Photosynthetic Characteristics of the C₃-C₄ Intermediate

Parthenium hysterophorus

Received for publication April 21, 1987 and in revised form June 16, 1987

BRANDON D. MOORE*, VINCENT R. FRANCESCHI, SHU-HUA CHENG, JINGRUI WU, and MAURICE S. B. KU

ABSTRACT

The weedy species Parthenium hysterophorus (Asteraceae) possesses a Kranz-like leaf anatomy. The bundle sheath cells are thick-walled and contain numerous granal chloroplasts, prominent mitochondria, and peroxisomes, all largely arranged in a centripetal position. Both mesophyll and bundle sheath chloroplasts accumulate starch. P. hysterophorus exhibits reduced photorespiration as indicated by a moderately low CO₂ compensation concentration (20–25 micromolars per liter at 30°C and 21% O₂) and by a reduced sensitivity of net photosynthesis to 21% O₂. In contrast, the related C₃ species P. incanum and P. argentatum (guayule) lack Kranz anatomy, have higher CO₂ compensation concentrations (about 55 micromolars per liter), and show a greater inhibition of photosynthesis by 21% O₂. Furthermore, in P. hysterophorus the CO₂ compensation concentration is relatively less sensitive to changes in O₂ concentrations and shows a biphasic response to changing O₂, with a transition point at about 11% O₂. Based on these results, P. hysterophorus is classified as a C₃-C₄ intermediate. The activities of diagnostic enzymes of C₄ photosynthesis in P. hysterophorus were very low, comparable to those observed in the C₃ species P. incanum (e.g., phosphoenolpyruvate carboxylase activity of 10–29 micromoles per milligram of chlorophyll per hour). Exposures of leaves of each species to ¹⁴CO₂ (for 8 seconds) in the light resulted in 3-phosphoglycerate and sugar phosphates being the predominant initial ¹⁴C products (77–84%), with ≤4% of the ¹⁴C-label in malate plus aspartate. These results indicate that in the C₃-C₄ intermediate P. hysterophorus, the reduction in leaf photorespiration cannot be attributed to C₄ photosynthesis.

Through considerable interest and effort over the last decade, many naturally occurring plant species with photosynthetic characteristics intermediate to C₃ and C₄ plants have been identified (see 10, 14, 20 for review). Most C₃-C₄ species have in common at least a partially developed Kranz leaf anatomy and reduced levels of photorespiration relative to C₃ plants, as indicated by decreased values of ε¹ and a decreased sensitivity of net photosynthesis or carboxylation efficiency to O₂. Most of the intermediate species occur in genera having also both C₃ and C₄ species (e.g., Panicum and Neurachne [Poaceae], Alternanthera [Amaranthaceae], Flaveria [Asteraceae], and Mollugia [Aizoaceae]. However, Moricandia (Brassicaceae) and Parthenium (Asteraceae) have one or more intermediate species, but no known C₄ species. Such circumstantial evidence suggests that the C₃-C₄ species are evolutionary intermediates, and not hybrid species.

Different mechanisms for reducing photorespiration are likely utilized among the various C₃-C₄ intermediate species (10, 14). In intermediate Panicum and Moricandia species, Brown (4), Winter et al. (30), and others (5, 9, 16) have suggested that the relatively large abundance of chloroplasts, mitochondria, and peroxisomes in the bundle sheath cells may contribute to enhanced refixation of photorespired CO₂ by RuBisCO in bundle sheath chloroplasts. If this is an effective mechanism, then one would expect a relatively large proportion of the leaf's photorespiratory glycolate and/or glycine to be metabolized in the bundle sheath cells (20), but this is yet to be thoroughly tested. Utilizing apparently different mechanisms, the C₃-C₄ Flaveria species have many biochemical characteristics intermediate between those of C₃ and C₄ species, and possess a limited, but in some cases a considerable capacity for C₄ photosynthesis (3, 21, 27). Rumpho et al. (27) proposed that this capacity in F. ramosissima is sufficient to reduce photorespiration, presumably by elevating the CO₂ concentration at the site of RuBP carboxylation in the bundle sheath cells. Direct evidence of a light-dependent, CO₂-concentrating ability of leaf discs from F. ramosissima and the apparently more advanced Flaveria intermediates has been obtained (23). However, the possible refixation of photorespired CO₂ by PEP carboxylase may also contribute to reduced apparent photorespiration, particularly among the less advanced Flaveria intermediates (10).

