between starch and glucose in higher plants. This suggestion supports the idea that the metabolic process of some of the algae may depend upon carbohydrates other than glucose or sucrose. In the case of *Irideae laminarioides* this is probably dulcitol.—W. Z. Hassid, *University of California, Berkeley, Calif.*

LITERATURE CITED

MOVEMENT OF ORGANIC MATERIALS IN PLANTS: A CORRECTION

In a recent note upon the mechanism of translocation,¹ the writers criticized the use made by Crafts² of the Poiseuille expression for uniform, non-turbulent, viscous flow in a capillary of known dimensions. To this criticism in all its general aspects we still adhere, especially in so far as it refers to the inapplicability of the formula in question to a "flow" which is clearly not uniform, and also to the comparison made between the whole phloem wall substance and the pores in the sieve plates as possible avenues for translocation. The basis of the latter criticism is that Crafts by treating the whole phloem wall substance as a single, circular capillary, derived pressures which can have no possible relation to the actual pressures involved in the production of a flow of the desired dimensions in the phloem wall. These are unjustifiably compared with pressures calculated to refer to flow through the pores in the sieve plates.

In the attempt to pursue Crafts' own method and insert a dimension (one half the mean wall thickness) which, on the assumption of flow

through the whole wall, would lead to a more probable pressure an error has been made, an error which we have realized following correspondence with Dr. Crafts and which we now desire to correct. The treatment (p. 167) which actually led to a factor $\frac{r}{(r_1)^2}$ by which Crafts' derived pressures should be multiplied ought to have led to the factor $\frac{r}{(r_1)^2}$. It will be clear from the context, however, and from the subsequent discussion (which points out that even thus modified the treatment cannot be accepted), that this error does not materially affect our general criticisms.—F. C. Steward and J. H. Priestley, University of Leeds, England.