Host-Pathogen Interactions

XXIII. THE MECHANISM OF THE ANTIBACTERIAL ACTION OF GLYCINOL, A PTEROCARPAN PHYTOALEXIN SYNTHESIZED BY SOYBEANS

Received for publication November 8, 1982 and in revised form March 9, 1983

LAWRENCE I. WEINSTEIN and PETER ALBERSHEIM

Department of Chemistry, University of Colorado, Boulder, Colorado 80309

ABSTRACT

The biochemical basis for the ability of the pterocarpian phytoalexin glycinol (3,6a,9-trihydroxypterocarpan) to inhibit the growth of bacteria was examined. Glycinol at bacteriostatic concentrations (e.g., 50 micrograms per milliliter) inhibits the ability of Erwinia carotovora to incorporate ^{3}Hleucine, ^{3}Hthymidine, or ^{3}Huridine into biopolymers. Exposure of Escherichia coli membrane vesicles to glycinol at 20 micrograms per milliliter results in inhibition of respiration-linked transport of ^{14}Clactose and ^{14}Cglycine into the vesicles when either α-lactate or succinate is supplied as the energy source. The ability of E. coli membrane vesicles to transport $^{14}C$$\alpha$-methyl glucoside, a vectorial phosphorylation-mediated process, is also inhibited by glycinol at 20 micrograms per milliliter. Furthermore, exposure of membrane vesicles to glycinol (50 micrograms per milliliter) at 20°C results in the leakage of accumulated $^{14}C$$\alpha$-methyl glucoside-6-phosphate. The effects of the phytoalexins glyceollin, capsidol, and coumestrol, and daidzein, a compound structurally related to glycinol, but without antibiotic activity, upon the E. coli membrane vesicle respiration-linked transport of ^{14}Cglucose and of $^{14}C$$\alpha$-methyl glucoside was also examined. Glyceollin and coumestrol (50 micrograms per milliliter), but not daidzein, inhibit both membrane-associated transport processes. These data imply that the antimicrobial activity of glycinol, glyceollin, and coumestrol are due to a general interaction with the bacterial membrane. Capsidol (50 micrograms per milliliter) inhibits α-lactate-dependent transport of ^{14}Cglycine but not vectorial phosphorylation-mediated transport of $^{14}C$$\alpha$-methyl glucoside. Thus, capsidol's mechanism of antimicrobial action seems to differ from that of the other phytoalexins examined.

Glycinol may inhibit the growth of widely diverse microorganisms by a similar mechanism of action (45). Previous studies on the mechanism of action of structurally diverse phytoalexins have implicated the membrane as the site of antimicrobial action (19, 23, 29, 30, 34, 42). The research detailed in this paper was undertaken to determine the locus of action of glycinol. A comparison of glycinol's effect on bacterial membranes with the effect on the membranes of other phytoalexins has allowed us to examine the question of whether the mode of action of glycinol is representative of other phytoalexins.

MATERIALS AND METHODS

Materials. l-Leucine (3,4,5-3H[N]), uridine (5,6-3H), thymidine (methyl-1$'$2$'$3H), and glycine were purchased from New England Nuclear. Lactose (d-glucose-1$'$-3C) and methyl-$\alpha$$'$-$\alpha$$'$-d-glucoyranoside (U-14Cglucose) were obtained from Amersham. Glycinol and glyceollin were purified as described (2, 45) and stored as ethanolic solutions under N$_2$ at −20°C. Crystalline capsidol was obtained from Dr. E. W. B. Ward, Agriculture Canada, Research Institute, London, Ontario, Canada. Synthetic coumestrol and daidzein were obtained from Dr. K. Kolonko, Department of Chemistry, University of Colorado, Boulder, CO. Polymyxin-B sulfate, chloramphenicol, and rifampicin were purchased from Sigma. Actinomycin-D was purchased from F-L Biochemicals. All other chemicals and solvents used were reagent grade or better.

