADAPTATION

Table 1. Effects of Light Intensity on Photosynthetic Pigment Characteristics and Photosynthetic Response in S. costatum and D. tertiolecta during Steady-State Growth at 15°C

<table>
<thead>
<tr>
<th>S. costatum</th>
<th>D. tertiolecta</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_0^*</td>
<td>Chl a^b</td>
</tr>
<tr>
<td>130</td>
<td>4.5</td>
</tr>
<tr>
<td>65</td>
<td>5.4</td>
</tr>
<tr>
<td>39</td>
<td>5.9</td>
</tr>
<tr>
<td>20</td>
<td>7.1</td>
</tr>
<tr>
<td>9</td>
<td>5.1</td>
</tr>
<tr>
<td>2.6</td>
<td>5.0</td>
</tr>
<tr>
<td>0.7</td>
<td>5.0</td>
</tr>
<tr>
<td>I_0^*</td>
<td>Chl a^b</td>
</tr>
<tr>
<td>400</td>
<td>11.8</td>
</tr>
<tr>
<td>200</td>
<td>14.9</td>
</tr>
<tr>
<td>120</td>
<td>20.9</td>
</tr>
<tr>
<td>60</td>
<td>27.6</td>
</tr>
<tr>
<td>20</td>
<td>30.9</td>
</tr>
<tr>
<td>8</td>
<td>25.5</td>
</tr>
<tr>
<td>2</td>
<td>24.3</td>
</tr>
</tbody>
</table>

* Incident light in μE m$^{-2}$ s$^{-1}$.
* Mol Chl/cell (×1010).
* Molar ratio.
* Numbers of PSI reaction centers/cell (×109).
* Compensation light intensity in μE m$^{-2}$ s$^{-1}$.
* Light saturated rate in μol O$_2$ cell$^{-1}$ min$^{-1}$ × 10$^{-10}$.
* Gross photosynthesis to respiration ratios.

RESULTS AND DISCUSSION

Pigment Content. Both S. costatum and D. tertiolecta respond to decreased light intensity by increasing pigment content (Table I). In both species, maximum Chl a content was observed at about 20 μE m$^{-2}$ s$^{-1}$; at lower light intensities, cells tended to become slightly bleached. Over the range of light intensities that the cells are capable of light-shade adapting (i.e. prior to bleaching), intracellular Chl a pools can be empirically fit to a logarithmic function of I_0 with correlation coefficients (r^2) > 0.95. In addition to changes in Chl a, Chl b and c vary with I_0 in the chlorophyte and diatom, respectively (Table I). As cells become shade adapted, there is a disproportionate increase in either Chl b or c relative to Chl a; consequently, the ratios of Chl a/b and Chl a/c decrease with decreasing I_0.

There is a contrast between S. costatum and D. tertiolecta with respect to changes in the size and number of P700 units as the two species adapt to various light intensities. As S. costatum becomes shade adapted, the size of P700 units increases while the number of PSI reaction centers per cell decreases. In D. tertiolecta, the size of P700 units decreases as the cells become shade adapted while the number of PSI reaction centers per cell increases (Table I). At the lower light intensities, where Chl content decreases as a result of bleaching, there is a corresponding decrease in both the size and number of P700 units in both species.

These results suggest that there are at least two distinct strategies of light-shade adaptation in marine phytoplankton. In S. costatum, increased Chl content results from increases in the size, but not the number, of P700 units, whereas in D. tertiolecta, increased Chl content results from increases in the number, but not the size, of P700 units. Both strategies are macroscopically indistinguishable on the basis of Chl or accessory pigment content.

The average size of P700 units in Dunaliella (470 Chl a + b/P700) is considerably smaller than those found in Skeletonema (650-1340 Chl a/P700) and other diatoms (Falkowski, unpublished) but is similar to P700 unit sizes reported in higher plants (I, 3, 4). Despite smaller P700 units, the total Chl content in the chlorophyte is higher than in the diatom (Table I). This discrepancy is attributed to differences in the cellular density of reaction centers in the two species. Although S. costatum and D. tertiolecta have comparable cell volumes (Table II), the chlorophyte has more PSI reaction centers per cell than the diatom (Table I). This difference probably reflects increased thylakoid stacking and a generally greater membrane surface area in chlorophyte chloroplasts relative to those of diatoms (8).

Photosynthetic Characteristics. Light-saturated photosynthetic capacities (P_{max}) decrease in both species as they become shade adapted (Fig. 1). Expressed on a Chl a basis, P_{max} values obtained with D. tertiolecta (Fig. 1B) are greater than those obtained with S. costatum (Fig. 1A) when both species are adapted to similar light intensities. For example, P_{max} for the chlorophyte is 5.5 μmol O$_2$ μmol$^{-1}$ Chl a min$^{-1}$ for cells adapted to 120 μE m$^{-2}$ s$^{-1}$, whereas in the diatom, P_{max} is 4.0 μmol$^{-1}$ O$_2$ μmol$^{-1}$ Chl a min$^{-1}$ for cells adapted to 130 μE m$^{-2}$ s$^{-1}$. Expressed on a per cell basis, P_{max} values are on the average about 5.6 times higher in the chlorophyte, whereas compensation light intensities for photosynthesis (C_o) are about 50-fold lower in S. costatum (Table I). In the diatom, C_o remains relatively constant as the cells become shade adapted, whereas in the chlorophyte, C_o increases with I_0.

