Communication

Action of Proline on Stomata Differs from That of Abscisic Acid, G-Substances, or Methyl Jasmonate

Received for publication August 20, 1986 and in revised form December 16, 1986

A. S. RAGHAVENDRA* and K. BHASKAR REDDY

School of Life Sciences, University of Hyderabad, Hyderabad 500 134, India (A.S.R.), and Department of Botany, Sri Venkateswara University, Tirupati 517 502, India (K.B.R.)

ABSTRACT

Methyl jasmonate (MJ) and a mixture of G1, G2, and G3 (G-substances) inhibited stomatal opening in abaxial epidermis of *Commelina benghalensis* and complete closure occurred at 10^{-4} molar MJ, or 10^{-3} molar G-substances compared to 10^{-3} molar abscisic acid (ABA). Proline, even at 10^{-3} molar caused only a partial stomatal closure. Apart from ABA, other endogenous plant growth regulators do regulate stomata. Reduction in the stimulation by fusococcin and complete stomatal closure, at 30 millimolar KCl or less, were affected by ABA, MJ, or G-substances, but not by proline. The action of MJ or G-substances was similar to ABA in decreasing proton efflux and the levels of potassium, malate, or reducing sugars. Proline, however, interfered with starch-sugar interconversion but had no effect on proton efflux or potassium content of epidermis.

The hormonal control of stomatal movement is one of the impressive adaptations of plants to water stress (1, 16). However, among several plant growth regulators, only a few exert a marked influence on stomata in isolated epidermis. Stomatal opening is suppressed by ABA (4) and promoted by cytokinins (3) or auxins (14). Fusicoccin, a fungal toxin, enhances remarkably stomatal opening (5).

Proline accumulates during water stress in leaves of many plants (19). G-substances, extracted from *Eucalyptus* leaves, suppress seed germination, coleoptile growth, rooting, and transpiration (2, 8). Methyl jasmonate isolated from extracts of leaves and stem of wormwood, *Artemisia absinthium*, can promote senescence (17, 18). A decrease in stomatal conductance by proline (10) or MJ (13) has been reported but it is not known whether these substances exert, if at all, a direct action on stomata. We therefore studied the effects of proline, G-substances, and MJ on stomatal movement in abaxial epidermis of *Commelina benghalensis*. The mechanism of action of these new test compounds is compared with that of ABA and FC, well known regulators of stomatal movement.

1 Supported in part by Council of Scientific and Industrial Research, New Delhi.

2 Abbreviations: G-substances, a mixture of equal proportions of G1, G2, and G3 (Ref. 9); FC, fusicoccin; MJ, (±)-methyl jasmonate (methyl-3-oxo-2-(2'-cis-pentenyl)-cyclopentan-l-acetate).

MATERIALS AND METHODS

Plant Material. Cuttings of *Commelina benghalensis* L. were raised in 30 cm diameter seed pans on soil supplemented with fertilizer (N:P:K = 20:20:20, w/w). They were grown outdoor in a natural (approximately 12 h) photoperiod at average temperatures of 30°C day/20°C night. Second to fourth fully developed leaves (from the top) were picked from 6- to 8-week-old plants.

Preparation of Epidermal Strips. Strips of 1 × 0.5 cm were prepared from the abaxial (lower) epidermis of leaves (20). The underside of the strips was brushed with a zero size painting brush to remove the adhering mesophyll cells (9). The strips were exposed to ultrasonication (5 strips in 10 ml of 25 mM Mes-NaOH [pH 7.0] with 0.05 mM Ca[NO3]2; at 25 Wamp for three
20 s duration) to kill the epidermal and subsidiary cells, checked by the uptake of 0.01% (w/v) neutral red (11). The sonicated strips were rinsed briskly in ice cold distilled H₂O.

Stomatal Movement and Epidermal Components. Fifteen to twenty strips were placed in 5 cm diameter Petri dishes containing 20 ml of 25 mM Mes-NaOH buffer (pH 7.0) with 0.05 mM Ca(NO₃)₂, 0.1% Tween 80, 30 mM KCl, 0.01% (v/v) ethanol and the test chemicals at the mentioned final concentrations. At the end of 4 h incubation at 30 ± 2°C under illumination with a bank of incandescent bulbs at 200 W m⁻² (a 15 cm thick water filter prevented heating), the stomatal aperture was measured with the help of a precalibrated ocular micrometer (9).

Proton efflux, potassium levels, malate, and carbohydrate contents of epidermis were determined as described earlier (11).

Chemicals. ABA, Mes, proline, and Tween 80 were from Sigma. The sources of FC, G-substances, and MJ are as indicated in “Acknowledgments.”

RESULTS AND DISCUSSION

Stomatal opening in abaxial epidermis was suppressed not only by ABA but also MJ and G-substances (Fig. 1). Stomata remained partially open in the presence of proline even at 10⁻³ M. Stomata were completely closed at 10⁻⁵ M ABA, 10⁻⁶ M MJ, and 10⁻⁷ M G-substances. However, although proline accumulates in large quantities in leaves of water-stressed plants, it is not as striking as ABA in controlling stomatal aperture. Our results, support the view that proline may primarily function as a solute for intracellular osmotic adjustment of water potential (15) or as a protectant of metabolic machinery (6).

Fig. 2. The responses of stomata in abaxial epidermis to the concentration of KCl in the incubation medium in presence or absence of ABA, G-substances, MJ, or proline. The values represent the width of stomatal aperture after incubation for 4 h.