Microorganisms. Erwinia carotovora (Jones) Holl. (ATCC 4950) was obtained from the American Type Culture Collection, Rockville, MD, and was maintained on TSB (Baltimore Biological Labs) agar slants and plates. Escherichia coli ML 308-225 (i$'$z'y$''a$''), a gift of Dr. R. Kaback, Roche Institute of Molecular Biology, Nutley, NJ, was maintained on nutrient agar (Difco) slants and plates. The E. coli used in the preparation of membrane vesicles was grown on Escherichia medium 63 (9).

General. Liquid culture assays of the ability of glycinol to inhibit bacterial growth were performed as described (45). Glycinol concentrations were determined by A at 287 nm in absolute ethanol ($\epsilon_{287} = 5800$). Membrane vesicles were prepared from E. coli following the method of Kaback (14), except that a 20-cc syringe equipped with an 18-gauge needle, rather than a Teflon and glass homogenizer, was used for resuspension of the membrane pellet (H. R. Kaback, personal communication). The membrane-vesicle preparations were shown to be free of bacterial contamination by incubation on nutrient agar. Protein concentrations were determined by the procedure of Bradford (7), using reagents obtained from Bio-Rad. BSA (Sigma) was employed as a standard for protein determination. Radioactivity on filters was

2 Current address: Monsanto Agricultural Products Co., 800 N. Lindbergh Blvd., St. Louis, MO 63166.

3 To whom correspondence should be addressed.

4 Abbreviations: glyceollin, refers, in this paper, to a mixture of glyceollin isomers that are not separated by the TLC procedures employed; TSB, trypticase soy broth; EMM, Erwinia defined medium.
determined by suspending each filter in 14 ml of Biofluor LSC cocktail (New England Nuclear). After the filter had become transparent in the cocktail, radioactivity was measured in a Beckman LS-250 liquid scintillation counter equipped with a 1H + 14C plug-in module. Radioactivity (counts/min) was monitored for 20 min for all samples assayed.

Bacterial Incorporation Experiments. The effect of various antibiotics on E. carotovora incorporation of radiolabeled precursors into biopolymers was determined by the following method. The bacteria were grown in EMM (45) supplemented with unlabeled precursors of RNA, DNA, or protein. Cultures of E. carotovora were first grown in EMM supplemented with equimolar amounts (2 μg/ml) of each of the 20 common amino acids (Beckman). E. carotovora cultures employed in experiments of 3H]uridine- and 3H]thymidine-labeled bacteria were grown first in EMM supplemented with various times, and immediately filtered through a 0.22-μm Millipore filter (type GS, 47-mm diameter). Each filter was then washed three times with 10 ml of 20% TCA at 0°C. The filters were removed and assayed for radioactivity.

Membrane Vesicle Incorporation Experiments. The effect of several antibiotics on respiration-linked active transport into E. coli membrane vesicles was examined in the following manner. Membrane vesicles (3.15 mg of protein in 3.0 ml of 10 mM MgSO$_4$, 50 mM K-phosphate, pH 6.6) were incubated with aeration for 2 min at 25°C. Glycinol was added in a maximum of 5 ml of ethanol, and incubation was continued for 1 min at 25°C. The energy source (lithium b-lactate or sodium succinate) was then added to the assay mixture at a final concentration of 20 mM. $[^14]$C]Lactose or $[^14]$C]glycine was introduced immediately following addition of the energy source, and the assay mixture was allowed to incubate at 25°C with aeration. Aliquots (0.5 ml) were removed at various times, rapidly pipetted into 10 ml of 0.10 mM LiCl at room temperature, and immediately filtered through a 0.45-μm Millipore filter (type HA, 47-mm diameter). The filters were washed once with 10 ml of 0.10 mM LiCl at room temperature and assayed for radioactivity.

The ability of E. coli membrane vesicles to transport $[^14]$C]-methyl glucoside, and to accumulate it at $[^14]$C]-methyl glucoside-6-P was verified as described by Kaback (11). Membrane vesicles (3.15 mg protein, in 3.0 ml of 0.3 mM LiCl, 10 mM MgSO$_4$, 0.10 mM P-enolpyruvate, 10 mM NaF, and 50 mM K-phosphate, pH 6.6) were incubated for 15 min at 25°C. KCN (10 mM) was included in the assay mixture to inhibit respiration-linked transport of $[^14]$C]-methyl glucoside (11, 18, 22). $[^14]$C]-Methyl glucoside (0.81 μCi) was added to the assay mixture, and incubation was continued at 25°C. Aliquots (0.10 ml) were removed at various times and added to 5.0 ml of 0.5 mM LiCl at room temperature, and the mixture was immediately filtered through a 0.45-μm Millipore filter (type HA, 47-mm diameter). The filters were washed once with 5.0 ml of 0.5 mM LiCl and then assayed for radioactivity.

