Glucose 6-Phosphate Dehydrogenase Isozymes of Maize Leaves

SOME COMPARATIVE PROPERTIES

VINCENZO VALENTI, MARIA A. STANGHELLINI, AND PAOLO PUPILLO*
Institute of Botany, Viale Caduti in Guerra 127, I-40126 Modena, Italy (V. V.); and Institute of Botany, Via Irnerio 42, I-40126 Bologna, Italy (M. A. S., P. P.)

ABSTRACT

Two different forms of glucose 6-phosphate dehydrogenase (EC 1.1.1.49) have been purified from etiolated and green leaves, respectively, of 6-day maize (Zea mays L. cv Fronica) seedlings. The procedure includes an ammonium sulfate step, an ion exchange chromatography, and a second gel filtration in Sephadex G-200 in the presence of NADP+ to take advantage of the corresponding molecular weight increase of the enzyme. The isozyme from etiolated leaves is more stable and has been purified up to 200-fold. Subunit molecular weight, measured by sodium dodecyl sulfate-gel electrophoresis, is 54,000. The active protein, under most conditions, has a molecular weight 114,000, which doubles to molecular weight 209,000 in the presence of NADP+. The association behavior of enzyme from green leaves is similar, and the molecular weight of the catalytically active protein is also similar to the form of etiolated leaves.

Glucose 6-phosphate dehydrogenase of dark-grown maize leaves isoelectric point (pl) 4.3 is replaced by a form with pl 4.9 during greening. The isozymes show some differences in their kinetic properties, Kₚ of NADP+ being 2.5-fold higher for pl 4.3 form. Free ATP (Kₚ = 0.64 millimolar) and ADP (Kₚ = 1.13 millimolar) act as competitive inhibitors with respect to NADP+ in pl 4.3 isozyme, and both behave as less effective inhibitors with pl 4.9 isozyme. Magnesium ions abolish the inhibition.

Glucose 6-P dehydrogenase in photosynthetic cells of most higher plants occurs as two distinct isozymes, localized in cytoplasm and chloroplasts, respectively, and with comparable activities (1, 3, 20). The plastid isozyme seems to resemble the cytoplasmic form in several general properties, including mol wt, kinetic properties, and control by certain effectors (1, 11, 14, 20).

A single isozyme has, however, been reported for C₄ species of the 'malate formers' group (10). It will be shown in this paper that the isozyme of etiolated maize leaves is replaced by a different form during greening, in a way reminiscent of the substitution pattern of isozymes of NADP-dependent malic enzyme (18). The two glucose 6-P dehydrogenase isozymes show minor but distinctive kinetic differences. Subunit structure and association behavior of the purified enzyme are also described, and their resemblances to enzyme from animals and fungi are apparent.

MATERIALS AND METHODS

Maize plants (Ze a mays L. cv Fronica) were germinated as described previously (18). Leaves and coleoptiles of 6-d seedlings,

1 Supported by grants of the Consiglio Nazionale delle Ricerche (Rome) for years 1980 and 1981.
FIG. 1. DEAE cellulose chromatography of glucose 6-P dehydrogenase from dark-grown maize leaves (98 g) using a KCl step gradient, pH 7.5. The preparation was previously purified by ammonium sulfate fractionation and Sephadex G-25 filtration (83 mg protein). Fractions of 7 ml. A280 (--); enzyme activity (○), μmol min⁻¹ ml⁻¹.

![Figure 1](image1)

FIG. 2. Isoelectrofocusing of glucose 6-P dehydrogenase in a 110-ml column (sucrose gradient). A. (Δ), Enzyme partially purified from etiolated leaves (10.2 mg protein of a DEAE cellulose step); (□), enzyme from green leaves (13.3 mg). B. (○) A mixture of clarified extracts from green and etiolated leaves was prepared, containing equal activities from both sources (12.8 μmol min⁻¹ each). This preparation was then processed (33 mg protein) and focused as explained for part A. See "Materials and Methods" and Table III for more details of purification and focusing procedures.

