Reversible Light-Activation of Ribulose Bisphosphate Carboxylase/Oxygenase in Isolated Barley Protoplasts and Chloroplasts

Received for publication December 21, 1981 and in revised form March 31, 1982

RICHARD C. SICHER
United States Department of Agriculture/ARS-PPHI, Light and Plant Growth Laboratory, Beltsville Agricultural Research Center, Beltsville, Maryland 20705

ABSTRACT

The enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase displayed near-maximal activity in isolated, intact barley (Hordeum vulgare L. cv. Pennrad) mesophyll protoplasts. The carboxylase deactivated 40 to 50% in situ when protoplasts were dark-incubated 20 minutes in air-equilibrated solutions. Enzyme activity was fully restored after 1 to 2 minutes of light. Addition of 5 millimolar NaHCO₃ to the incubation medium prevented dark-inactivation of the carboxylase. There was no permanent CO₂-dependent activation of the protoplast carboxylase either in light or dark. Activation of the carboxylase from ruptured protoplasts was not increased significantly by in vitro preincubation with CO₂ and Mg²⁺. In contrast to the enzyme in protoplasts, the carboxylase in intact barley chloroplasts was not fully reactivated by light at atmospheric CO₂ levels. The lag phase in carbon assimilation was not lengthened by dark-adapting protoplasts to low CO₂ demonstrating that light-activation of the carboxylase was not involved in photosynthetic induction. Irradiance response curves for reactivation of the the carboxylase and for CO₂ fixation by isolated barley protoplasts were similar. The above results show that there was a fully reversible light-activation of the carboxylase in isolated barley protoplasts at physiologically significant CO₂ levels.

The enzyme RuP₂-carboxylase/oxygenase catalyzes the initial reactions of both the photorespiratory and reductive pentose phosphate pathways (5). The enzyme binds CO₂ in a rate-determining step and subsequently reacts with Mg²⁺ to form the catalytically active enzyme-CO₂-Mg²⁺ complex (9). Formation of the active ternary complex is readily reversible, pH-dependent, and occurs at a discrete activator site on the molecule (8, 9).

The role of this activation process in vivo is still uncertain. The enzyme in freshly prepared, intact spinach chloroplasts was about half-maximally activated when assayed by a rapid lysis procedure (1) and was further activated or inactivated in situ by altering the CO₂ level in solution. Illumination also activated the carboxylase in the intact chloroplast as a result of light-dependent increases of stromal pH and Mg²⁺ (1, 3). In contrast to these findings with spinach chloroplasts, Robinson et al. (12) reported that there were no significant light or CO₂-dependent changes in the activation of RuP₂-carboxylase in isolated, intact wheat or barley protoplasts. These authors demonstrated that the carboxylase in situ remained activated after illumination and suggested that the low carboxylase activities observed in spinach chloroplasts were the result of enzyme deactivation during the isolation procedure.

Perchiorowicz et al. (11) and Macherl and Nosberger (10) independently observed an activation of RuP₂-carboxylase in attached wheat leaves when seedlings were shifted from low to high irradiances. These results with enzyme extracts prepared from wheat leaves in equilibrium with air-levels of CO₂ suggested that previous findings with protoplasts should be reexamined under a variety of incubation conditions. This report describes modulation of RuP₂-carboxylase activity in isolated barley protoplasts by CO₂ and light.

MATERIALS AND METHODS

Protoplast and Chloroplast Isolation. Intact mesophyll protoplasts were isolated from 7- to 9-d-old barley (Hordeum vulgare L. cv. Pennrad) seedlings that were grown in a greenhouse in plastic pots containing vermiculite and were watered daily with complete nutrient solution (16). Daylengths were extended to 14 h with high pressure Na lamps. Protoplasts were prepared daily from leaves of plants that had been in light for 1 to 2 h (2). Leaf pieces (0.5 mm) were digested in the dark for 1.5 h at 30°C in medium (pH 5.5) containing 0.5 m sorbitol, 1% (w/v) Cellulase (Vega Biochemicals, Tucson, AZ), 0.5% (w/v) Macerase (Calbiochem-Behring), and 1 mm CaCl₂. Subsequent filtration and centrifugation steps were performed at 0°C as described by Edwards et al. (2) except that solutions contained 1 mm MgCl₂ instead of CaCl₂. For chloroplast preparation, intact protoplasts were suspended in medium containing 0.33 m sorbitol, 50 mm Mes-NaOH (pH 6.5), 10 mm NaH₂PO₄, 5 mm MgCl₂, 2 mm sodium isoascorbate, and 0.1% (w/v) BSA at 0°C and were ruptured by one passage through a 20 μm nylon net (4). The chloroplast suspension was collected by centrifugation (200g, 45 s) and the resulting pellet was resuspended in 0.33 m sorbitol, 50 mm Hepes-NaOH (pH 7.6), 2 mm EDTA, 1 mm MgCl₂, and 1 mm MnCl₂. Chloroplasts and protoplasts were used immediately upon isolation.