Membrane Vesicle Leakage Experiments. Membrane vesicles were allowed to incorporate $[^14]$C]-methyl glucoside-6-P for 30 min at 20°C, as described above. Following incubation, the vesicle suspension was centrifuged for 15 min at 37,000g. The supernatant was discarded, and the vesicle pellet resuspended in 0.9 ml of 0.1 mM P-enolpyruvate, 10 mM MgSO$_4$, 10 mM NaF, 10 mM KCN, and 0.25 mM K-phosphate, pH 6.6. Glycinol, glycine, or leucine (in a maximum of 5 ml of ethanol) was added to a final concentration of 50 mM, and incubation continued at 20°C. Aliquots (50 ml) were removed at various times and immediately filtered through a 0.45-μm Millipore filter (type HA, 47-mm diameter). The filters were washed once with 5.0 ml of 0.5 mM LiCl and then assayed for radioactivity.

RESULTS

All of the experiments reported in this paper were performed a minimum of three times, and all of the data presented represent the average of at least three experimental determinations.

Comparison of the Ability of Glycinol and Other Antibiotics to Inhibit the Rate of Incorporation of Radiolabeled Substrates into Biopolymers of E. carotovora. The rate of incorporation of 3H]leucine into acid-precipitable polymers of E. carotovora, under the standard assay conditions, is shown in Figure 1A. Chlordanonic, an antibiotic that inhibits protein synthesis (8), completely inhibited, within 1 min, the incorporation of 3H]leucine. Polymyxin-B, an antibiotic that indirectly inhibits protein synthesis by interfering with membrane function (41), required 3.1 min before inhibiting by 77% the rate of 3H]leucine incorporation. Glycinol was similar to polymyxin-B in that it required 4.0 min before inhibiting by 78% the rate of incorporation of 3H]leucine into new protein. Thus, glycinol, which was a less effective and slower-acting inhibitor of protein synthesis than chlordanonic, was about as effective as polymyxin-B.
The rate of incorporation of \[^{3}H\]thymidine into the acid-precipitable polymers of \textit{E. carotovora} is shown in Figure 1B. Actinomycin-D, an inhibitor of DNA synthesis (36, 43), completely inhibited, within 1 min, the incorporation of \[^{3}H\]thymidine. On the other hand, polymyxin-B required 4.2 min before inhibiting by 96% the rate of \[^{3}H\]thymidine incorporation. Glycinol was similar to polymyxin-B, requiring 4 min before inhibiting by 89% the rate of \[^{3}H\]thymidine incorporation.

The rate of incorporation of \[^{3}H\]thymidine into acid-precipitable polymers of \textit{E. carotovora} is shown in Figure 1C. Rifampicin completely inhibited the incorporation of \[^{3}H\]uridine within 1 min. Polymyxin-B required 2.8 min before inhibiting by 91% the rate of \[^{3}H\]uridine incorporation (Fig. 1C). Glycinol was again similar to polymyxin-B in that it required 3.2 min before inhibiting by 88% the rate of \[^{3}H\]uridine incorporation (Fig. 1C). Thus, glycino was not as effective or as fast-acting in inhibiting RNA synthesis as rifampicin, an antibiotic that is known to act directly upon RNA synthesis (10, 32).

