Oxygen-18 and Deuterium Labeling Studies of Choline Oxidation by Spinach and Sugar Beet

Received for publication March 11, 1988 and in revised form May 6, 1988

CLAUDIA LERMA; ANDREW D. HANSON*, AND DAVID RHODES
MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 (C.L., A.D.H.); and Department of Horticulture, Purdue University, West Lafayette, Indiana 47907 (D.R.)

ABSTRACT
Chenopods synthesize betaine by a two-step oxidation of choline: choline → betaine aldehyde → betaine. The pathway is chloroplastic; the first step has been shown in isolated spinach (Spinacia oleracea L.) chloroplasts to be O2- and light-dependent, the role of light being to provide reducing power (P Weigel, EA Weretilnyk, AD Hanson 1988 Plant Physiol 86: 54-60). Here, we report use of in vivo 18O- and 2H-labeling in conjunction with fast atom bombardment mass spectrometry to test for two hypothetical choline-oxidizing reactions that would explain the observed requirements for O2 and reductant: a desaturase or an oxygenase. Simple synthases for 1H-choline, 1H2O, 1H2O-choline, and 1H2O, 1H2O-betaine are given. A desaturase mechanism was sought by giving choline deuterated at the 2-carbon, or choline unlabeled at this position together with 1H2O and by analyzing newly synthesized betaine. About 15% of the 2H at C-2 was lost during oxidation of choline to betaine, and about 10% of the betaine made in the presence of 50% 2H2O was monodeuterated. These small effects are more consistent with chemical exchange than with a desaturase, because 10 to 15% losses of 2H from the C-2 position also occurred if choline was converted to betaine by a purified bacterial choline oxidase. To test for an oxygenase, the incorporation of 1H2O into newly synthesized betaine was compared with that from 1H2O-labeled choline, in light and darkness. Incorporation of 18O from 1H2O-choline was readily detectable and varied from about 15 to 50% of the theoretical maximum value; the 18O losses were attributable to exchange of the intermediate betaine aldehyde with water. In darkness, incorporation of 18O from 1H2O approached that from 1H2O-choline, but in the light was severalfold lower, presumably due to isotopic dilution by photosynthetic 18O2. These data indicate that the chloroplast choline-oxidizing enzyme is an oxygenase.

Members of the Chenopodiaceae and Gramineae, as well as certain cyanobacteria and bacteria, accumulate betaine (glycinebetaine) in saline or dry environments (11, 12, 27). Much evidence (6, 26) now favors Wyn Jones’ hypothesis (28) that in higher plants betaine is a major cytoplasmic osmolyte, and betaine levels as high as 300 mm have recently been reported for cytoplasm (13) and chloroplasts (19) of salinized Chenopods.

In stressed or unstressed plants, and in other organisms, betaine is synthesized by a two-step oxidation of choline; both steps occur in the chloroplast in spinach and other Chenopods (7):

\[\text{Choline} \rightarrow 2\text{H} \rightarrow \text{betaine aldehyde} \rightarrow 2\text{H} \rightarrow \text{betaine} \]

In spinach chloroplasts, the second step is catalyzed by a specific betaine aldehyde dehydrogenase (1, 24). Although the enzyme for the first step has not yet been identified, experiments with chloroplasts have defined some of its characteristics. Thus, in isolated chloroplasts, the choline → betaine aldehyde reaction requires O2 and light, with light most probably acting to supply reducing power (23). Because the light requirement found for choline oxidation in isolated chloroplasts distinguishes this choline-oxidizing reaction from the choline dehydrogenases (11, 16, 22) and oxidases (10, 29) of other organisms, it was of interest to establish whether choline oxidation in intact leaf tissue also required light. As this proved to be the case, we used stable isotope labeling experiments with leaf discs to probe the nature of the choline-oxidizing reaction in vivo. Specifically, as outlined below, we tested for two hypothetical choline-oxidizing reactions, an oxygenase or a desaturase, that would explain requirements for O2 and photosynthetically generated reductant.

Oxygenase. Figure 1 is a scheme for choline oxidation catalyzed by an oxygenase; a monoxygenase reaction is shown, but the considerations below apply equally to a dioxygenase. An oxygenase reaction would incorporate an atom of 18O from 1H2O into one of the hydroxyl groups of the hydrate form of betaine aldehyde, the form likely to predominate in aqueous solution (2). There are clear precedents for such alcohol → aldehyde oxidations, for example, in kaureno metabolism (25). Also, the γ-butyrobetaine hydroxylases of rat liver and Pseudomonas are precursors for a hydroxylation at a carbon β- to a trimethylammonium group (8).

Several variables influenced the design and interpretation of our 18O-incorporation experiments. (a) Betaine aldehyde, but not choline or betaine, is expected to undergo appreciable 18O-exchange with water under the mild conditions obtaining in vivo (20). This would cause loss of 18O introduced into betaine aldehyde; the loss is predicted to increase as the rate of turnover of the betaine aldehyde pool decreases. (b) Dehydrogenases typically act on the free aldehyde, not the hydrate (4, 17, 21); if this holds for BADH, no more than 50% of the 18O incorporated into the hydrate could enter betaine, even in the absence of 18O exchange with water. (c) For betaine quantification by FABMS3 (18),

1 Supported by the United States Department of Energy under contract DE-AC02-76EERO-1338, by the United States Department of Agriculture under grant 87-CRCR-1-2460 from the Competitive Grants Research Office; and by grants from the State of Michigan REED-Biotechnology Program, from CIBA-GEIGY Corporation, from the Beet Sugar Development Foundation, and from the Corporation for Science and Technology in Indiana. C. L. received a fellowship from CONACYT, Mexico.

