Studies of the Regulation of Nitrate Influx by Barley Seedlings Using 13NO$_3^{-}$

M. Yaesh Siddiqi*, Anthony D. M. Glass, Thomas J. Ruth, and Malal Fernando

Department of Botany, University of British Columbia Vancouver, B.C. V6T 2B1, Canada (M.Y.S., A.D.M.G., M.F.), and TRIUMF, Wesbrook Mall, University of British Columbia Campus, Vancouver, B. C. V6T 2A3, Canada (T.J.R.)

ABSTRACT

Using 15NO$_3^{-}$, effects of various NO$_3^{-}$ pretreatments upon NO$_3^{-}$ influx were studied in intact roots of barley (Hordeum vulgare L. cv Klondike). Prior exposure of roots to NO$_3^{-}$ increased NO$_3^{-}$ influx and net NO$_3^{-}$ uptake. This 'induction' of NO$_3^{-}$ uptake was dependent both on time and external NO$_3^{-}$ concentration ([NO$_3^{-}$]). During induction influx was positively correlated with root [NO$_3^{-}$]. In the postinduction period, however, NO$_3^{-}$ influx declined as root [NO$_3^{-}$] increased. It is suggested that induction and negative feedback regulation are independent processes: Induction appears to depend upon some critical cytoplasmic [NO$_3^{-}$]; removal of external NO$_3^{-}$ caused a reduction of 15NO$_3^{-}$ influx even though mean root [NO$_3^{-}$] remained high. It is proposed that cytoplasmic [NO$_3^{-}$] is depleted rapidly under these conditions resulting in 'deinduction' of the NO$_3^{-}$ transport system. Beyond 50 micromoles per gram [NO$_3^{-}$], 15NO$_3^{-}$ influx was negatively correlated with root [NO$_3^{-}$]. However, it is unclear whether root [NO$_3^{-}$] per se or some product(s) of NO$_3^{-}$ assimilation are responsible for the negative feedback effects.

In higher plants, NO$_3^{-}$ uptake is unique in that it is subject to both positive and negative feedback regulation. Plants which have not been pretreated with NO$_3^{-}$ show low levels of tissue NO$_3^{-}$ and low rates of net NO$_3^{-}$ uptake (sometimes referred to as 'constitutive' uptake [4]). Following exposure to NO$_3^{-}$, root [NO$_3^{-}$] and NO$_3^{-}$ uptake increase several fold with time (4, 10, 13). This increase in NO$_3^{-}$ uptake ('induced' by NO$_3^{-}$) appears to be a specific response to NO$_3^{-}$ provision, since other sources of N (e.g. NH$_4^{+}$) appear to be ineffective. Thus it is probable that NO$_3^{-}$ per se is the inducing agent. Consistent with this observation is the finding that NO$_3^{-}$ uptake is independent of the activity of the enzyme nitrate reductase (12, for review see 4).

Numerous studies have shown that, during post induction periods, net NO$_3^{-}$ uptake rates are under negative feedback control: they increase following N-starvation and decrease following NO$_3^{-}$ pretreatment (15, 18 and references therein). However, in other species (24, 29) the existence of negative feedback may be obscured because removal of NO$_3^{-}$ from the external medium causes an immediate decrease of NO$_3^{-}$ uptake.

The mechanism(s) responsible for exerting negative feed-

1 Supported by the Natural Sciences and Engineering Research Council of Canada.

MATERIALS AND METHODS

Seed Germination and Plant Growth

Seeds of barley (Hordeum vulgare L. cv Klondike) were germinated in sterilized moist sand on plastic mesh fitted into plexiglass discs (40–50 seeds per disc) as described by Siddiqi and Glass (26). After 3 d of germination in the dark, seedlings were transferred to Plexiglas hydroponic tanks (approximately 40 L capacity) containing modified Johnson's nutrient solution at appropriate strength (1/10 or 1/100 as indicated) with or without appropriate amounts of Ca(NO$_3$)$_2$. The composition of modified Johnson's solution was as follows: KH$_2$PO$_4$, 2 mm; K$_2$SO$_4$, 2 mm; MgSO$_4$, 1 mm, Ca$^{2+}$ as CaSO$_4$ and/or Ca(NO$_3$)$_2$, 4 mm; micronutrients and Fe (as Fe-EDTA) μM: Cl, 50; B, 25; Mn, 2; Zn, 0.5; Cu, 0.5; Fe, 20.

In NO$_3^{-}$ treatments, an appropriate amount of Ca(NO$_3$)$_2$ was added to provide the required concentration of NO$_3^{-}$. In all experiments, solution NO$_3^{-}$ and K$^+$ concentrations were maintained by means of peristaltic pumps. Concentrations of these ions were measured at least twice a day, and pump speed and/or concentration of stock solution was adjusted accordingly. Other nutrients were supplied by reference to K$^+$ (in the same proportions as in the original solution).