![Figure 2](image2)

FIG. 3. Double reciprocal plots of a single set of velocity (μmol min⁻¹ ml⁻¹) versus substrate data. Enzyme (170 μg per assay) from dark-grown maize leaves, purified up to first Sephadex G-200 filtration. A, NADP⁺ concentration varied, glucose 6-P treated as nonvaried substrates. Glucose 6-P concentrations: (■), 5 mM; (□), 2 mM; (Δ), 1.5 mM; (○), 1.0 mM; (●), 0.5 mM. B, Glucose 6-P varied at several fixed NADP⁺ concentrations: (■), 60 μM; (□), 24 μM; (Δ), 12 μM; (○) 6 μM; (●), 3 μM.

![Figure 3](image3)

RESULTS

Reagents were analytical grade. Substrates and proteins used as markers were from Sigma, unless stated otherwise.

In preliminary studies, glucose 6-P dehydrogenase from etiolated or green maize leaves was partially purified to specific
Table 1. Some Kinetic Constants of Maize Leaf Isozymes

<table>
<thead>
<tr>
<th></th>
<th>Etiolated Leaf Isozyme</th>
<th>Green Leaf Isozyme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/10 M</td>
<td>1/10 M</td>
</tr>
<tr>
<td>K_m (NADP⁺)</td>
<td>0.008 ± 0.002ᵃ</td>
<td>0.019 ± 0.002</td>
</tr>
<tr>
<td>K_m (glucose 6-P)</td>
<td>0.57 ± 0.06</td>
<td>0.33 ± 0.08</td>
</tr>
<tr>
<td>K_i (ATP)</td>
<td>0.64 ± 0.07</td>
<td>1.4 ± 0.1</td>
</tr>
<tr>
<td>K_i (ADP)</td>
<td>1.13 ± 0.05</td>
<td>3.5 ± 0.3</td>
</tr>
</tbody>
</table>

ᵃ Mean ± SD.

Fig. 4. Double reciprocal plots of velocity versus NADP⁺ concentration, in the presence or absence of adenine nucleotides. (■), NADP⁺ varied in the presence of 2 mM ATP (neutralized); (▲), of 2 mM ADP; (○), of 2 mM ATP and 10 mM MgCl₂; (●), without additions. Green leaf isozyme, referred to 0.5 mg protein per assay.

activities of 1-2 μ mol min⁻¹ mg⁻¹ by a combination of (NH₄)₂SO₄ precipitation, desalting through Sephadex G-25, DEAE cellulose chromatography (Fig. 1), and a first Sephadex G-200 gel filtration. The yield was variable due to losses at the ion exchange chromatography step, and was usually higher (33% versus 8%) for preparations from etiolated material. The DEAE cellulose step, therefore, was omitted in some experiments aimed at assessing the native isozyme profile by column isoelectrofocusing.

Etiolated maize leaves contained a single glucose 6-P dehydrogenase peak with pI² 4.3 (Fig. 2A), similar to the value reported for the cytosolic enzyme from pea leaves (1). The form of green leaves showed a dominant pI 4.9 peak, also similar to the pea chloroplast dehydrogenase. The isoelectric points of the isozymes were reproducible on a second and third focusing and their respective profiles were distinguishable when both were mixed in crude extracts and focused together (Fig. 2B).