2 Present address: Departamento de Bioquímica, División de Bioquímica y Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria 04510, Avenida Insurgentes Sur y Copilco, México, D.F.

3 Abbreviation: FABMS, fast atom bombardment mass spectrometry.

Copyright © 1988 American Society of Plant Biologists. All rights reserved.
preparation of the ester derivatives eliminates one of the carboxyl oxygens of betaine (15). Thus, as at neutral pH the carboxyl group of betaine is fully ionized and its two oxygens are chemically equivalent, no more than one-half of the 18O present in the betaine in vivo can be retained in the ester derivative. (d) Betaine could undergo some 18O exchange under the relatively harsh conditions required for sample purification and esterification (20). Note that it follows from (b) and (c) that the maximum 18O abundance in the betaine ester analyzed by FABMS would be 25%, even in the absence of exchange processes.

Desaturase. The hypothetical oxidation of choline by a desaturase is shown in Figure 2. In the upper reaction, the hydrogens of carbon atoms 1 and 2 of choline are replaced by deuterium; one deuterium atom from each carbon is lost in the formation of the enol, which spontaneously tautomerizes (30) to form the aldehyde, with the hydrogen at the 2-position coming from water. Assuming this water to be the bulk solvent, only one of the deuteriums at the 2-carbon of choline would be retained in betaine aldehyde and betaine. Thus, a desaturase would in the simplest case yield monodeuterated betaine from 2H$_4$-choline. Conversely, as shown in the lower reaction of Figure 2, if unlabeled choline is oxidized in the presence of 2H$_2$O, a desaturase would introduce one deuterium atom at the 2-position. Although a choline desaturase apparently lacks a direct precedent, an indirect one is chloroplastic stearoyl-ACP desaturase, which requires O$_2$ and photosynthetically-generated reductant (14).

An important variable for our deuterium labeling experiments was that exchange could occur in vivo between the solvent and deuterium or hydrogen atoms on carbon-2 of betaine aldehyde. However, such exchange is expected to be slow at physiological pH (2).

MATERIALS AND METHODS

2H- and 2H,18O-Labeled Choline. Choline chloride (trimethyl-2H$_3$) (98 atom %) was obtained from Cambridge Isotope Laboratories (Cambridge, MA), and choline-1,1,2,2-2H$_4$ chloride (98 atom %) from MSD Isotopes (Montreal, Canada). 2H$_3$-Choline chloride and 2H$_4$18O-choline chloride were prepared from betaine aldehyde (methyl-2H$_3$) chloride (synthesized as described in Rhodes et al. (18)). Aliquots (0.2 ml) of 1.6 M 2H$_4$-betaine aldehyde in 0.2 M HCl were dried in a stream of air and redissolved in 1 ml of 2H$_2$O or 2H$_2$O (97 atom %, MSD Isotopes, Merck & Co., St. Louis, MO), to which was added 20 mL of 2.5 N HCl. After stirring at room temperature for 2 h, reaction mixtures were neutralized with 6 N NaOH, and 40 mg NaBH$_4$ was added to reduce betaine aldehyde to choline. After stirring for a further 15 min, 2.5 N HCl was added dropwise until effervescence ceased, and the reaction mixtures were taken to dryness in a rotary evaporator at 30°C. The dried reaction mixtures were extracted with 2 × 5 ml acetonitrile: methanol (10:1, v/v); the extract was filtered through Whatman No. 1 paper and rotary evaporated to dryness. The dried sample was then reextracted with 2 × 5 ml acetonitrile:methanol (20:1, v/v), and extract filtered and dried as above. The latter steps removed the major inorganic ion contaminants.

Authenticity and isotope abundance of the 2H$_4$-choline and 2H$_3$18O-choline preparations were determined in several ways. First, only one quaternary ammonium compound, comigrating with authentic choline chloride, was detected by TLC on silica gel G developed with n-butanol/acetone/water (6:2:2, v/v) and sprayed with the Dragendorff reagent. Second, direct insertion probe chemical ionization MS (using a Finnigan Series 4000 quadrupole GC/MS system, probe temperature 350°C, isobutane reagent gas, mass range 65–250 amu) showed major choline fragment ions of mass 90 (M+$^+$–CH$_3$) and 93 (M+$^+$–CH$_2$) for synthetic 2H$_3$-choline, and mass 92 (M+$^+$–CH$_3$) and 95 (M+$^+$–CH$_2$) for synthetic 2H$_4$18O-choline, with approximately 90 atom % 18O abundance for the latter product, as determined from the ion ratios m/z 90:92 and 93:95. Third, FABMS (18) of undervatized 2H$_3$-choline gave an intact molecular cation of mass 107 indicative of 98 atom % 2H$_3$ abundance. For undervatized 2H$_4$18O-choline, intact molecular cations of mass 109 and 107 were observed in the ratio 9.75:1, with no detectable ions at mass 104. This indicates a 2H$_3$ abundance of >98% and an 18O abundance of 90.9%. Fourth, FABMS of O-heptafluoroctybutyl choline derivatives (prepared by reacting dried samples with 100 mL heptafluorobutyric anhydride at 120°C for 10 min) confirmed...
CHOLINE OXIDATION IN CHENOPODS