Photosynthesis Measurements. Light-dependent ¹⁴CO₂ fixation by barley mesophyll protoplasts was measured at 25°C in 0.6 ml medium containing 0.4 m sorbitol, 30 mm Hepes-NaOH (pH 7.6), 1 mm MgCl₂, 4.8 mm NaH¹⁴CO₃ (0.33 Ci/mol), and protoplasts (0.02–0.03 mg Chl/ml). Aliquots (0.05 ml) were removed at indicated times and acid stable counts were determined by liquid scintillation counting (14). Illumination (600 μE/m²-min PAR) was provided by a bank of eight, 1,500-w cool-white fluorescent bulbs (F48T12; General Electric) and irradiance was decreased to 0.0037 μE/m²-min PAR using neutral density filters.

1 Abbreviation: RuP₂, ribulose-1,5-bisphosphate.
where indicated with stainless steel wire screens (Newark Wire Cloth Co., Newark, NJ).

RuP₂ Carboxylase Activity Determinations. For enzyme activity measurements intact protoplasts (0.02–0.05 mg Chl/ml) were incubated in 0.5 to 1.0 ml medium containing 0.4 M sorbitol, 50 mM Hepes-NaOH (pH 7.6), 1 mM MgCl₂, and NaHCO₃ as indicated. For experiments at atmospheric levels of CO₂, solutions were prepared with CO₂-free NaOH and were purged with air for 30 min prior to use. Incubations were performed at 25°C in 5 ml plastic sample cups sealed with rubber serum-bottle stoppers. The air space (1 ml maximum volume) above the protoplast suspension was flushed with humidified air at flow rates of 40 to 60 ml/min. Samples were illuminated as described for photosynthesis measurements and protoplasts were kept from settling by gently shaking the sample vials at 2 or 3 min intervals. Barley chloroplasts were incubated in sealed sample cups as previously described (15).

To assay RuP₂ carboxylase activity, a 0.025-ml sample of the protoplast or chloroplast suspension was injected into 0.25 ml medium containing 50 mM Bicine-NaOH (pH 8.1), 10 mM MgCl₂, 9.6 mM NaH¹⁴CO₃ (0.33 Ci/mol), and 0.6 mM RuP₂ (1, 12). Assays were terminated after 30 s and acid-stable radioactivity was determined by liquid scintillation counting (14). There was no lag in ¹⁴CO₂ fixation if protoplasts were broken by passage through a 26-gauge syringe needle prior to mixing with the sorbitol-free assay medium.

Fig. 2. Effects of CO₂ and light on the *in situ* activation of RuP₂ carboxylase in isolated barley chloroplasts. A 0.05-ml sample of intact barley chloroplasts (0.012 mg Chl) was added to 0.05 ml medium containing 0.33 M sorbitol, 50 mM Hepes-NaOH (pH 7.6), 2 mM EDTA, 1 mM MnCl₂, 1 mM MgCl₂, and 1.8 mM sodium isoascorbate. Solutions were preequilibrated with air for 30 min prior to the addition of chloroplasts. After 10 min of dark incubation at air-levels of CO₂, samples were illuminated for 5 min either with (Δ) or without (○) 6.9 mM NaHCO₃. Arrows ([↓]on, [↓]off) indicate when illumination was provided.

Fig. 3. Dark reactivation of barley protoplast RuP₂ carboxylase by CO₂. Intact barley protoplasts (0.019 mg Chl) were dark-incubated 20 min in 0.5 ml medium containing 0.4 M sorbitol, 50 mM Hepes-NaOH (pH 7.6), and 1 mM MgCl₂ prior to the addition of NaHCO₃. Samples were removed after an additional 10 min incubation with NaHCO₃ and RuP₂ carboxylase activity was determined as described in "Materials and Methods." Barley protoplast RuP₂ carboxylase activities when initially isolated (A) and after 20 min of dark inactivation (B) are shown.

RESULTS AND DISCUSSION

Light-Dependent Activation of RuP₂ Carboxylase in Intact Barley Protoplasts. *In situ* activation of RuP₂ carboxylase in intact barley protoplasts was not increased during a 20-min dark incu-
SICHER

Plant Physiol. Vol. 70, 1982

Fig. 4. Rates of 14CO$_2$ fixation and reactivation of RuP$_2$ carboxylase in intact barley protoplasts as a function of irradiance. A, Intact barley protoplasts (0.014 mg Chl) were dark-preincubated 20 min in 0.48 ml medium as in Figure 3. After an additional 10 min of illumination, RuP$_2$ carboxylase activities were determined (see under "Materials and Methods"). B, Conditions were as in A except that samples were made 5 mm with NaH14CO$_3$ (0.33 Ci/mol) immediately before illumination. Rates of 14CO$_2$ fixation were determined between 5 and 10 min of light.

