Inhibition of Phytochrome Synthesis by Gabaculine

GARY GARDNER* AND HOLLY L. GORTON¹
Shell Development Company, Biological Sciences Research Center, P. O. Box 4248,
Modesto, California 95352

ABSTRACT

Gabaculine (5-amino-1,3-cyclohexadienylcarboxylic acid), a transaminase inhibitor, also inhibits chlorophyll formation in plants, and the effect of this compound can be countered by 5-aminolevulinic acid (ALA) (Flint, personal communication, 1984). Since it is probable that ALA also serves as a precursor to phytochrome, the effects of gabaculine on phytochrome synthesis in developing etiolated seedlings were examined using in vivo spectrophotometry. Preamerger treatment with gabaculine was found to inhibit initial phytochrome synthesis in peas (Pisum sativum L.), corn (Zea mays L.), and oats (Avena sativa L.). In general, reduction in phytochrome correlated with reduction in chlorophyll. However, the extent of inhibition of phytochrome synthesis was not as great as that of chlorophyll synthesis, perhaps due to preexisting phytochrome in the seed. Foliage treatment of etiolated pea seedlings prior to light-induced destruction of phytochrome inhibited subsequent phytochrome resynthesis in the dark. These results suggest that both initial synthesis and resynthesis of phytochrome require de novo synthesis of chromophore as well as an apoprotein.

Growth and development of an etiolated seedling is accompanied by an increase in the level of photoreversible phytochrome, the chromoprotein that is the photoreceptor for many responses in plant photomorphogenesis. This apparent synthesis of phytochrome is paralleled by de novo synthesis of the phytochrome apoprotein, as shown by deuterium-density labeling techniques (19). While substantive data do exist on the synthesis (and degradation) of the phytochrome protein, there is virtually no information on the biosynthesis of the phytochrome chromophore. Spectral evidence has suggested that the chromophore is a linear tetrapyrrole (23), although only recently has the structure of the red-absorbing form of the pigment been rigorously elucidated (16). The exact structure of the Pfr chromophore still remains unclear. A preliminary report (4) indicated that radioactivity from [¹⁴C]ALA₂, a common precursor of porphyrins and bile pigments, was incorporated into photoreversible phytochrome; however, no technical details of methods or results were ever published.

It has been suggested (2) that the synthesis of ALA may be compartmentalized in plants, the ALA in mitochondria (and the cytoplasm?) coming from the condensation of glycine and succinyl CoA (the principal pathway in animals and bacteria) and the ALA in plastids from the intact carbon skeleton of glutamate or α-ketoglutarate (the C-5 pathway). The intermediate steps in the formation of ALA from glutamate are not clearly understood.

One suggestion (13) is that glutamate, via glutamate-1-P, is reduced to glutamate-1-semialdehyde, which undergoes an isomerization involving transamination to form ALA. Alternatively, glutamate may be converted to α-ketoglutarate, reduced to 4,5-dioxovalerate, and transaminated in the presence of an amino group donor such as L-alanine to form ALA (3, 14). Gabaculine (5-amino-1,3-cyclohexadienylcarboxylic acid) is a natural product isolated from a culture filtrate of Streptomyces toyocaensis that has been shown to be an irreversible inhibitor of the mammalian enzyme γ-aminobutyric acid-α-ketoglutaric acid transaminase (GABA-T) (15, 21). Recently, D. H. Flint (personal communication, 1984; manuscript in preparation) has shown that gabaculine is a potent inhibitor of Chl formation in plants, and his observation that the effect of gabaculine was counteracted by ALA indicated that the gabaculine-induced block occurred on the pathway of ALA synthesis.

The availability of gabaculine as an inhibitor of ALA formation and its apparent specificity for the C-5 pathway based on mechanistic reasons (Flint, personal communication, 1984) raised similar questions for other ALA-derived chromophores in plants. Specifically, in the case of phytochrome, was the phytochrome chromophore derived from the same pathway as Chl and, if the C-5 pathway was confined to plastids, what would the results say as to the subcellular localization of phytochrome chromophore synthesis? Thus, we decided to examine the effects of gabaculine on phytochrome synthesis in developing etiolated seedlings.