A previous study showed that Parthenium hysterophorus possesses a Kranz leaf anatomy, but the bundle sheath chloroplasts were reported not to accumulate starch (13, 24) and the leaf Δ¹³C-values were C₃-like (25). Curiously, the data of Hedges and Patil (13, 25) and others (26) indicate that leaves of P. hysterophorus contain considerable activities of certain C₄ cycle enzymes, including PEP carboxylase, yet are capable of only C₃-type photosynthesis. Γ has been reported by different authors to range from 27 to 35 µl/L (24, 26), thus indicating that this species has relatively low photorespiration. However, the mechanism by which photorespiration may be reduced is not clear. In the present study, we have examined the leaf anatomy and ultrastructure, Γ and its response to O₂, the C₄ photosynthetic enzyme activities, and the initial products of ¹⁴CO₂ fixation in leaves of P. hysterophorus and two related C₃ species, P. incanum and P. argentatum (guayule). The results demonstrate that P. hysterophorus is a C₃-C₄ species which has Kranz-like anatomy with reduced photorespiration, but which shows a biochemical capacity for C₄ photosynthesis.

1 Abbreviations: Γ, CO₂ compensation concentration; intermediate, C₃-C₄ intermediate; RuBiCO, ribulose-1,5-bisphosphate carboxylase/oxygenase; RuBP, ribulose-1,5-bisphosphate; PEP, phosphoenolpyruvate; TEM, transmission electron microscope; MDH, malate dehydrogenase; 3-PGA, 3-phosphoglycerate.
MATERIALS AND METHODS

Reagents and Supplies. Cellulose MN 300 was from Brinkmann Instruments Co. x-ray film (X-OMAT AR-5) and sec-butyl alcohol were from Eastman Kodak Co. NaH\(^{14}\)CO\(_3\) (55.9 Ci/mol) was from ICN Biomedicals, Inc. Scintillation cocktail was from Research Products International Corp. Other supplies and reagents were of the highest quality available.

Plant Material. Plants of Parthenium argentatum, P. hysterophorus, and P. incanum were grown in soil and watered regularly with a commercial nutrient solution (Peter's fertilizer plus micronutrients). They were generally maintained in a growth chamber (27°C/20°C day/night thermoperiod, a 14 h photoperiod, and an irradiance of 350 \(\mu\)mol/m\(^2\)-s photon flux density at plant height), but in some experiments were grown in a greenhouse during winter months under similar conditions (25-27°C/18-20°C day/night thermoperiod, 300 \(\mu\)mol/m\(^2\)-s photon flux density). Young, fully expanded leaves of 2-month-old vegetative plants were used for the experiments, except as indicated otherwise.

Leaf Anatomy and Ultrastructure. Small samples were removed at midday from unshaded leaves and were immersed in a fixative composed of 2.5% (v/v) glutaraldehyde and 2% (v/v) paraformaldehyde in 50 mM Pipes buffer (pH 7.2). The samples were postfixed with 1% OsO\(_4\) in 25 mM cacodylate buffer (pH 7.2), dehydrated with ethanol, and embedded in Spurr's epoxy resin. Sections for light microscopy were 1 \(\mu\)m thick, and were stained with Stevenel's blue (6). Thin sections for transmission electron microscopy were stained with uranyl acetate and lead citrate, and examined with a Hitachi 300 TEM.

\(\text{CO}_2\) Exchange Measurements. The photosynthetic \(\Gamma\) of intact leaves was determined in a closed, plexiglass leaf chamber using an Anarad IR gas analyzer in a differential mode. The technique for determining \(\text{CO}_2\) concentration in the cuvette was essentially as described by Atkins and Pate (2). One should note that this procedure is considered to be more accurate than those used by others in previous reports (IR gas analysis with analyzer in absolute mode [26]; pH change of a bicarbonate solution after equilibrating with ambient \(\text{CO}_2\) in a closed vessel [24]). The measurements here were made at a photon flux density of 600 \(\mu\)mol/m\(^2\)-s, a leaf temperature of 30°C, and varying \(O_2\) levels.

