Short Communication

In Vitro Inhibition of the Plastid and Cytosolic Isozymes of 6-Phosphogluconate Dehydrogenase from Developing Endosperm of Ricinus communis by Fructose 2,6-bisphosphate

Received for publication February 1, 1984

JAN A. MIERNYK*, PHILIP S. MACDOUGALL, AND DAVID T. DENNIS*

Biology Department, Queen's University, Kingston, Ontario, Canada K7L 3N6

ABSTRACT

Activities of the cytosolic and plastid isozymes of 6-phosphogluconate dehydrogenase from developing endosperm of Ricinus communis L. seeds were inhibited in vitro by hexosebisphosphates. Inhibition constants for glucose 1,6-bisphosphate were 221 and 209 micromolar for the cytosolic and plastid isozymes, respectively, and corresponding values for fructose 2,6-bisphosphate were 10.5 and 8.6 micromolar. In each case inhibition was of a mixed noncompetitive nature relative to 6-phosphogluconate. While the levels and distribution of fructose 2,6-bisphosphate in castor oil seed endosperm cells are not yet known, the levels reported to occur in leaf cytosol would be high enough to significantly inhibit carbon flux through the pentosephosphate pathway due to inhibition of 6-phosphogluconate dehydrogenase activity.

The role of F2,6-P2 in regulation of glucose homeostasis in mammalian liver cells (7) and in yeast (2, 9) has been extensively examined. It is becoming increasingly more evident that F2,6-P2 is also a potent regulator of carbohydrate metabolism in plants. It has been demonstrated that F2,6-P2 stimulates glycolysis at the level of F6P conversion to F1,6-P2 in several plant tissues (5, 8, 10, 12, 13) and inhibits gluconeogenesis by inhibiting FBPase activity (5, 17). A recent report suggests that F2,6-P2 may also regulate sugar nucleotide metabolism in plants (6).

While it has been firmly established that F2,6-P2 has the potential to regulate glycolysis/gluconeogenesis in plant cells, there are as yet been no reports concerning a possible role for this effector in modulation of pentose-phosphate cycle activity. Blackmore and Shuman (4) have, however, suggested that F2,6-P2 can alter the flux through the pentose-phosphate pathway in perfused rat liver. It was previously reported that G1,6-P2 inhibited the in vitro activity of both isozymes of 6-PGDH from cultured tobacco cells. As G1,6-P2 serves as a less active analog of F2,6-P2 in stimulating the in vitro activity of plant PPI: fructose-6-phosphate 1-phosphotransferase (12, 13), we undertook an examination of the in vitro effect of F2,6-P2 on the isozymes of 6-PGDH (14) from the developing endosperm of Ricinus communis.

MATERIALS AND METHODS

Castor oil plants, Ricinus communis L., cv Baker 296, were glasshouse grown and homogenates of developing endosperm prepared as previously described (11). The isozymes of 6-phosphogluconate dehydrogenase were separated and purified to homogeneity by a modification (manuscript in preparation) of the method of Simcox and Dennis (15). The activity of 6-PGDH was measured as described by Simcox and Dennis (15). Enzyme assays were conducted at room temperature (approximately 23°C) using a Cary 210 spectrophotometer and were linear with respect to time and amount of added enzyme.

Chromatographic matrices for enzyme purification were from Pharmacia and Bio-Rad. Biochemicals, including G1,6-P2 and F2,6-P2 were from the Sigma Chemical Company. NADP was from Boehringer Mannheim.