Fig. 5. Effect of light-activation of RuP$_2$ carboxylase on the lag in 14CO$_2$ fixation by intact barley protoplasts. Amounts of 14CO$_2$ fixed (O, Δ) by intact barley protoplasts (0.015 mg Chl) and activation of RuP$_2$ carboxylase (●, △) were measured (see under "Materials and Methods") either before (O, ●) or after (Δ, △) samples were dark-incubated 20 min as described in Figure 3. Samples were made 4.8 mm with NaH14CO$_3$ (0.33 Ci/mol) prior to illumination. Maximum rates of 14CO$_2$ fixation (μmol CO$_2$/mg Chl-h) are shown in parentheses.

In agreement with the findings of Robinson et al. (12), carboxylase activity in isolated barley protoplasts was 80 to 100% of the maximum value observed after 5 to 10 min of in vitro preincubation with 10 mm NaHCO$_3$ and MgCl$_2$ at pH 8.1 (data not shown). There was a rapid activation (60% of 30 s) of the carboxylase in ruptured protoplasts by CO$_2$ and Mg$^{2+}$ if the enzyme was previously inactivated in situ by a 20-min dark incubation at air-levels of CO$_2$. This finding indicated that preincubation conditions were optimal for enzyme activation. Inasmuch as there were no significant CO$_2$-dependent increases in enzyme activation either in situ or in vitro, it was concluded that the carboxylase in freshly prepared barley protoplasts was near-maximally activated.

Light-Dependent Activation of RuP$_2$ Carboxylase in Intact Barley Chloroplasts. Initial RuP$_2$ carboxylase activity in isolated, intact barley chloroplasts decreased about 50% following 10 min of dark incubation without added NaHCO$_3$ at 25°C and pH 7.8 (Fig. 2). Similar results have been published for the spinach chloroplast enzyme which was almost fully deactivated after 30 or 40 min in the dark without CO$_2$ (1, 15). There was a partial light-activation of the barley chloroplast carboxylase at air-levels of CO$_2$; however, addition of NaHCO$_3$ was necessary to attain complete enzyme reactivation. Both barley (R. C. Sicher unpublished) and spinach (1) chloroplast carboxylase activities decreased with prolonged illumination in the absence of CO$_2$. Compared to protoplasts, the enzyme in barley chloroplasts deactivated faster and to a greater extent in the dark and achieved less reactivation in light at air-levels of CO$_2$.

Reactivation of Dark-Inactivated RuP$_2$ Carboxylase in Barley Protoplasts by CO$_2$ and Light. Following a 20 min dark incubation in air-equilibrated sorbitol medium, about 2 mm NaHCO$_3$ (57 μm CO$_2$ [pH 7.6]) was required to half-maximally reactivate the carboxylase in intact barley protoplasts (Fig. 3). In similar experiments, Bahr and Jensen (1) found that 122 μm CO$_2$ (pH 7.8) half-maximally reactivated the carboxylase in intact spinach chloro-
plants. Results of Figure 4 demonstrate that deactivation of RuP₂ carboxylase in intact protoplasts will occur only at low CO₂ concentrations and not under conditions usually employed for photosynthesis measurements.

The irradiance response of ¹⁴CO₂ fixation by isolated barley protoplasts with saturating NaHCO₃ is shown in Figure 4B. Maximum rates of carbon assimilation were observed above 200 μE/m² s⁻¹. Light-activation of RuP₂ carboxylase in intact barley protoplasts exhibited a similar response to increasing irradiance at air-levels of CO₂ (Fig. 4A). Perchillowicz et al. (11) also observed a correlation between the irradiance dependence of photosynthetic CO₂ exchange and light-activation of RuP₂ carboxylase in wheat leaves. The rate of in vitro ¹⁴CO₂ fixation by RuP₂ carboxylase was almost 180 μmol/mg Chl·h after in situ deactivation (Fig. 4A). This enzyme activity in the dark exceeded the light-saturated rate of carbon assimilation by intact barley protoplasts.

Photosynthetic Induction and Light-Activation of RuP₂ Carboxylase in Barley Protoplasts. Upon illumination, isolated protoplasts and chloroplasts exhibit a lag of several minutes before maximum rates of ¹⁴CO₂ fixation are attained (13). Walker and his colleagues (6, 13) concluded that the initial lag in photosynthetic carbon assimilation was not attributable to light-activation of the carboxylase, which did not increase significantly in isolated wheat chloroplasts or protoplasts during the induction period. However, these studies were conducted with samples in which the carboxylase was predominantly in the activated form. Results of Figure 5 show that the lag in carbon assimilation was independent of the initial activation level of the carboxylase in isolated barley protoplasts. These findings confirm previous results (6, 13) suggesting that light-activation of RuP carboxylase was not involved in photosynthetic induction.

LITERATURE CITED