Effect of Glycinol on Active Transport by \textit{E. coli} Membrane

![Fig. 1. Effect of 50 \(\mu\)g/ml of glycinol (○), 5 \(\mu\)g/ml of polymyxin-B (□), 10 \(\mu\)g/ml of chloramphenicol (■), 10 \(\mu\)g/ml of actinomycin-D (▲), and 10 \(\mu\)g/ml of rifampicin (△) on the incorporation of \[^{3}H\]leucine (A), \[^{3}H\]thymidine (B), and \[^{3}H\]uridine (C) into biopolymers of \textit{E. carotovora}. The tritium-labeled substrate was added at the onset of the assay. Antibirotic additions at \(t = 5.5\) min are indicated by the arrow.](image)

Fig. 2. Effect of 20 \(\mu\)g/ml (○) and 50 \(\mu\)g/ml (△) of glycinos and 10 mm KCN (△) upon the respiration-linked accumulation of \[^{14}C\]lactose by \textit{E. coli} membrane vesicles in the presence of either 0.2 mm D-lactate (A) or 0.2 mm succinate (B). \[^{14}C\]Lactose accumulation by membrane vesicles not exposed to glycinos and in the presence (□) or absence (○) of D-lactate or succinate is also shown.

Vesicles. The active transport systems of vesicles of \textit{E. coli} membranes have been well characterized (11, 18–24, 26, 35). Therefore, the vesicles can be used to examine the effect of exogenously supplied compounds upon the transport systems of the membranes. Membrane vesicles of \textit{E. coli} ML 308-225 were prepared to examine the effect of glycinos upon active transport of amino acids and sugars into the vesicles.

The effect of glycinos upon the D-lactate-stimulated transport of \[^{14}C\]lactose into membrane vesicles of \textit{E. coli} ML 308-225 is shown in Figure 2A. Addition of glycinos at a final concentration of 20 \(\mu\)g/ml resulted in 41% less \[^{14}C\]lactose accumulated by membrane vesicles after a period of 10 min than by membrane vesicles not exposed to glycinos. Glycinol, at a final concentration of 50 \(\mu\)g/ml, resulted in the membrane vesicles accumulating 72% less \[^{14}C\]lactose after a period of 10 min. It was thus determined that bacteriostatic concentrations of glycinos (45) inhibited D-lactate-dependent active transport of \[^{14}C\]lactose.

The substitution of succinate for D-lactate did not qualitatively alter the inhibitory effect of glycinos upon the accumulation of \[^{14}C\]lactose by \textit{E. coli} membrane vesicles. Addition of 20 and 50 \(\mu\)g/ml of glycinos resulted in 36% and 64%, respectively, less \[^{14}C\]lactose accumulated by succinate-energized membrane vesicles after a period of 10 min (Fig. 2B). Thus, bacteriostatic concentrations of glycinos inhibited active transport of \[^{14}C\]lactose when either D-lactate or succinate was supplied as an energy source.

Shown in Figure 3A is the inhibitory effect of glycinos upon another respiration-dependent active transport system, the D-lactate-stimulated accumulation of \[^{14}C\]glycine by \textit{E. coli} membrane vesicles. Addition of glycinos to a final concentration of 20 \(\mu\)g/ml resulted in 42% less \[^{14}C\]glycine accumulated by membrane vesicles during a 15-min period than by membrane vesicles not exposed to glycinos. Glycinol, at a final concentration of 50 \(\mu\)g/ml, resulted in the membrane vesicles accumulating 66% less
WEINSTEIN AND ALBERSHEIM

FIG. 3. Effect of 20 μg/ml (●) and 50 μg/ml (△) of glycinol and 10 mM KCN (△) upon the respiration-linked accumulation of [14C]glycine by E. coli membrane vesicles using either D-lactate (A) or succinate (B) as the energy source.

[14C]glycine during a period of 15 min. Thus, bacteriostatic concentrations of glycinol (45) inhibited D-lactate-dependent accumulation of [14C]glycine.

FIG. 5. Effect of 50 μg/ml of glycine (●), daidzein (■), capsidiol (○), and coumestrol (!) upon the respiration-linked accumulation of [14C]glycine by E. coli membrane vesicles in the presence of 0.2 mM D-lactate. The accumulation of [14C]glycine by membrane vesicles not exposed to glycinol and in the presence (●) or absence (○) of D-lactate is also shown.

The substitution of succinate for D-lactate did not alter the inhibitory effect of glycinol upon the accumulation of [14C]glycine by E. coli membrane vesicles. Addition of 20 and 50 μg/ml of...
glycinol resulted in 31% and 56%, respectively, less [^{14}C]glucose accumulated by succinate-energized membrane vesicles during a period of 15 min (Fig. 3B).