Both partially purified isozymes presented hyperbolic kinetics toward NADP⁺ and glucose 6-P under conditions of assay. Michaelis constants were somewhat dependent on, and increasing with, concentration of nonvaried substrate, and linear double reciprocal plots were characterized by an intersection point located slightly below the abscissa in the lower left quadrant (Fig. 3, A and B). This value may be related to the reciprocal of the dissociation constant of enzyme-substrate complex (Cleland's K_r, [7]). The limiting K_m for NADP⁺ was 2- to 3-fold lower in preparations from etiolated tissue (pI 4.3 form) that, however, may exhibit slightly lower affinity for glucose 6-P than pI 4.9 isozyme does (Table I). The values fall within the range observed

² Abbreviation: pI, isoelectric point.
preparations from etiolated or photosynthetic leaves did not appear to differ significantly in mol wt and association behavior. Enzyme pretreatment with NADP⁺ failed to appreciably affect the subsequent association pattern during gel permeation chromatography, which depended only on the cofactor present in the column. This implies fast and reversible changes of enzyme molecular structure. Presence or absence of EDTA (2 mM) or Mg ions (10 mM) did not appear to affect the association state.

The reversible association properties of this enzyme were exploited for its complete purification, using preparations from etiolated material. Active fractions from the first gel filtration step (Fig. 6A) were collected, concentrated, treated with buffer containing 0.24 mM NADP⁺ and 3 mM 2-mercaptoethanol, and loaded on a Sephadex G-200 column equilibrated with an NADP⁺ medium inducing reassembly to the higher mol wt enzyme form (Fig. 6B). The head fractions of the peak were pooled. After this step, the dehydrogenase was found to be 70 to 80% pure, judged by SDS-gel electrophoresis (Fig. 7). The major band was not distinguishable in SDS electrophoresis from the single band of authentic *Torula* yeast glucose 6-P dehydrogenase (mol wt 53,000, [24]). Table III summarizes the procedure. The reverse purification protocol, i.e. first filtering the dehydrogenase in the presence of NADP⁺, then in its absence, gave preparations with comparable specific activities (3-6 μmol min⁻¹ mg⁻¹) but with a larger amount of minor bands.

The calculated mol wt of the subunits of pl 4.3 isozyme (Fig. 8) was 54,000 ± 2,000 similar to, although somewhat higher than, reported values for glucose 6-P dehydrogenases from non-plant sources (see below).

DISCUSSION

Although glucose 6-P dehydrogenase is an important control point for the oxidative pentose phosphate pathway of chloroplasts (3), little is known of its molecular structure in plant tissues. Schnarrenberger et al. (20) established a mol wt 105,000 (±10%) for both soluble and chloroplastic form of the spinach enzyme. These forms appeared to be similar in several properties, as has also been observed for preparations from pea by Anderson et al. (1). Muto and Uritani (16) reported on an increase of sedimentation coefficient of enzyme from sweet potato roots (for which a mol wt 110,000 was determined by gel chromatography) on treatment with NADP⁺. We have been unable to find any more recent report on the molecular properties of plant enzymes.

The association behavior of two maize leaf isozymes has been investigated. Both usually show a mol wt of about 115,000 and can associate to mol wt 210,000 in the presence of NADP⁺. This latter form is, therefore, the main catalytic conformer. EDTA (13) or divalent cations do not appear to alter this size distribution. Since the monomers of the isozyme from etiolated leaves seem to have mol wt 54,000, the 115,000 D form is a dimer and the 210,000 D form is a tetramer. Widely accepted values for the protein from a variety of sources, including red cell and yeast,
are 51,000 ± 1,000 for monomers and 205,000 ± 1,000 for tetramers (4, 13). Other reported data (e.g., 21, 24) fall near this range.

By analogy with other systems, it seems possible that some inhibitory effects on the plant enzyme, such as that of DTE (11, 14), of a probable photosynthetic electron carrier under light conditions (1, 17), or of a thioredoxin-like substance (2) may be mediated in part by the tetramer-dimer transition (reversed by NADP*), followed by dimer dissociation to inactive subunits (5, 13). This general mechanism of eucaryotic glucose 6-P dehydrogenase would offer an additional explanation for the decreased activity of chloroplast enzyme in the light, and is not alternative to current interpretations based on simple competition by NADPH at the active center (8, 14, 15). By displacing NADP* from this center, NADPH would also enhance the dissociation and subsequent inactivation process indirectly.