\(\text{CO}_2\) exchange rates of intact leaves were measured as previously described (19), with a photon flux density of 1500 \(\mu\)mol/m\(^2\)-s, a leaf temperature of 30 ± 2°C, and 325 \(\mu\)L CO\(_2\)/L.

Enzyme Extraction and Assays. Leaves were weighed, powdered in liquid \(N_2\), and ground with a mortar and pestle in 6 volumes of medium with the following components: 100 mM Hepes-KOH (pH 7.5), 10 mM MgCl\(_2\), 10 mM DTE, 1 mM EDTA, 2.5 mM Na pyruvate, 0.5% (w/v) BSA, 1% (w/v) casein, 0.05% Triton X-100, and 2% (w/v) insoluble PVP. Extracts were filtered through Miracrlof, centrifuged at 14,000 g for 1 min, and the clarified supernatant was immediately used for enzyme assays. Spectrophotometric assays were done at 30°C, in 1-mL reaction volumes. PEP carboxylase (EC 4.1.1.32) was measured by coupling to NAD-MDH according to the procedure of Uedan and Sugiyama (29). Pyruvate, Pi dikinase (EC 2.7.9.1) was assayed in the medium described by Edwards et al. (8). Exogenous PEP carboxylase required in this coupled assay was partially purified from maize as described by Uedan and Sugiyama (29), using the earliest peaks of activity off a DE-52 column, which were devoid of pyruvate, Pi dikinase activity. Aspartate (-2-oxoglutarate) aminotransferase (EC 2.6.1.1) and alanine (-2-oxoglutarate) aminotransferase (EC 2.6.1.2) were assayed as described by Gutiérrez (7). NADP-malic enzyme (EC 1.1.1.40) and NADP-MDH (EC 1.1.1.82) were assayed according to Kanai and Edwards (17). The full reductive activation of NADP-MDH included a 1-min flush with \(N_2\) of the enzyme plus 10 mM DTE mixture, prior to incubation at 25°C. NAD-malic enzyme (EC 1.1.1.39) was measured according to Hatch et al. (12). PEP carboxylase (ATP, EC 4.1.1.49) was measured according to Hatch (11).

\(\text{CO}_2\) Leaf Exposures and Identification of \(^{14}\)C Products. Detached leaves were exposed to \(^{14}\)CO\(_2\) (425 \(\mu\)L/L) for 8 s and killed in boiling 80% (v/v) ethanol as described by Moore et al. (22). Replicate leaf exposures were pooled and the soluble \(^{14}\)C products were extracted according to Rumpho et al. (27). Extracts were partitioned with CHCl\(_3\) and concentrated to about 0.5 ml. \(^{14}\)C-Labeled products were separated and identified by two-dimensional thin-layer electrophoresis and chromatography on cellulose plates, followed by autoradiography (28). Labeled metabolites were removed and their radioactivity quantified by liquid scintillation spectroscopy. The recovery of radioactivity from the plates was essentially 100%. The \(^{14}\)C label in glycerate was counted with that in 3-PGA. The authenticity of metabolic \(^{14}\)C glycolate was demonstrated by showing relative co-migration with \(^{14}\)C glycolate standard during TLE/TLC, and by HPLC analysis of the isolated metabolite.

Chl Measurement. Aliquots of filtered leaf homogenates were extracted in 96% ethanol, and the Chl contents calculated according to Wintermans and De Mots (31).

RESULTS

Mature leaves of P. hysterophorus have moderately developed Kranz anatomy, as seen in leaf cross-section, while those of P. incanum do not (Fig. 1). Encircling the smaller leaf veins of P. hysterophorus are 5 to 8 large, thick-walled bundle sheath cells (casual observation) which contain numerous organelles (Fig. 1B). In contrast, the bundle sheath cells of P. incanum are smaller, thin-walled parenchyma cells with few organelles (Fig. 1A). While each species has both leaf palisade and spongy mesophyll cells, these in general appear somewhat smaller in size and are more densely packed in P. hysterophorus, which has about four mesophyll cells between minor veins (observation). Chloroplasts, mitochondria, and peroxisomes are very prominent and mostly centripetally localized in the bundle sheath cells of P. hysterophorus, but are all rather scarce and peripherally located in the bundle sheath cells of P. incanum (Figs. 1 and 2). The bundle sheath chloroplasts of P. hysterophorus contain numerous well-developed grana and conspicuous, large starch granules (Fig. 2C). Both cell types of P. hysterophorus may accumulate high levels of starch as shown in thin section (Fig. 2C), or as observed by positive staining of leaf cross-sections with a periodic acid-Schiff’s reaction for polysaccharides (V Franceschi, unpublished data). However, bundle sheath chloroplasts of P. incanum do not similarly accumulate significant amounts of starch (Fig. 2B).