Levels of phytochrome in a developing seedling are not constant. As an etiolated seedling begins to grow, phytochrome levels increase (8). Levels of phytochrome also change in a light-grown plant during the daily light/dark cycle. When the seedling is exposed to red light, phytochrome is transformed to the Pfr form, which is photooxidatively degraded (7, 18). Under continuous light, phytochrome levels reach a steady state when the rate of degradation equals the rate of synthesis (20, 22). The rate of phytochrome synthesis appears to be unaffected by light. When the plant is returned to darkness, phytochrome again begins to accumulate (20).

In this report we address three questions. (a) Does gabaculine inhibit initial phytochrome synthesis in germinating pea seedlings? (b) Is phytochrome resynthesis after destruction affected in the same way as initial synthesis? (c) Do other species, in addition to peas, respond in the same fashion?
ml of solution was added to each dish, and one dish from each treatment was transferred to continuous cool white fluorescent light.

At the end of 7 d, the plumules of the plants that had been transferred to the light were excised and extracted in acetone, and their Chl content was determined by the procedure of Arnon (11). The epicotyl hooks of the seedlings that had been kept in the dark were excised, the plumules were discarded, and the phytochrome content of the hook tissue was measured in vivo using a dual wavelength spectrophotometer as described previously (11). The experiments shown here were duplicated with similar results, and several similar experiments with slightly differing protocols were also carried out.

Pea—Phytochrome Resynthesis after Destruction. Preemergence Application. In control experiments, pea seeds were soaked in 85 ml Hutner’s medium (9) for 3 h, planted in Jiffy Plus Potting Mix (Jiffy Products of America, West Chicago, IL) in 40 x 80 mm crystallizing dishes, and grown in the dark for 7 day at 27°C and 80% RH. For gabaculine treatment, the compound was dissolved in the Hutner’s medium and, after seed soaking, the treatment solution was combined with the potting mix prior to planting.

Phytochrome destruction and resynthesis were achieved by the protocol of Clarkson and Hillman (5). Intact plants were treated with a succession of 15-min exposures to red light separated by 105-min periods of darkness, after which the red light was turned off. At various time intervals, 10-mm epicotyl sections were excised 1 mm below the hook for phytochrome measurement as described above. Each data point was determined on duplicate 0.2-g tissue samples, and the means of the values are presented. Each experiment was replicated at least three times with qualitatively similar results.

Foliar Application. Untreated etiolated pea plants were grown in crystallizing dishes as described. One h prior to the first red light period, each disk of intact plants was sprayed with 2.0 ml of gabaculine in surfactant (0.5% [w/v] Tween 20 plus 0.5% Span 80). A Kontes TLC sprayer was used for application. Red light treatments and phytochrome measurements were carried out as indicated above.

Corn—Initial Phytochrome Synthesis. Fifteen corn seeds (Zea mays L., cv WP9 X Bear 38) were imbibed in 85 ml of solution with varying concentrations of gabaculine for 3 h and planted in Jiffy Plus Potting Mix combined with the same treatment solution. Plants were grown in the dark for 3 to 4 d, and coleoptiles, including primary leaf tissue, were harvested by a separate phytochrome measurement as described above. At the time of measurement, a replicate set of samples was placed under cool white fluorescent light for 24 h, and Chl content was determined.

Oats—Initial Phytochrome Synthesis. Five g of husked oat seeds (Avena sativa L., cv Victory, USDA IC12020) was imbibed in a 100 x 15 mm plastic Petri dish in 20 ml of 1% agar containing 1 mm gabaculine. After 4 d growth in the dark at 27°C, phytochrome was measured in excised coleoptiles (including primary leaves) as above. For each treatment, duplicate 0.25-g samples were prepared, each containing about 16 shoots. At the time of phytochrome measurement, a parallel set of plants was placed under cool white fluorescent lights for 24 h before Chl extraction and measurement.