98 atom % 13H abundance in the 2H$_3$-choline preparation: 98% of the molecular cation choline heptfluorobutyrate signal was associated with an ion of mass 303. Similarly, the O-heptfluorobutyryl derivative of the 2H$_3$-O-choline preparation gave ions of mass 305 and 303 indicative of 98% 13H abundance and 90% 18O abundance; the 18O abundance did not decline during 12 months storage of the 2H$_3$-O-choline in aqueous solution at -20°C. FABMS of heptfluorobutyryl derivatives was used to determine 2H$_3$-O-choline and 2H$_3$-O-choline levels in the solutions supplied to leaf discs; aliquots of these solutions were spiked with known amounts of unlabeled choline as internal standard. Fifth, FABMS of β-nbutanol:acetyl chloride (5:1 v/v, 120°C, 20 min) derivatized preparations of 2H$_3$-O-choline and 2H$_3$-O-choline confirmed that they were not contaminated with either unlabeled or 2H$_3$-labeled betaine or betaine aldehyde. The main impurity in the 2H$_3$-O-choline and 2H$_3$-O-choline preparations was NaCl, residual from acidification of NaBH$_4$. The final NaCl levels in the 0.4 to 0.5 mM choline solutions supplied to leaf discs were, however, <0.1 mM and these low impurity levels were shown not to influence metabolism of labeled choline by comparing rates of oxidation of synthetic 2H$_3$-choline and pure 2H$_3$-choline.

2H$_3$-O-Betaine. 2H$_3$-O-Betaine was prepared by enzymic oxidation of betaine aldehyde (methyl-2H$_3$) chloride labeled with 18O by exchange with H$_2$O. Dry 2H$_3$-betaine aldehyde chloride (0.32 mmol) was incubated with 1 mL of H$_2$O; 18O (97 atom %) plus 20 μL of 2.5 N HCl for 1.3 h at room temperature, followed by addition of 5 μL of a saturated solution of imidazole to bring the pH to 7.5, and incubation for 1 h at room temperature with 100 units of choline oxidase (Alkaligenes sp., Sigma) to convert betaine aldehyde to betaine. The reaction mix was then applied to a 6.5 × 1.6 cm column of Dowex-1 (OH$^-$) and the aqueous eluate applied to a 5 × 1.6 cm column of Dowex-50 (H$^+$). After washing the column with 20 mL water, betaine was eluted with 20 mL of 6 N NH$_4$O and rotary evaporated to dryness; 3 mg of betaine was recovered, dissolved in 0.5 mL of H$_2$O, and stored at -20°C. Direct probe chemical ionization MS of a 600-μg dried sample of this betaine preparation relative to unlabeled and 2H$_3$-betaine revealed an average 18O abundance of the two equivalent oxygens of the betaine carbonyl group of 79%, and a 2H$_3$ abundance of the quaternary ammonium group of 98%. Thus, the major molecular ions (M+1) of unlabeled betaine, 2H$_3$-betaine, and 2H$_3$-O-betaine were m/z 118, 127, and 125, respectively. For the 2H$_3$-O-betaine, the ion clusters in the mass range 121 to 125 were consistent with the following species and relative ion ratios: 75.6% of the remaining 18O of the betaine-2H$_3$-18O-betaine; 9% 2H$_3$-18O-betaine; 9% 2H$_3$-18O-betaine; 4.9%: 32.5%:62.6%, respectively (cf. expected ratios for 79% 18O-betaine of 4.4%; 33.2%; 62.4%, respectively, assuming 18O to be equally distributed among the two oxygens of the carbonyl group of betaine). Note that the average 18O abundance of the betaine (79%) was somewhat lower than that of the reagent water (about 93%), presumably due to exchange during ion-exchange purification (see below). No detectable decline in 18O abundance was observed during up to 4 months of storage of the 2H$_3$-O-betaine preparation in H$_2$O at -20°C.

18O Exchange of 2H$_3$-O-Betaine during Derivatization and Purification. Upon derivatization to the n-butyl ester, one oxygen is expected to be lost from betaine, with the further possibility of some exchange of the remaining 18O with the reagent alcohol. Tests showed that the 2H$_3$-O-betaine preparation retained an n-butyl ester of 98% 13H abundance, with a single oxygen originating from betaine of 72.2% 18O abundance, as determined by FABMS; 27.8% of the 2H$_3$-betaine signal was associated with an ion of mass 177 (2H$_3$-O-betaine n-butyl ester), and 72.2% with an ion of mass 179 (2H$_3$-O-betaine n-butyl ester). Exchange losses of 18O during esterification were thus approximately 10%.