At 21% \(O_2\) and 30°C, \(\Gamma\) values in leaves of P. hysterophorus (20-25 \(\mu\)L/L) are less than one-half those observed in P. argentatum (about 56 \(\mu\)L/L) and P. incanum (about 51 \(\mu\)L/L, Fig. 3). Compared with the two \(C_3\) species, \(\Gamma\) in P. hysterophorus is also less sensitive to changing \(O_2\) concentrations, increasing particularly slowly from 2 to 11% \(O_2\) (from 1 → 7 \(\mu\)CO\(_2\)/L). This results in a distinctly biphasic response of \(\Gamma\) as \(O_2\) levels are increased up to 50%. This response was not observed in P. argentatum or P. incanum, both of which \(\Gamma\) increased linearly and rapidly with increasing \(O_2\).

Rates of whole leaf photosynthesis by P. incanum and P. hysterophorus are equivalent on a Chl basis under 2% \(O_2\), but are relatively less inhibited by 21% \(O_2\) in P. hysterophorus (26% versus 34% inhibition in P. incanum, Table 1). Since P. hysterophorus has about 25% more Chl (\(\mu\)g/cm\(^2\)) than does P. incanum (from Table 1), photosynthesis on a leaf area basis is relatively higher in P. hysterophorus under either 2 or 21% \(O_2\).

We next sought to determine whether the apparent reduced photosynthetic activity of P. hysterophorus indicated by the
reduced $\Gamma$ and $O_2$ inhibition values was accompanied by any $C_4$
photosynthesis. PEP carboxylase activity is quite low (10–29
$\mu$mol/mg Chl·h), as are the activities of pyruvate, Pi dikinase and
the three $C_4$ acid decarboxylases found in $C_4$ plants (Table II).
The activities of most of the $C_4$ cycle enzymes in leaves of $P.$
hysterophorus are generally comparable to those in leaves of the
related $C_3$ species, $P.$ incanum. Aspartate aminotransferase is the
only enzyme that had a considerably enhanced activity in $P.$
hysterophorus. Leaf Chl $a/b$ ratios are similar and of typical $C_3$
values in both species.

The implication from the enzyme-activity data of a low capacity
for $C_4$ photosynthesis in $P.$ hysterophorus was further evaluated
by analyzing the initial photosynthetic products after expo-
sure of leaves to a short pulse of $^{14}CO_2$. 3-PGA and sugar-
phosphates are the primary products of $^{14}CO_2$ fixation after an 8
s exposure of leaves of either $P.$ hysterophorus or $P.$ incanum
(77–84% of soluble $^{14}C$ products), with minimal $^{14}C$ label re-
covered in malate plus aspartate (3–4%, Table III). Notably,
the amount of label in glycerate after the pulse of $^{14}CO_2$ was substan-
tially less in $P.$ hysterophorus than in $P.$ incanum (6% versus
17%).

**DISCUSSION**

At 30°C and 21% $O_2$, $\Gamma$ in $P.$ hysterophorus is 20 to 25 $\mu$L/L
(Fig. 3), largely in agreement with previously estimated values of
about 28 to 35 $\mu$L/L (26) and 27 $\mu$L/L (24). In $P.$ hysterophorus,
the response of $\Gamma$ to increasing $O_2$ showed a transition point
around 11% $O_2$, with a more rapid, linear increase in $\Gamma$ with
higher levels of $O_2$. Such a biphasic response has been observed
in most other $C_3$-$C_4$ intermediates examined (10). Among inter-
mediates of *Flaveria* which have some capacity for $C_4$ photosyn-
thesis, such transitions generally occur at $O_2$ concentrations
$\geq 21%$ (15). $C_3$ species show no such transition, and $\Gamma$ increases
proportionally and more rapidly with increasing $O_2$ up to 50% (e.g.
Fig. 3). $\Gamma$ in $C_4$ species also shows no such transitions, but
shows minimal change with increasing $O_2$ (10). Thus, when such
transitions occur at low $O_2$ levels as in $P.$ hysterophorus (also as
in *Moricandia arvensis* [1]; and *Panicum milioides* [18]) it may
indicate a limited capacity for reducing photorespiration (10).
Observation of only a moderately decreased sensitivity of net
photosynthesis to 21% $O_2$ in leaves of $P.$ hysterophorus (Table I)
supports this interpretation.