Chemicals and Light Sources. d,l-Gabaculine was purchased from Calbiochem-Behring Corp. and used in a water solution. Red light was obtained from a Leitz Prado slide projector through a Corion 660 nm interference filter (10).

RESULTS

Inhibition of Phytochrome Synthesis upon Germination—Peas. The initial experiments were carried out with germinating pea seedlings. That gabaculine got into the plants and was active is shown by its effect on Chl formation (Table I). Although there was some detectable Chl in the treated plants, its amount was less than 1% of the control value. This observation confirms, for pea plumules, the report of Flint (personal communication, 1984) that gabaculine inhibits Chl biosynthesis in barley leaves.

The effect of gabaculine on phytochrome synthesis is shown in Table II. Whether expressed on a per plant or a fresh weight basis, 0.6 mm gabaculine inhibited the formation of 80 to 90% of the photoreversible phytochrome.

Inhibition of Phytochrome Resynthesis after Destruction. The experiment in Table II indicates that the Chl biosynthesis inhibitor gabaculine is capable of inhibiting the increase in phytochrome content that occurs upon germination and development of an etiolated seedling. Net phytochrome synthesis also occurs when a plant is returned to the dark following light-induced destruction. The experiment in Figure 1 was carried out to determine whether this phytochrome ‘resynthesis’ is also subject to inhibition by gabaculine. As observed by Clarkson and Hillman (5), in pea seedlings the absolute level of phytochrome must fall below a certain critical level before resynthesis occurs. Reduction to this level was achieved by three successive cycles of 15 min red light/10 min dark. This sequence of irradiations caused significant destruction and, after the plants were returned to the dark, resynthesis increased the measurable photoreversible phytochrome to 70% of the initial dark level (Fig. 1, —). Gabaculine at 1 mm completely inhibited phytochrome resynthesis as well as the initial phytochrome synthesis in the dark (Fig. 1, ----).

Because of the mode of application of the compound in the experiments just described, it is not possible to separate the effect on initial synthesis from that on resynthesis. (Perhaps the initial inhibition of ALA synthesis resulted in a phytotoxic 'shock' that secondarily affected phytochrome resynthesis.) Therefore, etiolated pea plants containing normal levels of phytochrome were sprayed with gabaculine 1 h prior to the red light treatments leading to destruction and subsequent resynthesis. Under these conditions, gabaculine clearly inhibits phytochrome synthesis (Fig. 2). Furthermore, the inhibition appears to be concentration-dependent. After 48 h in the dark, the plants sprayed with 1 mm gabaculine had 55% of the phytochrome of the control whereas

Table 1. Inhibition of Chl Formation in Pea Seedlings by Gabaculine

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Total Chl</th>
<th>Chl/Plumule</th>
<th>Chl/g Fresh Wt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg</td>
<td>g</td>
<td>µg</td>
</tr>
<tr>
<td>Water</td>
<td>8.74</td>
<td>0.42</td>
<td>236</td>
</tr>
<tr>
<td>Gabaculine</td>
<td>0.6 mm</td>
<td>0.0239</td>
<td>0.65</td>
</tr>
<tr>
<td>% of control</td>
<td></td>
<td>0.3%</td>
<td>0.6%</td>
</tr>
</tbody>
</table>