These results were all consistent with the possibility that glycinol interfered directly with the respiratory chain in E. coli membrane vesicles. Therefore, the effect of glycinol on the phosphorylation-linked transport of [^{14}C]α-methyl glucose by E. coli membrane vesicles, a membrane-bound active transport system whose function is not dependent on respiration, was examined. In the presence of 10 mM KCN, addition of [^{14}C]α-methyl glucose to membrane vesicles previously incubated in the presence of an oligomycin resulted in the rapid intravesicular accumulation of radiolabeled compounds that remained at the origin of a TLC plate (see "Materials and Methods"). Removal of the radioactive material from the origin, subsequent treatment with alkaline phosphatase, and rechromatography produced a compound that cochromatographed with [^{14}C]α-methyl glycoside. Therefore, in agreement with previous studies (11), this compound was assumed to be [^{14}C]α-methyl glucose-6-P.

The effect of glycinol on phosphorylation-linked transport of [^{14}C]α-methyl glucose and accumulation of [^{14}C]α-methyl glucose-6-P by E. coli membrane vesicles is shown in Figure 4. Glycinol, at 20 μg/ml and in the presence of 10 mM KCN, inhibited P-enolpyruvate-linked accumulation of [^{14}C]α-methyl glucose-6-P by 37% after 15 min. Accumulation of [^{14}C]α-methyl glucose-6-P in the presence of 50 μg/ml of glycinol was inhibited by 55% at 15 min. Thus, glycinol, at concentrations inhibitory to bacterial growth, inhibited an active transport process that is not dependent on bacterial respiration.

Effect of Glyceollin, Daidzein, Capsidol, and Coumestrol on E. coli Membrane Vesicle Active Transport. The following experiments were designed to compare the effects on bacterial membrane function produced by other phytoalexins with those of glycinol. The effects on membrane vesicle active transport of several other phytoalexins and of daidzein, a compound without phytoalexin activity but structurally related to glycinol, were examined. The object of these experiments was to examine the ability of the compounds to inhibit membrane-dependent active transport systems.

Glyceollin, a mixture of structurally similar 6α-hydroxy pterocarpan phytoalexins from soybean (2, 27), inhibited D-lactate-dependent uptake of [^{14}C]glucose by E. coli membrane vesicles (Fig. 5). Glyceollin, at 50 μg/ml, resulted in a 40% inhibition of [^{14}C]glucose accumulated after 15 min (Fig. 5). Glyceollin at 50 μg/ml also resulted in a 68% inhibition of [^{14}C]α-methyl glucose-6-P accumulated after 15 min (Fig. 6). Glyceollin was thus capable of inhibiting both respiration-linked and vectorial phosphorylation-mediated active transport at bacteriostatic concentrations (1, 21, 25).

Coumestrol is a phytoalexin accumulated by soybean infected with *Pseudomonas phaseolicola* (28). Coumestrol has been shown to possess both estrogenic and antimicrobial activity (21, 28). The addition of coumestrol (50 μg/ml) to the E. coli membrane vesicles resulted in a 53% inhibition in the amount of [^{14}C]glycinol accumulated after 15 min (Fig. 5). Coumestrol (50 μg/ml) also resulted in a 50% inhibition of [^{14}C]α-methyl glucoside-6-P accumulated after 15 min (Fig. 6). Thus, coumestrol was capable of inhibiting both respiration-dependent and vectorial phosphorylation-mediated transport at biologically active concentrations (21, 28).

Capsidol is a sesquiterpene phytoalexin from bell pepper (*Capsicum annuum*) that is elicited by both bacteria and fungi (40, 44). Addition of capsidol (50 μg/ml) resulted in a 70% inhibition in the amount of [^{14}C]glycinol accumulated after 15 min (Fig. 5). However, the addition of capsidol at the same concentration resulted in an 8% stimulation of the amount of [^{14}C]α-methyl glucoside-6-P accumulated after 15 min (Fig. 6). Therefore, capsidol, at antifungal concentrations (40, 44), inhibited respiration-linked transport but not vectorial phosphorylation-mediated transport.