As the procedure used to isolate betaine from leaf discs for FABMS involved eluting from Dowex-50 with 2.5 N HCl, and freeze-drying of this eluate, the extent of 18O-exchange under acid conditions was evaluated. 2H$_3$-18O-Betaine (0.5–1 μmol) was treated with 8 ml 2.5 N HCl and freeze-dried prior to esterification with β-nbutanol; the resulting betaine ester exhibited an 18O abundance of 66.2%, suggesting that only a small amount of 18O exchange (about 10%) took place. To evaluate the amount of 18O exchange in the whole extraction and purification procedure, leaf disc extracts of spinach were spiked with 0.5 to 1 μmol of 2H$_3$-18O-betaine (79% 18O abundance), processed as described below, and derivatized with β-nbutanol. The mean 18O abundance of the betaine spike recovered was 54.8% (6.3. 11 independent trials). Thus, the entire sequence of extraction, purification, and derivatization steps led to a reduction of 30% in the 18O abundance of betaine, some 10% of which was due to esterification, 10% due to freeze drying in HCl, and presumably a further 10% due to ion exchange chromatography per se and/or extraction. We sought to reduce the exchange losses in esterification by using methyl, ethyl, isopropyl, and isobutyl esters, but these gave almost the same 18O abundance values as the n-butyl ester, so that the rate of isotope exchange with the reagent alcohol during esterification was not affected by use of alcohols that undergo SN1 and SN2 reactions at different rates. We also attempted to eliminate exchange losses during Dowex-50 elution and freeze drying by eluting with 4 N NH$_4$O in place of 2.5 N HCl; however, this change had no effect on 18O losses.

Proton NMR and Isotope Exchange Reactions of Betaine Aldehyde. Proton NMR spectra of betaine aldehyde chloride (Sigma) in deuterated DMSO were obtained with a Bruker WM-250 Fourier-transform NMR spectrometer. To study oxygen exchange of the carbonyl group with water, 0.16 or 0.32 mmol of dry 2H$_3$-betaine aldehyde chloride was dissolved in 1 mL H$_2$O (97 atom %), with or without neutralization with imidazole (pH 7 or 1, respectively). Aliquots (75 or 100 μL) were removed at short intervals and added to vials containing 10 or 40 mg NaBH$_4$ to trap 18O incorporated into 2H$_3$-betaine aldehyde as 2H$_3$-18O-choline. After 15 min, the reaction mixses were acidified with 0.2 mL of 2.5 N HCl, and choline was extracted with acetonitrile/methanol (20:1, v/v). The isotope abundance of the choline was determined by FABMS of the O-heptfluorobutyryl choline derivatives (m/z 305 and 303) as above. Note that 18O-incorporation into betaine aldehyde could not be detected by our analytical methods, for two reasons. First, conversion to the acetal derivative via a hemiacetal intermediate (15) would be expected to displace 18O in the aldehyde with 18O from the reagent alcohol. This was confirmed by preparing 2H$_3$-18O-betaine aldehyde by exchange of 2H$_3$-betaine aldehyde with 2H$_3$-18O as above, and derivatization with n-butanol: acetyl chloride. FABMS analysis showed no detectable 18O in the di-n-butyl acetal derivative. Second, oxygen exchange during purification of the aldehyde prior to FABMS would have been very extensive. To measure the exchange of the hydrogen atoms on the carbon atom (C-2) adjacent to the carbonyl group, approximately 10 μmol of betaine aldehyde chloride was dissolved in H$_2$O, and incubated for 2 h at 22°C. The sample was then freeze-dried and analyzed by direct probe chemical ionization MS.

Plant Material. Spinach plants (Spinacia oleracea L., cv. Savoy Hybrid 612) were grown singly in 600-mL pots of vermiculite/peat gravel (2:1, v/v) in the following growth chamber conditions: 16-h day, 23°C, 300 μE m$^{-2}$ s$^{-1}$ PAR, 60% RH/20°C night. Irrigation was with half-strength Hoagland solution. Sugar beet plants (Beta vulgaris L., cv Great Western D-2) were grown singly in 600-mL pots of organic potting mix in the following growth chamber conditions: 16-h day, 21°C, 180 μE m$^{-2}$ s$^{-1}$ PAR, 70% RH/16°C night. Beet plants were watered with Peters solution (N:P:K, 20:20:20).
Preparation and Infiltration of Leaf Discs. Three discs of 1.7 cm diameter (for stable isotope experiments) or 8 to 10 discs of 1.1 cm diameter (for 3C-labeling experiments) were cut from leaves 5 or 6 (counting from the lowest leaf) of plants 4 to 5 weeks old. The discs from each leaf were distributed systematically among experimental treatments. Sets of three 1.7-cm discs or five 1.1-cm discs were placed in 50-mL Erlenmeyer flasks containing 10 mL of 0.9% or 0.5 mM choline or betaine aldehyde in H2O or in up to 50% D2O. The fresh weight of three 1.7-cm disks was 0.3 g for spinach, 0.2 g for beet; the fresh weight of five 1.1-cm spinach discs was 0.2 g. The H3+, H2+, and H218O-choline and 2H2-betaine aldehyde were as described above; [14C]choline (52 μCi/μmol, NEN-Dupont, purified as in Hanson et al. [7]) was diluted with unlabeled choline to a final specific activity of 40 nCi/μmol. In some experiments, the feeding solutions were buffered, in which case the initial pH was adjusted to 6.3 to 6.5; other experiments included 20 mM Hepes/KOH plus 8 mM NaHCO3, final pH 7.7. During infiltration, discs were held flat on the flask bottom with a circle of nylon net (850 μm mesh), and the flask was shaken manually. For [14C]choline experiments, flasks were connected to a vacuum system for 15 s; air was then admitted to the flask, which was then stopped. For the infiltration of discs with 1H2-labeled choline or betaine aldehyde, flasks were closed with a rubber stopper and connected via a needle to a two-liter system through which 3 to 5 cycles of 5 s evacuation/5 s N2 flushing were applied. After applying a final 5-s vacuum, the head space (50 ± 2 mL) of the flask was filled by injecting either air or 10 mL 18O2 (99 atom %, Stohler Isotope Chemical Inc., Waltham, MA) plus about 40 mL N2.