Downloaded from on October 15, 2017 - Published by www.plantphysiol.org
Copyright © 1985 American Society of Plant Biologists. All rights reserved.
the effect of compared with oat showed 20% at initial synthesis Chl, plants control levels. determined by gabaculine. the initial seedlings (Tables of species. pound could symptoms of resynthesis had 730 (100 -) or medium (AA) for A(AA) or medium containing 1 mm gabaculine (-----), and grown in potting mix for 7 d in the dark. Destruction and resynthesis of phytochrome were induced by a series of four 15-min red light treatments separated by 105 min of darkness. Phytochrome concentration was determined by in vivo dual wavelength spectrophotometry at 660 and 730 nm on 0.2-g samples taken just prior to, and 6, 30, and 54 h after the initial red light treatment. Phytochrome concentration is given as \(\Delta(\Delta A) \) per g fresh weight of tissue. The control sample after 48 h of resynthesis had an activity of 5.96 ± 0.36 (SE) \(\times 10^{-2} \Delta(\Delta A)/g \) fresh weight.

the plants treated with 3 mm gabaculine had only 14% of the control levels.

Inhibition of Phytochrome Synthesis in Corn Seedlings. Since gabaculine showed broad-spectrum herbicidal activity with symptoms of lack of Chl, it would be expected that this compound could also inhibit phytochrome synthesis in a broad range of species. The compound was tested in etiolated corn seedlings at 0.3, 1.0, and 3.0 mm, and inhibited both phytochrome and Chl formation (Fig. 3). As was observed in the case of pea seedlings (Tables I and II), the degree of inhibition of Chl biosynthesis in corn coleoptiles was greater than the degree of inhibition of phytochrome formation.

Inhibition of Phytochrome Synthesis in Oat Seedlings. The effect of gabaculine in etiolated oat seedlings is similar to that in corn. At 1 mm gabaculine, the phytochrome content of treated oat shoots was 55% of the control (0.90 \(\Delta(\Delta A)/g \) fresh weight compared with 0.161 \(\Delta(\Delta A)/g \) fresh weight). As in the case of the other species, the degree of inhibition of Chl biosynthesis (to 20% of the control) was greater than that of phytochrome.

DISCUSSION

The fundamental importance of these experiments is that both initial synthesis and resynthesis of phytochrome require de novo

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Total Phytochrome ([\Delta(\Delta A)])</th>
<th>Fresh Wt Chl (g)</th>
<th>Phytochrome/Hook</th>
<th>Phytochrome/g Fresh Wt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>0.273</td>
<td>0.28</td>
<td>0.012</td>
<td>0.975</td>
</tr>
<tr>
<td>Gabaculine, 0.6 mm</td>
<td>0.053</td>
<td>0.54</td>
<td>0.002</td>
<td>0.098</td>
</tr>
<tr>
<td>% of control</td>
<td></td>
<td>17%</td>
<td>10%</td>
<td></td>
</tr>
</tbody>
</table>

FIG. 1. Inhibition of phytochrome resynthesis in peas—soil treatment with gabaculine. Pea seeds were imbibed and germinated in water containing gabaculine and grown in the dark for 7 d. Phytochrome content was then measured in vivo with a dual wavelength spectrophotometer. The control sample contained 22 epicotyl hooks, and the gabaculine-treated sample contained 30 hooks.

FIG. 2. Inhibition of phytochrome resynthesis in peas—foliar treatment with gabaculine. Untreated etiolated pea plants were grown and irradiated as described for Figure 1. One h prior to the first red light treatment, plants were sprayed with 2.0 ml surfactant (---), surfactant containing 1 mm gabaculine (-----), or surfactant containing 3 mm gabaculine (-----). Samples were taken for in vivo phytochrome measurement as in Figure 1.

FIG. 3. Inhibition of initial phytochrome synthesis in corn seedlings. Seeds were imbibed and germinated in Hutner’s medium containing 0.3, 1.0, or 3.0 mm gabaculine and grown in the dark for 3 to 4 d. Phytochrome content (-----) was assayed in duplicate 0.25-g samples of shoots by in vivo spectrophotometry, and replicate samples were transferred to white light for 24 h before Chl extraction and measurement (---). Values are given as percentage of control. The untreated control tissue had a phytochrome concentration of 1.63 ± 0.46 (SE) \(\times 10^{-2} \Delta(\Delta A)/g \) fresh weight.
synthesis of chromophore as well as apoprotein, and this synthesis of chromophore is dependent on the synthesis of ALA. From the point of view of biosynthetic regulation, these inhibitors of ALA biosynthesis provide a valuable probe for examining the relationship between the phytochrome chromophore and its apoprotein. One obvious question that can be addressed is what happens to apoprotein synthesis under the conditions of Figure 2? This is especially interesting in view of the recent finding that phytochrome controls the level of its own messenger RNA (6).