RESULTS AND DISCUSSION

As with 6-PGDH from various rat tissues (3) and tobacco cells (1), the enzyme from developing Ricinus endosperm was inhibited by G1,6-P2 (Table 1). IC50 values for the rat enzymes were from 20 to 40 μM. At saturating concentrations of 6-PG, the 6-PGDH isozymes from tobacco cells were only slightly inhibited by G1,6-P2, but at 1/4 km (approximately 20 μM) the IC50 were

<table>
<thead>
<tr>
<th>6-PGDH Isozyme</th>
<th>KIC</th>
<th>KIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytosol</td>
<td>221</td>
<td>10.5</td>
</tr>
<tr>
<td>Plastid</td>
<td>209</td>
<td>8.6</td>
</tr>
</tbody>
</table>

Table I. Inhibition In Vitro of Ricinus 6-PGDH Activity by Hexose-bisphosphates

Activity of 6-PGDH was measured after preincubation with hexose-bisphosphates for 5 min prior to initiating reaction with 6-phosphogluconate. NADP concentration was held constant at 250 μM while 6-phosphogluconate concentrations were varied over a range from 0.2 to 400 μM in the presence of increasing concentrations of hexose-bisphosphate. Kinetic data were analyzed by linear regression and the correlation of the points to the lines was at least 0.9.
approximately 250 μM for both isozymes (1). The K_i values for the 6-PGDH isozymes from developing *Ricinus* endosperm were approximately 200 μM (Table I), assayed at 0.3 mM 6-PG. Under identical conditions F2,6-P$_2$ was a much more powerful inhibitor of *in vitro* 6-PGDH activity (Table I) with K_i values of approximately 10 μM. Lower K_i values were estimated when assays were conducted at 6-PG concentrations equal to or less than K_m values, however, nonlinearity of the assays rendered these measurements unreliable. The inhibition appeared to be of a mixed noncompetitive nature with V_{max} much more effected than K_m (Fig. 1).

We have previously reported that F2,6-P$_2$ has the potential to stimulate both plastid (10) and cytosolic (12) glycolysis in the developing endosperm of *Ricinus* seeds. While FBPases from photosynthetic tissues are inhibited by F2,6-P$_2$, developing castor oil seeds lack significant FBPase activity in either the plastids or cytosol. This is perhaps not surprising as gluconeogenesis is not a significant activity of this tissue (16). As with animal tissues and yeast, stimulation of glycolysis and inhibition of gluconeogenesis in plants is accomplished by nm concentrations of F2,6-P$_2$ (5, 8, 10, 12, 13, 17). In view of the profound *in vitro* effects induced by nm concentrations of F2,6-P$_2$, it might seem that inhibition of 6-PGDH activity by 10 μM F2,6-P$_2$ represents only an interesting aside. It has, however, been reported that leaves may contain F2,6-P$_2$ at concentrations approaching 5 μM, while Cseke et al. (5) suggest that concentrations of up to 300 μM may be present. If a recent report that cellular F2,6-P$_2$ is confined to the cytosol is correct, then concentrations of F2,6-P$_2$ in this compartment could be greater than initially observed. F2,6-P$_2$ concentrations of this magnitude significantly inhibit *in vitro* 6-PGDH activity and may also be of *in vivo* importance. Inhibition of 6-PGDH activity *in situ* would serve to increase the carbon flux through glycolysis, compatible with the concomitant stimulation of the conversion of F6P to F1,6-P$_2$.

LITERATURE CITED

1. AL-QUADAN, F. SH WENDER, E. SMITH 1981 The effect of some phenolic compounds on the activity of 6-phosphogluconate dehydrogenase from tobacco tissue cultures. Phytochemistry 20: 961-964

3. BETTNER R, J. NORDENBERG 1979 Inhibition of 6-phosphogluconate dehydrogenase (decarboxylating) by glucose 1,6-bisphosphate. Biochim Biophys Acta 583: 266-275

4. BLACKMORE PF, E. SHUMAN 1982 Regulation of hepatic alto hepatolose 1,7 bisphosphate levels and control of flux through the pentose pathway by fructose 2,6-bisphosphate. FEBS Lett 142: 255-259

5. CSEKE C, N. WEEDEN, B. BUCHANAN, K. UYEDA 1982 A special fructose bisphosphate functions as a cytoplasmic regulatory metabolite in green leaves. Proc Natl Acad Sci USA 79: 4322-4326