Leaf Disc Incubation and Washing. After the infiltration step, flasks were incubated for up to 6 h with continuous shaking (100 rpm) at 29°C under a bank of cool-white fluorescent tubes (140 μE m-2 s-1), or in darkness. In order to estimate total 14C uptake in experiments with [14C]choline, the following procedure was used to wash label out of the free space before discs were extracted. Discs incubated for various times were removed from the incubation medium, blotted dry, placed in 100-mL Erlenmeyer flasks containing 20 mL of unlabeled 0.5 mM choline, and shaken for 30 min (100 rpm) in darkness at room temperature. Time courses of 14C release to the medium showed that 30 min sufficed for free space washout. After washing, discs were again blotted dry and extracted. Discs supplied 1H2-labeled choline or betaine aldehyde in unbuffered conditions were not washed before extraction; when Hepes/KOH was used, discs were washed as above, except that water replaced 0.5 mM choline.

Isolation of Quaternary Ammonium Compounds from Leaf Discs. Sets of three 1.7-cm discs or five 1.1-cm discs were extracted in 2 × 2 mL of methanol/chloroform/water (12:5:1 v/v), and aqueous and organic phases separated by adding 1 mL of chloroform plus 1.5 mL of water. The aqueous phases were drawn off, dried in a stream of N2 at 45 to 50°C, and redissolved in 1 mL of water. Samples labeled with 1H2- or 15O-choline, or 2H2-betaine aldehyde received an internal standard of 2H2,2H4-betaine, 1H2,1H4,2H5-betaine, and 1H2,1H4,2H5,2H9-betaine (125 or 1233 nmol, prepared as in Rhodes et al. [18]) at this point, and were then fractionated by ion exchange chromatography, as follows. The sample was applied to a 1.5-mL Dowex-1 (OH-) column in series with a 1.5-mL Dowex-50 (H+) column. (For 2H2-betaine aldehyde labeled samples, a Dowex-1 [OH-]/Biorex 70 [H+], 2:1 [v/v] mixed resin column replaced Dowex-1.) The column series was washed with 8 mL of water and the Dowex-1 column was removed. The Dowex-50 column was washed with a further 8 mL of water and then eluted with 8 mL of 2.5 N HCl. The eluate, containing quaternary ammonium compounds, was collected in 25-mL vials, frozen in liquid N2, and freeze-dried. The freeze-dried samples were mailed from Michigan State University to Purdue University for FABMS analysis.

In [14C]choline experiments, the redissolved aqueous phase was applied to a 1.5-mL column of mixed resin (Dowex-1 [OH-]/Biorex 70 [H+], 2:1 [v/v]) connected in series with a 1.5-mL column of Dowex-50 (H+). The column series was washed with 8 mL of water, and the mixed resin column was removed. The Dowex-50 column was also washed with 8 mL of water, and then the betaine fraction was eluted with 8 mL of 4 N HNO3. The eluate was evaporated to dryness under a heat lamp in a stream of air, and redissolved in 0.5 mL water. [14C]Betaine in the eluate was determined by scintillation counting; TLE analysis of representative eluates confirmed that the only labeled compound was betaine.

Determination of Betaine and Betaine Aldehyde Levels and Isotope Abundance in Leaf Discs. Betaine and betaine aldehyde in the freeze-dried HCl eluates from Dowex-50 chromatography were redissolved in 0.4 mL of 60% methanol, dried, and derivatized with n-butanol:acetyl chloride (5:1 v/v, 120°C, 20 min). Excess reagent was removed by evaporation to dryness in an air stream and the samples were then taken up in glycerol (50-100 μL) for FABMS analysis as described (18). Betaine was quantified by the ratio of ions at m/z 174, 177, 178, and 183 (unlabeled, H3+, H2+, H218O-, or H2-, and 2H2-betaine esters, respectively) to the internal standard 1H2,2H4-betaine (m/z 202). The internal standard was calibrated against authentic betaine. The molecular cation of unlabeled betaine n-butyl ester gave relative ion intensities at m/z 174/175:176 of 100:7.0.7-11.3:0.98:1.33, respectively. The 1H2,18O-betaine n-butyl ester gave an ion cluster at m/z 177:178:179 with the same relative intensities. Thus, we Routinely subtracted from the ion intensity at m/z 179 from 0.98 to 1.33% of the ion intensity at m/z 177 to arrive at the ion intensity due specifically to the molecular cation of the 1H2,18O-betaine n-butyl ester. For the experiments of Table I, in which all H3+,18O- and H2+,18O- betaine synthesis rates were low, a further background subtraction was applied at m/z 179 to correct for glycerol chemical noise generated in the FABMS process (1.7 ± 0.7 nmol H3,18O-betaine equivalents per ~50 μL sample). The lower limit of detection of betaine n-butyl esters above glycerol background chemical noise was approximately 2.5 nmol/50 μL glycerol (18).

Betaine aldehyde was quantified by monitoring the ions at m/z 232 and 235 (unlabeled and 1H2-di-n-butyl acetal derivatives, respectively). As noted above, 18O in betaine aldehyde was not detectable. Betaine aldehyde was calibrated against the internal standard 1H2,2H4-betaine.