The finding of negligible $C_4$ photosynthesis in leaves of $P.$
hysterophorus (Table III) confirms previous data (13, 24)
and indicates that a different mechanism may be used to partially
reduce photorespiration. Such a mechanism may be as suggested
for *Panicum milioides* (5, 9), and *Moricandia arvensis* (16, 30),
i.e. some photorespired $CO_2$ may be reasimilated by bundle
sheath chloroplasts. Such chloroplasts are abundant, contain
numerous grana, are capable of forming starch, and are in close
proximity to large mitochondria and peroxisomes (Fig. 2). In
most respects, similar features are also observed in bundle
sheath cells of *P. milioides* (5) and *M. arvensis* (30). A previous study
which concluded that bundle sheath chloroplasts of *P. hysteroph-
orus* are incapable of forming starch (due to a lack of staining
by I$_2$-KI (24)) is clearly inaccurate. Also, these authors (13, 25)
and others (26) reported that PEP carboxylase activities in mature
leaves of $P.$ hysterophorus range from 125 to 315 $\mu$mol/mg Chl-
h, far in excess of any PEP carboxylase that we could detect in
either chamber- or greenhouse-grown plant material (10–29
$\mu$mol/mg Chl·h, Table II). Patil and Hedges (25) additionally
reported that aspartate aminotransferase has activities of only
about 20 $\mu$mol/mg Chl·h, in contrast to the much higher, albeit
rather variable, activities that we found (80–320 $\mu$mol/mg Chl-
h, Table III). The reasons for these discrepancies between the
data are unknown. However, the present data demonstrate low
and comparable levels of PEP carboxylase in both *P. hysteropho-
orus* and *P. incanum*, and therefore indicate that PEP carboxylase
does not have a significant role in the observed reduction of
photorespiration in *P. hysterophorus*.

We were unable to confirm a previous report that immature
leaves of *P. hysterophorus* differ from the mature leaves in that
the former lack Kranz anatomy and have relatively lower activities
of $C_4$ cycle enzymes (25). We have observed Kranz-like
anatomy in partially expanded leaves (data not shown), and
could detect no significant differences in the expressed activities
of $C_4$ cycle enzymes in immature leaves relative to mature leaves
(Table II).

In summary, the weedy species *Parthenium hysterophorus* is
classified as a $C_3$-$C_4$ intermediate based on Kranz-like leaf
anatomy and reduced photosynthetic activity. The lack of appreci-
able activities of PEP carboxylase, pyruvate, Pi dikinase, and
most other $C_4$ enzymes, plus the formation of $C_3$ products
following short-term exposures of leaves to $^{14}CO_2$, indicate that
*P. hysterophorus* assimilates atmospheric $CO_2$ solely by the $C_3$
pathway. The mechanism for reducing photorespiration in this

**Fig. 1.** Cross-sections of leaves from greenhouse-grown plants. A, *P*
incanum; B, *P. hysterophorus*. Both are magnified $\times$310.
Fig. 2. TEM micrographs of thin sections from leaves of chamber-grown plants. A, Micrograph of bundle sheath cells (B) of *P. incanum*, magnified ×8600. Some vascular tissue can be seen at upper right. B, Micrograph of cells from *P. incanum* containing mesophyll (M) chloroplasts with large starch grains (S), facing a bundle sheath chloroplast with rudimentary starch grains, magnified ×12,700. C, Micrograph of cross-section of a minor leaf vein with surrounding bundle sheath cells (B) and adjoining mesophyll cells (M) of *P. hysterophorus*, magnified ×4400. Arrows designate bundle sheath mitochondria; P = peroxisomes. Conspicuous starch grains occur in chloroplasts of both mesophyll and bundle sheath cells.
Table I. Photosynthesis Rates at 2% and 21% O₂, and the O₂
Inhibition of Photosynthesis in Leaves of P. incanum and P. hysterophorus