It has been demonstrated above that free ATP (not MgATP, Fig. 4; Table I) is an effective competitive inhibitor for both isozymes. Inhibition constants of 0.64 mM observed with the etiolated leaf species, and 1.4 mM with the green leaf species, may suggest ATP as in vivo modulator of glucose 6-P dehydrogenase, whereas no such role can be postulated for ADP. K, values of ATP reported for a cyano bacterial enzyme were distinctly higher, 2 to 5 mM (8). The etiolated leaf isozyme shows a 2- to 3-fold higher affinity for NADP+, as well as for the competitive inhibitors ATP and ADP, than its counterpart of developed leaves. At any rate the resemblances between the isozymes, already noticed by Schnarrenberger et al. (20), are confirmed and extended to their overall structure and reactions.

The possibility that cytosolic glucose 6-P dehydrogenase and 6-P gluconate dehydrogenase may disappear from developing leaves of some C₄ plants has been raised by the finding (10) that green leaves of maize and other species contain a single isozyme of each of these activities, confined to mesophyll cells. It is shown above that soluble glucose 6-P dehydrogenase of dark-grown leaves (pl 4.3) is replaced by a new form (pl 4.9) during photosynthetic differentiation of maize. Of course, this does not exclude that very minor amounts of other isozymes may exist in green maize leaves. The pl of the photosynthetic form is similar to that of pea chloroplast enzyme (4.7, [1]). The replacement patterns of NADP-dependent malic enzyme (18) and of PEP carboxylase (9) are similar, although chloroplast NADP-malic enzyme is associated with bundle sheath cells (12). If green leaf glucose 6-P dehydrogenase is particulate, NADPH production in the cytosol is probably effected in malate forming C₄ species by glyceraldehyde 3-P-NADP* reductase (EC 1.2.1.9), that increases considerably during maize greening.

LITERATURE CITED

Fig. 7. Photograph of an SDS-polyacrylamide (7.5%) gel cylinder showing enzyme from etiolated leaves. 15 μg, stained with Coomassie brilliant blue. The gel is broken by the front of bromothymol blue.

Table III. Summary of the Purification of Glucose 6-P Dehydrogenase of Etiolated Leaves

<table>
<thead>
<tr>
<th>Step</th>
<th>Protein</th>
<th>Activity</th>
<th>Specific activity</th>
<th>Purification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg</td>
<td>μmol/min</td>
<td>μmol/min·mg</td>
<td>--fold</td>
</tr>
<tr>
<td>Homogenate</td>
<td>850</td>
<td>35</td>
<td>0.04</td>
<td>1</td>
</tr>
<tr>
<td>(NH₄)₂SO₄ (40–50%)</td>
<td>170</td>
<td>26</td>
<td>0.15</td>
<td>3.7</td>
</tr>
<tr>
<td>DEAE cellulose</td>
<td>40</td>
<td>22</td>
<td>0.55</td>
<td>13.4</td>
</tr>
<tr>
<td>Sephadex G-200 I</td>
<td>13.7</td>
<td>11</td>
<td>0.80 (1.20)</td>
<td>19.5 (28.7)</td>
</tr>
<tr>
<td>(NADP* absent)</td>
<td>0.80</td>
<td>2.6</td>
<td>3.25 (8.80)</td>
<td>78.5 (173.5)</td>
</tr>
<tr>
<td>Sephadex G-200 II</td>
<td>0.80</td>
<td>2.6</td>
<td>3.25 (8.80)</td>
<td>78.5 (173.5)</td>
</tr>
<tr>
<td>(NADP* present)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7. Cleland WW 1963 The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim Biophys Acta 67: 104–137
18. Pupillo P, P Bossi 1979 Two forms of NADP-dependent malic enzyme in expanding maize leaves. Planta 144: 283–289