14C02 Fixation Measurements. Five 1.1-cm leaf discs were infiltrated as above in 10 mL of a solution containing Hepes/KOH 20 mM, 8 mM NaH14CO3 (25 μCi/μmol) and 0.5 mM unlabeled choline, final pH 7.7. After sealing the flask, light 14C fixation (in the conditions given above for discs) was followed by taking 100-μL aliquots of the medium at various times up to 6 h, and determining the remaining 14C by scintillation counting. Values obtained with a blank flask without discs were used to correct for 14CO2 partitioning into the head-space.

Computer Simulations. Computer simulations (described in "Results and Discussion") were carried out on a Zenith Data Systems microcomputer with dual disc drive, interfaced with a Star SD-10 dot matrix printer. Programs were written in BASIC.

RESULTS AND DISCUSSION

Effect of Light on Choline Oxidation by Spinach Leaf Discs. Discs oxidized [14C]choline to betaine continuously during 6 h in the light (Fig. 3); the initial rate (about 100 nmol/h·mg Chl) was similar to rates of choline oxidation in isolated chloroplasts (23). Choline oxidation in darkness was less than in light, and essentially ceased within 2 h. This cessation was not due to loss of viability, because after 4 h in darkness, discs synthesized betaine actively upon transfer to light. The effect of light can be
The hydrate form (gem-diol) is expected to be prevalent in the case of a small aldehyde with an adjacent electron-withdrawing group such as a quaternary ammonium function (2), and proton NMR spectra of betaine aldehyde in deuterated DMSO before and after addition of 2H$_2$O confirmed that the compound exists in solution almost solely ($>99\%$) as the hydrate. The aldehydyl proton had a quintuplet splitting pattern in pure 2H-DMSO which reduced instantaneously to a triplet upon adding 2H$_2$O (not shown). Exchange between 2H$_2$O and the aldehyde (due to equilibrium A) was fairly rapid; the half-time for exchange was 0.6 min at neutral pH, and 0.8 min at pH 1. Exchange between the hydrogen atoms on C-2 and 2H$_2$O (due to equilibrium B) was relatively slow, with only 20 to 30% deuteration (2H$_1$) labeling occurring after 2 h.

Deuterium-Labeling Tests for a Desaturase Reaction. In initial tests for a desaturase mechanism, spinach leaf discs were supplied with 2H$_2$-choline in the presence of 50% 2H$_2$O, and the amounts of 2H$_2$-, 2H$_4$-, and 2H$_5$-betaine determined (Fig. 4A). The presence of 2H$_2$O had no discernible effect on the amounts of betaine produced, which were in the normal range. Approximately 10% of the betaine synthesized was 2H$_4$-labeled, a value which in principle might be given by a desaturase in which the proton lost from C-2 is strongly shielded from the bulk solvent water and hence tends to add back. However, some 2H$_3$-betaine was also

CHOLINE OXIDATION IN CHENOPODS

Fig. 3. Time courses for oxidation of $[^{14}C]$choline to betaine by spinach leaf discs in light and darkness. The infiltration medium was: $[^{14}C]$choline 0.5 mM, Hepes/KOH 20 mM (pH 7.7), and NaHCO$_3$ 8 mM. Data points are means of duplicates. Initial rates of $[^{14}C]$choline uptake in light and dark were: 303 and 273 nmol/2 h, respectively. Inset shows a parallel experiment with unlabeled choline and NaH14CO$_3$ run in the light to estimate the rate of photosynthesis.

The hydrate form is ascribed to increased choline oxidation rather than to increased uptake, because although initial betaine synthesis rates in light and dark differed by a factor of three, initial choline uptake rates were almost the same (Fig. 3, legend).

To confirm that light acts at the first step of choline oxidation, the labeled betaine aldehyde and betaine pools were determined in discs supplied with 2H$_2$-choline and incubated for 5 h in darkness or light. 2H$_2$-Betaine aldehyde pools were 0.91 and 7.3 nmol/3 discs in darkness and light, respectively, and 2H$_2$-betaine pools were 81 and 544 nmol/3 discs. The low level of 2H$_2$-betaine aldehyde in darkness shows that light promotes the oxidation of choline to betaine aldehyde, not the oxidation of the aldehyde to betaine.

The experiment of Figure 3 was carried out in the presence of Hepes/KOH buffer and HCO$_3$-, with a parallel experiment including H14CO$_3$- (Fig. 3, inset) which showed that the discs photosynthesized throughout the incubation. This confirmed that the first step of choline oxidation *in vivo* resembles that in isolated chloroplasts (23) with respect to light stimulation in the simultaneous presence of photosynthesis. Because results vary similar to those of Figure 3 were obtained when HCO$_3$- and buffer were omitted, these components were not routinely used in subsequent experiments.