Daidzein, an isoflavone that has no reported phytoalexin activity, was also tested for its effects on membrane vesicle active transport (Figs. 5 and 6). Daidzein at 50 μg/ml exhibited no significant inhibition of either D-lactate-dependent [^{14}C]glycinol accumulation (Fig. 5) or P-enolpyruvate-linked [^{14}C]α-methyl glucoside-6-P accumulation (Fig. 6).

Effect of Soybean Isoflavonoid Compounds on the Efflux of Radiolabeled Metabolites from E. coli Membrane Vesicles. The effect of glycinol, glyceollin, and daidzein upon the permeability of E. coli membrane vesicles is shown in Figure 7. In the absence of added isoflavonoids, membrane vesicles lost, in 30 min at 20°C, about 3% of intravesicular [^{14}C]α-methyl glucoside-6-P (Fig. 7). The addition of glycinol (50 μg/ml) resulted in the loss of only 7% of the radiolabeled metabolite after 30 min at 20°C (Fig. 7). On the other hand, membrane vesicles exposed to glycinol (50 μg/ml) lost 37% of the intravesicular [^{14}C]α-methyl glucoside-6-P after 30 min at 20°C (Fig. 7), and the vesicles lost 30% of [^{14}C]α-methyl glucoside-6-P when exposed, under the same conditions, to glyceollin (50 μg/ml) (Fig. 7). Thus, bacteriostatic concentrations of either glycinol or glyceollin, but not of daidzein, increased the permeability of E. coli membrane vesicles, as judged by an increased efflux of intravesicular [^{14}C]α-methyl glucoside-6-P.

DISCUSSION

The results of these studies indicated that glycinol’s interaction with *E. carotovora* affected a variety of cellular functions. Results of experiments in which the incorporation of [^{3}H]leucine, [^{3}H]thymidine, and [^{3}H]uridine into *E. carotovora* was examined suggested that the synthesis of protein, DNA, and RNA were all inhibited within 4.5 min of the addition of 50 μg/ml of glycinol. The ability of glycinol to inhibit the incorporation of radiolabeled metabolites into *E. carotovora* was similar to the inhibition observed upon adding polymyxin-B, a cyclic peptide antibiotic produced by *Bacillus polymyxa* (41) whose site of action in Gram-negative bacteria is the membrane. Polymyxin-B and glycinol required about the same amount of time to inhibit [^{3}H]leucine, [^{3}H]thymidine, and [^{3}H]uridine incorporation into *E. carotovora* biopolymers. Glycinol and polymyxin-B were not able to inhibit [^{3}H]leucine, [^{3}H]thymidine, and [^{3}H]uridine incorporation as rapidly or as completely as were, respectively, chloramphenicol, actinomycin-D, and rifampicin, whose primary mechanisms of inhibition of the protein-, DNA-, and RNA-synthesizing systems have been established (Fig. 1) (8, 10, 32, 36, 43). These results suggested that glycinol and polymyxin-B inhibition of incorpora-
tion of radiolabeled metabolites into protein, DNA, and RNA were of a secondary, rather than a primary, nature.

The respiration-linked accumulation of radiolabeled amino acids and β-galactosides by *E. coli* membrane vesicles was studied in detail by Kaback and his coworkers (13-18, 22, 26). The transport of each of 16 amino acids by membrane vesicles prepared from *E. coli* ML 308-225 exhibited characteristics similar to those of [14C]lactose transport (13, 17, 26). It was established that α-lactate-dependent amino acid and lactose uptake were inhibited by anaerobiosis and by inhibitors of electron transport, and that their accumulation did not require the supply of a high-energy phosphate source. It was concluded, therefore, that the active accumulation of amino acids and lactose was coupled to electron transport and did not involve the synthesis or direct utilization of high-energy phosphate intermediates (5, 6, 24, 26).