A naturally occurring volatile oil related to jasmonic acid, MJ, proved to be a powerful inhibitor of stomatal opening, nearly 10 times more effective than ABA (Fig. 1). G-substances were less inhibitory than ABA but were still able to suppress completely the opening of stomata. The present investigation indicates that, apart from ABA, other naturally occurring endogenous compounds in plants can effectively control stomata in vivo and implies a regulation of transpirational water loss in situ. G-substances which exhibit antitranspirant activity on *Eucalyptus* leaves (8) occur in considerable quantity in leaves of *Eucalyptus* as well as other members of Myrtaceae (2). Several compounds similar to MJ in their structure as well as in their senescence promoting activity are widely distributed in the plant kingdom (17, 18). Since MJ is an odoriferous oil, it is possible that stomatal aperture is regulated by volatile substances in the intercellular spaces of leaf.

Proline was far less effective in reducing the stimulation of stomatal opening by FC than that by ABA, MJ, or G-substances (Table I). The stomatal response to varying concentrations of KCl further revealed the distinct nature of action of proline compared to that of ABA, MJ, or G-substances. Stomatal opening at low KCl (30 mm or less) was completely suppressed by ABA, MJ, or G-substances, while inhibition by proline was partial at any level of KCl (Fig. 2).

FC enhanced proton efflux and the level of potassium or sugars but decreased the starch content (Table II). G-substances or MJ, like ABA, reduced proton efflux, potassium content, and restricted starch hydrolysis. On the other hand, proline inhibited hydrolysis of starch into sugars, decreased marginally the level of malate, but had no effect on potassium content or proton efflux.

During stomatal opening potassium uptake is facilitated by ATP dependent proton efflux (7, 21). Proton expulsion raises the pH inside the guard cells, activates phosphoenolpyruvate carboxylase, and leads to malate synthesis. During opening, starch hydrolysis produces soluble sugars (12) contributing to the osmotic potential of guard cells along with potassium malate.

The primary effect of ABA or FC was to regulate H⁺ efflux/K⁺ influx (21), although ABA was also reported to suppress starch breakdown in guard cells (4). In epidermis of *Commelina*, FC enhanced not only H⁺ efflux but also reducing sugar content (11). The action of MJ and G-substances was similar to that of ABA in suppression of proton efflux, reduction in the level of potassium, malate, or reducing sugars of epidermis as well as counteraction against FC. G-substances, although not as effective as ABA in reducing proton efflux, could, however, suppress

Table II. Proton Efflux and the Levels of Malate or Carbohydrates in Relation to Stomatal Opening in Abaxial Epidermis of C. bengalensis

<table>
<thead>
<tr>
<th>Condition/Addition</th>
<th>Stomatal Aperture (µm)</th>
<th>Proton Efflux (pmol mm⁻²)</th>
<th>Malate (eq mm⁻²)</th>
<th>Potassium (pmol mm⁻²)</th>
<th>Carbohydrates (pmol osmotic acid mm⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total sugars</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>92.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.73</td>
</tr>
<tr>
<td>At the start of experiment</td>
<td>1.2</td>
<td>42.1</td>
<td>2.8</td>
<td>368.5</td>
<td>72.3</td>
</tr>
<tr>
<td>After incubation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>7.8</td>
<td>12.4</td>
<td>57.9</td>
<td>4.3</td>
<td>247.2</td>
</tr>
<tr>
<td>Fusococcin 10⁻³ M</td>
<td>18.2</td>
<td>38.7</td>
<td>72.9</td>
<td>4.9</td>
<td>127.2</td>
</tr>
<tr>
<td>ABA 10⁻⁵ M</td>
<td>0</td>
<td>1.6</td>
<td>39.5</td>
<td>2.1</td>
<td>403.3</td>
</tr>
<tr>
<td>MJ 10⁻⁴ M</td>
<td>0</td>
<td>1.0</td>
<td>37.6</td>
<td>2.0</td>
<td>406.7</td>
</tr>
<tr>
<td>G-substances 10⁻⁴ M</td>
<td>0</td>
<td>4.4</td>
<td>40.2</td>
<td>2.5</td>
<td>380.6</td>
</tr>
<tr>
<td>Proline 10⁻⁴ M</td>
<td>4.9</td>
<td>12.2</td>
<td>52.8</td>
<td>4.1</td>
<td>346.7</td>
</tr>
</tbody>
</table>

* pmol glucose eq mm⁻²; † pmol sucrose eq mm⁻².
completely stomatal opening at 30 mm or less KCl. We conclude that MJ or G-substances interfere with proton efflux from guard cells.

Proline differed from ABA in its failure to counteract FC (Table I). Further, proline affected primarily starch-sugar interconversion (which might have restricted malate formation) and could not suppress opening completely, even at low KCl. The inability of proline to suppress proton efflux and potassium uptake by epidermal tissue might be the reason for its being not a powerful inhibitor of stomatal opening.

Acknowledgments—We are grateful for the generous gifts of the following chemicals: fusicoccin (Prof. E. Marrè, University of Milan, and G. Michaeli, Farmoplant Fitofarmaci Montedison, Italy); G-substances (Dr. G. M. Paton, Australian National University, Canberra); and (±)-methyl jasmonate (Dr. J. Ueda and Dr. J. Kato, University of Osaka Prefecture, Osaka).

LITERATURE CITED

15. STEWART CR, JA LEE 1974 The role of proline accumulation in halophytes. Planta 120: 279–289

Copyright © 1987 American Society of Plant Biologists. All rights reserved.