Chemical Nature of Betaine Aldehyde. Because interpretation of our stable isotope data required some background on the chemistry of betaine aldehyde, we investigated the dominant form in solution, and evaluated 18O- and 3H-exchange reactions. Aldehydes can exist in three forms in aqueous solution, thus:

\[
\text{Hydrate} \xrightleftharpoons{} \text{Free Aldehyde} \xrightleftharpoons{} \text{Enol}
\]

Fig. 4. Scatter plots showing (A) the extent of incorporation of 2H from 2H$_2$O into betaine by spinach leaf discs and (B) the loss of 3H during conversion of 2H$_2$-choline to betaine by spinach leaf discs or *Alcaligenes* choline oxidase. For the experiments in A, discs were supplied with 2H$_2$-choline in the presence of 50% 2H$_2$O, so that 2H incorporation from 2H$_2$O is detected as formation of 2H$_2$- and 2H$_3$-betaine. For the experiments in B, leaf discs or purified choline oxidase received 1,1,2,2-2H$_4$-choline; because both 2H atoms at the 1-position are lost in the formation of betaine, the amount of 2H$_4$-betaine formed is a measure of 3H loss from the 2-position. The ranges in total amount of labeled betaine formed reflect differences in substrate dose in experiments with choline oxidase, and biological variation in the case of leaf disc experiments, in which incubations were for 5 h in the light.
produced betaine that was about 85% 2H$_2$-labeled, 15% 3H$_2$-labeled; the betaine made by the choline oxidase enzyme had a similar composition. A further observation consistent with chemical exchange is that betaine aldehyde isolated from leaf disks and choline oxidase reaction mixes supplied with 2H$_2$-choline was predominantly 3H$_2$-labeled (not shown). Taken together, these results give no support for a desaturase mechanism.

18O-Labeling Tests for an Oxygenase Reaction. A series of experiments was conducted in light and darkness. Each comprised three treatments: spinach or sugar beet leaf disks were given 3H$_2$-choline under air; 18O$_2$; 3H$_2$,18O-choline under air; or 3H$_2$-choline under 18O$_2$. Figure 5 summarizes results of eight such experiments carried out in light; the x-axis is the total amount of 3H$_2$-labeled betaine formed, and the y-axis is the percentage of this newly synthesized betaine that contained an atom of 18O. The data show the following features. First, in both spinach and sugar beet, the amount of 3H$_2$-betaine formed was quite variable, presumably due to differences among leaf batches in the *in vivo* activity of the choline → betaine aldehyde step. Second, the 18O-content calculated for the 3H$_2$-betaine synthesized from 3H$_2$-choline under air was always close to zero, validating the standard correction factor used. Third, treatments supplied 3H$_2$,18O-choline under air formed a considerable amount of 3H$_2$,18O-betaine, with the extent of 18O-labeling decreasing as the activity of the pathway increased. Fourth, the betaine synthesized under 18O$_2$ always contained appreciable 18O, but the 18O content averaged only 16% of that seen with 3H$_2$,18O-betaine.

The repeatable but low incorporation of 18O from 18O$_2$ in the light would be consistent with an oxygenase, were the 3H$_2$-choline supplied to the infiltrated discs be diluted severalfold at the enzyme site inside the chloroplast with photosynthetic 18O$_2$ (3, 5). Results from experiments in the dark, where no such isotopic dilution of the supplied 18O$_2$ would occur, support this explanation (Table I). Although the amount of 3H$_2$-betaine synthesized (about 0.13 μmol) was less than in the light (cf. Fig. 3), the extent of 18O-labeling from 18O$_2$ approached that from 3H$_2$,18O-choline. To confirm that the incorporation of 18O from 18O$_2$ in darkness occurred at the choline → betaine aldehyde step, not at the betaine aldehyde → betaine step, spinach leaf disks were supplied with 0.5 mM 3H$_2$-betaine aldehyde under 18O$_2$. The 3H$_2$-betaine synthesized after 5 h in darkness contained no detectable 18O (not shown).

Computer Modeling of 18O-Labeling Data. The above 18O-labeling results are clearly consistent in a qualitative sense with an oxygenase reaction. When oxygen exchange of betaine aldehyde is taken into account, the results are also quantitatively consistent with an oxygenase mechanism, as the following mod-

Table I. Incorporation of 18O into Betaine Synthesized in Darkness

In each of five experiments, spinach leaf discs were incubated for 5 h in darkness with 3H$_2$-choline in air, 3H$_2$,18O-choline in air, and 3H$_2$-choline in 18O$_2$. Betaine aldehyde pools (mean ± se) were 4.00 ± 0.57, 2.73 ± 0.42, and 3.63 ± 0.34 nmol/3 discs, respectively.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Atmosphere</th>
<th>3H$_2$,18O-Betainea</th>
<th>3H$_2$,18O-Betaineb</th>
<th>18O Abundance in 3H$_2$-Betaine</th>
</tr>
</thead>
<tbody>
<tr>
<td>3H$_2$-Choline</td>
<td>Air</td>
<td>139.2 ± 10.5</td>
<td>1.7 ± 0.7</td>
<td>0</td>
</tr>
<tr>
<td>3H$_2$,18O-Choline</td>
<td>Air</td>
<td>130.8 ± 17.9</td>
<td>8.6 ± 1.9</td>
<td>5.01d</td>
</tr>
<tr>
<td>3H$_2$-Choline</td>
<td>18O$_2$</td>
<td>134.0 ± 14.4</td>
<td>7.4 ± 1.6</td>
<td>4.08</td>
</tr>
</tbody>
</table>

a Calculated from ion intensity at m/z 177 relative to internal standard (m/z 202); mean ± se. b Calculated from ion intensity at m/z 179 (minus 1.33% of ion intensity at m/z 177) relative to internal standard (m/z 202), not corrected for glycerol chemical noise at m/z 179. c 3H$_2$,18O-Betaine equivalents due to glycerol chemical noise at m/z 179. d Average 18O abundance of 3H$_2$-betaine, subtracting 1.7 nmol/3 discs 3H$_2$,18O-betaine equivalents due to glycerol chemical noise at m/z 179.
eling studies will show. In addition, this modeling work indicates which form of the aldehyde may be bound by betaine aldehyde dehydrogenase.