The initial slopes of the P versus I curves (on a per Chl a basis) do not significantly differ for D. tertiolecta adapted over the range of light intensities examined (Fig. 1). These P versus I curves for the
chlorophyll are similar to those reported for *Atriplex* (4), which has similar P700 unit sizes (3). In *S. costatum*, however, the initial slopes of the P versus I curves decrease (on a per Chl basis) as the cells become shade adapted. Chl/P700 ratios theoretically represent the average cross-section of a PSU, including PSI reaction centers. The most obvious effect of a change in PSU size ought to be a corresponding change in light utilization efficiency (i.e. initial slope of a P versus I curve) (11). In *S. costatum*, light utilization efficiencies do not increase as Chl/P700 ratios increase. A change in the number (or cellular density) of PSU should theoretically result in a corresponding change in photosynthetic capacity (11). In *D. tertiolecta*, photosynthetic capacities (on a per cell or per Chl basis) decrease while the number of PSI reaction centers increases. The inconsistencies between the characteristics of P700 units and photosynthetic responses strongly suggest that Chl/P700 ratios do not correspond to PSU sizes as defined by more classical methods of *O₂* flash yields (14).

Growth Rates, Cell Volumes and Carbon Content. Cellular division rates (κ) decrease with Io (Table II). During log growth, the relationship between κ and Io can be empirically fit by a relationship of the form κ = a + b log Io with correlation coefficients (r²) >0.97. Under the specified growth conditions, the calculated compensation light intensity for division is 0.32 μE m⁻² s⁻¹ for *S. costatum* and 18 μE m⁻² s⁻¹ for *D. tertiolecta*.

In both species, changes in κ, resulting from decreasing Io, are accompanied by decreases in cell volume and increases in cellular C content (Table II). As cells shade adapt, however, there are significantly greater accumulations of cellular N which result in decreased C/N ratios. These relationships are especially pronounced in *D. tertiolecta*.

In both species, dark respiration rates decrease as the cells become shade adapted. The decrease in respiration is associated with decreased κ. Gross photosynthesis: respiration ratios remain relatively constant for each species over the range of light intensities examined (Table I). These ratios average 6.9 ± 0.3 is *S. costatum* and 9.4 ± 0.8 in *D. tertiolecta*.

The major physiological outcome of light-shade adaptation is modification of growth rates with variation in light intensity.
photosynthetic responses qualitatively (i.e. fluxes) to PSU characteristics based on Chl/P700 ratios (i.e. pools). A similar conclusion was reached by Armond et al. (1) who observed qualitative discrepancies between Chl/P700 ratios and photosynthetic characteristics in higher plants. The determination of PSU size based on the ratio of bulk Chl molecules to an electron transport component (e.g. P700) does not provide information about reaction center turnover. Myers and Graham (18) have presented data suggesting that photochemical turnover is not constant and decreases as cells become shade adapted. In addition to problems of estimating photochemical turnover, inconsistencies between PSU and sizes as indicated by Chl/P700 ratios and O_2 flash yields may arise if the ratio between PSI and PSII reaction centers is not 1:1 or changes as cells adapt to various light intensities (14).

A comparison of the two species used in this study indicates that the absolute ratios of Chl/P700 are invariably larger in S. costatum than in D. tertiolecta, whereas the absolute cellular density of reaction centers is invariably greater in the chlorophytes. These data can be qualitatively related to interspecific differences in photosynthetic responses; photosynthetic efficiency is higher in S. costatum, but P_{max} is lower. The fundamental differences between the two strategies of light-shade adaptation may be related to the ecological niches occupied by the two species. The evolution of a light harvesting system that is most effective at higher light intensities (i.e. Dunaliella) is not generally adaptive to aquatic environments, but is more compatible with terrestrial light regimes. D. tertiolecta is primarily found in shallow waters (such as tide pools) and at generally lower latitudes, whereas S. costatum is successful at lower light intensities in deeper waters of temperate continental shelves. The strategy of light-shade adaptation observed in D. tertiolecta is similar to that observed in Chlorella (18) and higher plants (3, 4) and may reflect an evolutionarily conserved adaptation to generally higher light intensities.

LITERATURE CITED

13. Jeffrey SW, CF Humphrey 1973 New spectrophotometric equations for determining chlorophyll a, b, c_1 and c_2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167: 191–194