The results indicate that the bulk of the phytochrome chromophore synthesized in etiolated peas, corn, and oats shares a common pathway with Chl. However, there is a quantitative discrepancy between the effects in Tables I and II. In the presence of gabaculine, less than 1% of the control level of Chl was synthesized, whereas 10 to 20% of the phytochrome was still measurable. There are at least three explanations for the presence of this amount of phytochrome. The first, and most likely, is that the 10 to 20% represents phytochrome chromophore that already existed in the dry seed prior to imbibition. Many seeds have measurable levels of phytochrome, and many seeds show phytochrome control of germination (see 24 for review). Second, it is possible that phytochrome synthesis more effectively competes for available ALA than does Chl synthesis. The third possibility is that a small portion of the phytochrome is made by the classical ALA synthetase from glycine and succinyl CoA. This could be examined by measuring incorporation of radioactivity into phytochrome from glycine specifically labeled in the C-2 position. (The carboxyl carbon of glycine is lost as CO₂ in the synthetase reaction.) This experiment would also be a definitive test as to whether gabaculine is specific for the C-5 pathway.

Given the literature cited above, these data imply that the bulk of the newly synthesized phytochrome chromophore is manufactured in the plastid. This conclusion is consistent with the observations of Grombein et al. (12) that under conditions following phytochrome destruction in the light, reappearance of photoreversibility in the dark occurred primarily in the subcellular fraction enriched for plastids and not in the mitochondrial fraction.

The general argument appears valid that a transaminase inhibitor of ALA synthesis also inhibits both initial synthesis and resynthesis of phytochrome in a range of species. In the course of this work, other classes of Chl inhibitors were also examined for their effects on phytochrome content. Leucovorin acid and 4,6-dioxohexanoic acid (2, 17), inhibitors of ALA dehydratase, often inhibited Chl formation in our systems at high concentrations, and occasionally this response was associated with an apparent inhibition of phytochrome biosynthesis. But the results with these compounds were extremely variable, and clear cut inhibitory effects were accompanied by relatively high phototoxicity. In contrast, gabaculine inhibited phytochrome formation quite reproducibly at concentrations that caused few other morphological abnormalities than lack of Chl.

The activity of gabaculine allows us to address a central question in the control of growth and development by phytochrome: are phytochrome responses controlled by the absolute level of the pigment (or Pfr) or are they controlled solely by the photostationary equilibrium? In other words, what are the physiological consequences of the inhibition of phytochrome synthesis? Since in the natural environment plants are exposed to white light containing roughly equivalent proportions of red and far-red, there is a constant balance between destruction and resynthesis, and the experiments here suggest that this resynthesis requires new chromophore synthesis. Experiments are now underway to determine the effect of gabaculine on physiological responses to phytochrome photoconversion.

Acknowledgments—We thank Sally A. Brown and Cheryl D. Allen for valuable technical assistance.

LITERATURE CITED

1. ARNON DI 1949 Copper enzymes in isolated chloroplasts, polyphenoloxidase in Beta vulgaris L. Plant Physiol 24: 1-15
3. BEALE SI, SP GOGH, S GRANICK 1975 Biosynthesis of ß-aminolevulinic acid from the intact carbon skeleton of glutamic acid in green barley. Proc Natl Acad Sci USA 72: 2719-2723

Downloaded from on October 15, 2017 - Published by www.plantphysiol.org
Copyright © 1985 American Society of Plant Biologists. All rights reserved.