<table>
<thead>
<tr>
<th>Species</th>
<th>Photosynthesis Rate</th>
<th>Inhibition by 21% O₂</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>μmol/mg Chl·h</td>
<td>mg/dm²·h</td>
</tr>
<tr>
<td>P. incanum</td>
<td>259 ± 15 171 ± 14 41.3 ± 2.4 27.2 ± 2.3 34.1 ± 3.5</td>
<td></td>
</tr>
<tr>
<td>P. hysterophorus</td>
<td>254 ± 17 188 ± 15 49.8 ± 3.4 37.0 ± 2.4 25.7 ± 2.4</td>
<td></td>
</tr>
</tbody>
</table>

Table II. Chl a/b Ratios and Activities of C₄ Cycle Enzymes in Partially or Fully Expanded Leaves of P. incanum and P. hysterophorus

<table>
<thead>
<tr>
<th>Chl or Enzyme</th>
<th>P. incanum, Relative Leaf Age</th>
<th>P. hysterophorus, Relative Leaf Age</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Young</td>
<td>Mature</td>
</tr>
<tr>
<td>Chl a/b</td>
<td>3.1</td>
<td>2.9</td>
</tr>
<tr>
<td>μmol/mg Chl·h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEP carboxylase</td>
<td>18</td>
<td>10(29)</td>
</tr>
<tr>
<td>Pyruvate, Pi dikinase</td>
<td>1.8</td>
<td>1.4</td>
</tr>
<tr>
<td>NADP-malate dehydrogenase</td>
<td>5.2</td>
<td>4.9</td>
</tr>
<tr>
<td>NADP-malic enzyme</td>
<td>0.9</td>
<td>0.7(4.6)</td>
</tr>
<tr>
<td>NAD-malic enzyme</td>
<td>20</td>
<td>5.7(8.3)</td>
</tr>
<tr>
<td>PEP carboxylase</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Alanine aminotransferase</td>
<td>4.5</td>
<td>11(95)</td>
</tr>
<tr>
<td>Aspartate aminotransferase</td>
<td>27</td>
<td>14(64)</td>
</tr>
</tbody>
</table>

Table III. Percent Distribution of Soluble ¹⁴C Products in Leaves of P. incanum and P. hysterophorus after an 8 s Exposure to ¹⁴CO₂

<table>
<thead>
<tr>
<th>¹⁴C Product(s)</th>
<th>P. incanum</th>
<th>P. hysterophorus</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-PGA</td>
<td>34</td>
<td>30</td>
</tr>
<tr>
<td>Sugar phosphates</td>
<td>43</td>
<td>54</td>
</tr>
<tr>
<td>Malate</td>
<td>1.9</td>
<td>2.4</td>
</tr>
<tr>
<td>Aspartate</td>
<td>0.8</td>
<td>1.6</td>
</tr>
<tr>
<td>Succinate</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Glycine, serine</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Alanine</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Glycolate</td>
<td>17</td>
<td>6</td>
</tr>
<tr>
<td>Others</td>
<td>1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

LITERATURE CITED

1. APEL P, I TICA, M PEISSER 1978 CO₂ compensation concentrations in leaves of Moricandia arvensis (L.) DC. at different insertion levels and O₂ concentrations. Biochem Physiol Pflanzen 172: 547-552
2. ATKINS CA, JS PATE 1977 An IBGA technique to measure CO₂ content of small volumes of gas from the internal atmospheres of plant organs. Photosynthetica 11: 214-216
6. DEL CERRO M, J COGEN, C DEL CERRO 1980 Steenwex's blue, an excellent stain for optical microscopic study of plastic embedded tissues. Microsc Acta 83: 117-121
C3-C4 PHOTOSYNTHESIS IN *PARTHENIUM HYSTEROPHORUS* 983


24. **PATIL TM, BA HEDGE** 1983 Pattern of starch distribution, carbon dioxide compensation concentration, and photochemical reduction of tetranitrotetrazolium blue in *Parthenium hysterophorus* L. Photosynthetica 17: 64–68