Membrane-vesicle accumulation of [14C]lactose was characterized by an initial rapid accumulation of [14C]lactose, followed by steady-state maintenance of an intravesicular concentration of [14C]lactose that was higher than that in the assay medium (6) (Fig. 2). The higher intravesicular [14C]lactose concentration, observed 2 min after exposure of the vesicles to [14C]lactose, was maintained by an equilibrium between the rate of the respiration-coupled influx of the metabolite and the osmotically driven efflux of the radioactive metabolite (5, 6). Exposure of membrane vesicles to glycinol had little, if any, effect on the initial rate of [14C]lactose transport (Fig. 2). However, the equilibrium concentration of [14C]lactose maintained by these vesicles was significantly reduced in the presence of glycinol (Fig. 2).

The results of studies of the ability of glyceollin, coumestrol, and capsidiol to inhibit [14C]glycine accumulation in membrane vesicles suggested that these phytoalexins also inhibited respiration-linked accumulation of amino acids, altering the normal equilibrium of the respiration-linked influx and osmotic efflux of [14C]glycine. The ability of the phytoalexins examined to reduce the level of [14C]lactose and [14C]glycine accumulation by *E. coli* membrane vesicles can be explained by either of two possible mechanisms, that is, specific inhibition of respiration-driven transport or general impairment of membrane function. To differentiate between these two possibilities, we decided to examine the effects of glycinol, glyceollin, coumestrol, and capsidiol upon an active transport system known to be independent of respiration-linked electron transport. The *E. coli* bacterial P-enolpyruvate-phosphotransferase-dependent transport system requires P-enolpyruvate for vectorial phosphorylation-mediated transmembrane transport of aminosugars. This system is not dependent upon electron transport (11, 13-15, 33). Therefore, if the primary site of action of these phytoalexins is the electron-transport chain, these phytoalexins would not inhibit the P-enolpyruvate-phosphotransferase-dependent transport of [14C]α-methyl glucoside.

Glycinol, glyceollin, and coumestrol inhibited the accumulation of [14C]α-methyl glucoside-6-P by *E. coli* membrane vesicles (Figs. 4 and 6). The presence of 10 mM KCN in the assay mixture, known to inhibit totally *E. coli* membrane vesicle electron transport (6, 12, 26), did not alter the inhibitory effect of these phytoalexins on [14C]α-methyl glucoside-6-P accumulation. The accumulation of [14C]α-methyl glucoside-6-P was inhibited by the same concentrations of glycinol, glyceollin, and coumestrol capable of inhibiting respiration-linked transport (cf. Figs. 2 through 6). The inhibitory effect of glycinol, glyceollin, and coumestrol on the accumulation of [14C]α-methyl glucoside-6-P by membrane vesicles demonstrated that these phytoalexins inhibited membrane-associated processes not directly coupled to electron transport as well as processes that were dependent on electron transport.

Additional evidence suggesting that phytoalexins impaired membrane structural integrity came from leakage studies of a radiolabeled phosphorylated metabolite from *E. coli* membrane vesicles (Fig. 7). In contrast to respiration-dependent active transport systems, sugars transported via vectorial phosphorylation accumulated in the intravesicular pool as phosphorylated derivatives (11, 15). The membrane vesicles could not dephosphorylate sugar phosphates, nor were they capable of transporting sugar phosphates (11, 15). Therefore, the retention of metabolites transported by the phosphotransferase system was a measure of passive permeability of the vesicle membrane (11, 14, 15). Bacteriostatic concentrations of glycinol and glyceollin (50 μg/ml) resulted in an accelerated efflux of [14C]α-methyl glucoside-6-P (Fig. 7). Therefore, the inhibitory effect of glycinol and glyceollin upon phosphotransferase-mediated transport cannot be attributed solely to inhibition of the phosphorylating system.

The effects of other phytoalexins—coumestrol and capsidiol—upon the respiration-dependent and phosphotransferase-mediated active transport suggested that these compounds also impaired membrane-associated functions. Coumestrol inhibited both of the membrane vesicle active transport systems studied (Figs. 5 and 6), confirming previous reports of coumestrol inhibition of membrane-associated processes (21, 28). Capsidiol inhibited respiration-linked [14C]glycine uptake (Fig. 5), supporting observations of sesquiterpene inhibition of bacterial respiration (29, 30). However, capsidiol did not significantly inhibit phosphotransferase-mediated transport of [14C]α-methyl glucoside-6-P (Fig. 6), suggesting that capsidiol-induced inhibition of microbial growth is different from that of the other phytoalexins examined.