In the case of betaine from discs given 3H,14O-choline, the highest possible 14O abundance would be 15.8%, assuming: (a) 90% 14O abundance in 3H,14O-choline; and (b) a theoretical maximum yield of 25% (Fig. 1); (c) an average 14O loss from betaine by exchange during sample processing of 30% ("Materials and Methods"); and (d) no loss by in vivo exchange between betaine aldehyde and water. The observed 14O abundance in betaine made from 3H,14O-choline was at most 7% (8%) (Fig. 5; Table 1). Hence, it is likely that betaine aldehyde exchange with water was substantial even at low pathway flux rates, and became more so as fluxes rose. The latter trend would be expected were the metabolic pool of betaine aldehyde to expand relative to the flux as flux increased, which is clearly possible given the large expansion in the total betaine aldehyde pool (Fig. 5, inset). The half-time estimated for betaine 14O exchange in vitro (0.6 min at pH 7) fits well with the above interpretation. Thus, adopting a half-time of 0.6 min and further assuming a metabolic pool of betaine aldehyde of 10 nmol/3 discs, and a flux rate of 200 nmol/3 discs-h, leads to a predicted 14O content for betaine of 5.2% uncorrected for 14O loss from betaine during sample processing, and hence 3.64% when corrected for the latter loss. This value is close to the observed value of approximately 4% 14O at this betaine aldehyde pool size and flux (c.f. Fig. 5).

Simulation studies confirmed that in addition to the half-life of betaine aldehyde 14O, the betaine flux/betaine aldehyde pool ratio (h-1) was critical in determining the predicted 14O abundance of betaine derived from 3H,14O-choline. For example, to account for an observed average 14O-abundance of 3H-betaine in leaf discs supplied with 3H,14O-choline in darkness (Table I) a flux:betaine aldehyde pool ratio of 31 h-1 was required. Since the observed average betaine flux in these experiments was 28 nmol/3 disks-h, then the metabolic pool of 3H-betaine aldehyde must have been only 0.9 nmol/3 discs. The observed 3H-betaine aldehyde pool was 2.7 ± 0.42 nmol (Table I), again indicating a close agreement between observed and theoretical values. Perhaps no more than 1.8 nmol of 3H-betaine aldehyde/3 discs exits from the metabolic pool during a 5-h incubation in darkness. This represents less than 1.3% of the betaine flux during the same 5-h incubation. Strict control over betaine aldehyde export from the metabolic pool in vivo is implied by these results.

For both choline and betaine aldehyde hydrate, carbon-1 is a photosynthetic center. Hence, in principle, a 13C-enriched organic compound could introduce 14O into one of the two hydroxyl positions, and a betaine aldehyde dehydrogenase which initially bound the hydrate could distinguish between this 14OH group and the 16OH from choline, and so discriminate against one or the other. However, if in vivo exchange of betaine aldehyde with water occurs, the 14O originally present in one hydroxyl group would tend toward random distribution between both, as the exchange reaction is not stereospecific. At low pathway flux rates in light or darkness, about one-half the 14O is apparently lost by exchange from the betaine aldehyde pool (Fig. 5; Table I). Under these circumstances, it can be shown that the remaining 14O would be substantially but not completely randomized, with about 60% present at the original position. In this connection, the small but consistent difference between 14O-labeling in darkness from 3H,14O-choline and 14O (Table I) should be noted. The lower value obtained for 14O (about 4% versus 5%) would be explained were the oxygen introduced by the oxygenase also the one removed in a dehydration reaction taking place on the surface of the dehydrogenase. If this is the explanation, then chloroplast betaine aldehyde dehydrogenase, in binding the hydrate form of its substrate rather than the free aldehyde, would differ from other aldehyde dehydrogenases (4, 17, 21). An alternative explanation for the difference between 14O-labeling from darkness 14O-choline and 14O2 would be that the metabolic pool of 14H-betaine aldehyde was significantly greater in the 14O2 treatments relative to the 14O-choline treatments—a possibility that cannot be ruled out from the data of Table I and the preceding discussion. Thus, the metabolic pool of 14H-betaine aldehyde need only have expanded from 0.9 to 1.2 nmol/3 discs to account for the lower 14O-abundance of betaine in the 14O2 treatments.

Evolutionary Implications. Our results indicate that the chloroplast choline-oxidizing enzyme is an oxygenase, unlike the flavoprotein choline dehydrogenases (11, 16, 22) and oxidases (10, 29) known from mammals, fungi, and eubacteria. We therefore hypothesize that the betaine synthesis pathway arose more than once in evolution, and that the betaine pathway in plants has a distinct origin to that in other kingdoms. Perhaps only two origins need be invoked, for flavoprotein dehydrogenases can behave as oxidases after separation from a multienzyme system (9). Because betaine occurs widely among halophytic cyanobacteria (12), and because the betaine pathway is chloroplastic in the higher plants that have been studied (7, 23, 24), it is tempting to consider a cyanobacterial origin for the plant betaine synthesis genes.

Acknowledgments.—We wish to thank Drs. C. Sweeney and W. D. Hitz for illuminating discussions, and Dr. K. Hallenga for assistance with NMR analyses.

LITERATURE CITED

5. Good NE, AH Brown 1961 The contribution of endogenous oxygen to the respiration of photosynthesizing Chlorella cells. Biochim Biophys Acta 50: 544–554