Daidzein, a quantitatively major isoform present in soybean tissue (21), exhibited no effect on membrane vesicle active transport or membrane vesicle permeability. These results correlate with the observation that daidzein lacks antimicrobial activity (21; L. Weinstein and M. Hahn, unpublished results).

The evidence presented here shows that the effects of glycinol, glyceollin, and coumestrol are of a general nature and not directed at a specific cellular process. Bacteriostatic concentrations of glycinol and of glyceollin inhibited all of the cellular processes examined, regardless of whether or not they were coupled to respiration. The results of this study suggest that glycinol, glyceollin, and coumestrol act as nonspecific membrane antibiotics that alter the structural integrity of the membrane, thereby causing the membrane to be a less efficient matrix for membrane-dependent processes.

Previous attempts to define the mechanism by which glyceollin inhibits the growth of organisms have suggested that glyceollin has a specific site of action. Glyceollin has been shown to inhibit O2-uptake by isolated mitochondria of etiolated soybean hypocotyls. On the basis of these results, it was proposed that glyceollin specifically inhibited electron transport in soybean mitochondria (23). A similar conclusion was reached from results of studies showing the effect of glyceollin on the root-knot nematode *Meloidogyne incognita* (19). Although many antibiotics do possess definite sites of action, these studies were not extensive enough to present a convincing argument for a specific target for the action of glyceollin. In particular, these reports failed to show that the inhibition of electron transport was the earliest physiological effect produced by glyceollin (19, 23). The observed inhibition of electron transport by glyceollin could, in fact, be one of several secondary effects resulting from the interaction of glyceollin with the cell membranes.

Other evidence contradicting the hypothesis of a single site of glyceollin action comes from studies in which structure-function relationships of the glyceollin isomers were examined (21; L. Weinstein and M. Hahn, unpublished results). These studies showed that a specific peroxycanarshop structure was not necessary for phytoalexin activity. It is, therefore, unlikely that glyceollin action is based upon interaction with a specific target molecule.

It has been proposed that phytoalexins are multiple-site toxicants affecting a variety of membrane-associated processes (20, 39, 42). The results of other studies on the mechanism of action of
phaseollin and of pisatin action can be interpreted as evidence that these pterocarpan phytoalexins also exert their antibiotic effect by a general disruption of membrane function (3, 30, 34, 37, 42). A mechanism of action in which phytoalexins alter the structural integrity of the membrane would account for the various physiological functions that many of these antibiotics have been observed to affect (20, 23, 29, 30, 34, 38, 39, 42). The ability of phytoalexins to work through such a general chemical process would make it difficult for microbes to evolve phytoalexin-insensitive targets. Furthermore, the ability to affect cells by altering the structural integrity of their membranes would account for the widely observed broad-spectrum antibiotic activity of phytoalexins. The evidence that we have presented supports such a mechanism of action for pterocarpan phytoalexins.

LITERATURE CITED

2. AYERS AR, J EBEL, F FINELLI, N BERGER, P ALBERSHEIM 1976 Host-pathogen interactions. IX. Quantitative assays of elicitor activity and characterization of the elicitor present in the extracellular medium of cultures of Phytophthora megasperma var. sojae. Plant Physiology 57: 751–759
4. Deleted in proof
30. LYON GD 1980 Evidence that the toxic effect of rishitin may be due to membrane damage. J Exp Bot 31: 957–966
40. STOECKE A, CH UNWIN, EWB WARD 1972 Post-infecttional inhibitors from plants I. Capsidiol, an antifungal compound from Capiscum frutescens. Phytopathol Z 74: 141–152
42. VANETTEN H, DB BATEMAN 1971 Studies on the mode of action of the phytoalexin phaseollin. Phytochemistry 61: 1363–1372
44. WARD EWB, CH UNWIN, A STOECKE 1973 Post-infecttional inhibitors from plants. VI. Capsidiol production in pepper fruit infected with bacteria. Phytopathology 63: 1537–1538