The plants were maintained in a controlled environment...
room at 20 ± 2°C, 16 h light-8 h dark cycle, and 70% RH. The light was provided at 300 μE m⁻² s⁻¹ (plant level) by fluorescent tubes having spectral composition similar to sunlight. In all the experiments, induction was carried out in light; for final 30 h, all plants remained in continuous light.

Induction of Nitrate Uptake

After 3 d of germination in sand, seven sets of seedlings (40 seedlings per set) were transferred to modified ¼ Johnson's solution without N (–N tank) and one set of seedlings to ¼ Johnson's solution containing 1.5 mol m⁻³ NO₃⁻ (+N tank). Seedlings were transferred from –N to +N tank at intervals to give 0, 12, 24, 48, 72, 96, 120, and 144 h of NO₃⁻ pretreatment (experiment 1). In another experiment exactly the same procedure was followed except that the solution concentration was ⅛ Johnson with or without 0.1 mol m⁻³ NO₃⁻ (experiment 2). Effects of shorter exposures to NO₃⁻ were investigated in 7 d old seedlings by pretreating seedlings with 0.1 mol m⁻³ NO₃⁻ for 0, 2, 4, 6, 12 and 24 h (experiment 3).

The effect of external nitrate ([NO₃⁻]ₒ) and duration of pretreatment at these [NO₃⁻]ₒ on the induction of NO₃⁻ uptake were investigated by pretreating the seedlings after germination for 0, 6, 12, 24, or 96 h with 0.01, 0.1, 1.0, or 10.0 mol m⁻³ NO₃⁻ (experiment 4).

Decay of Induction (Deinduction) of NO₃⁻ Uptake and Reinduction

It was important in these comparative experiments to ensure that (a) all pretreatments terminated at the anticipated time of ¹⁵NO₃⁻ arrival, (b) there be no treatment differences arising from diurnal or age differences in plants, and (c) differences arising from variations between separate experiments were eliminated. Hence, in the first deinduction/reinduction experiment (experiment 5), treatments were carefully staggered so that all plants received 4 d NO₃⁻ (1.5 mol m⁻³) exposure followed by variable periods of N-deprivation (0, 12, 24, 48, and 72 h). A second set of all treatments was staggered by a further 12 h, so that they could be reinduced by a final 12 h exposure to 1.5 mol m⁻³ NO₃⁻. One set of plants remained in +NO₃⁻ for the entire period (7 d) (experiment 5).

In a separate experiment, deinduction was followed over shorter periods by removing exogenous NO₃⁻ for 0, 2, 4, 5, 7, and 14 h (experiment 6). This experiment differed from experiment 5 in two other respects: (a) treatments were not staggered; thus, 0 deinduction treatment had 96 h exposure to NO₃⁻ whereas the period of deinduction (2, 4, 5, 7, and 14 h) for other treatments resulted in a variable exposure to NO₃⁻; for example, the 14 h deinduction treatment was exposed to NO₃⁻ for 82 h followed by 14 h in the absence of NO₃⁻. (b) Nutrient concentration during growth was ⅛ Johnson’s solution with or without 0.1 mol m⁻³ NO₃⁻.

All experiments were repeated two or three times. Each treatment was replicated four or five times and each replicate consisted of approximately 10 seedlings.

Measurement of Influx

In all experiments influx was measured from 0.13 mol m⁻³ NO₃⁻ labeled with ¹⁵NO₃⁻; all other nutrients were provided as in the respective growth medium (⅛ or ⅛ Johnson's solution). The pH of the uptake solution was adjusted to 6 with KOH. The volume of influx solution (cm³): root weight (g) ratio was approximately 80:1 (40 seedlings in 400 cm³ solution) so that the depletion of NO₃⁻ during the 10 min influx period was approximately 10% or less.

Influx was measured into intact roots that were prewashed for 5 min in fresh nonradioactive solution (identical to influx solution in all other respects). In the case of 'step-down' experiments (i.e., plants grown in 1.5 mol m⁻³ NO₃⁻ and influx measured from 0.13 mol m⁻³ NO₃⁻) roots were prewashed in 0.13 mol m⁻³ NO₃⁻ for 20 min. A preliminary experiment demonstrated that in this situation, there was an initial rapid efflux of NO₃⁻; however, by 15 to 20 min this transient effect of perturbation had ceased. Therefore, in all such experiments, roots were prewashed for 20 min in 0.13 mol m⁻³ NO₃⁻ before transfer to ¹⁵NO₃⁻ labeled solutions. The roots were transferred to influx solution labeled with ¹⁵NO₃⁻ for 10 min. The uptake was terminated by transferring roots to 40 dm³ of an identical but nonradioactive solution for 2 min to desorb ¹⁵NO₃⁻ from the free space. The desorption time of 2 min was selected on the basis of efflux experiments to maximize removal of cell wall ¹⁵NO₃⁻ while minimizing loss from a cytoplasmic pool (our unpublished data). Roots were placed in scintillation vials and counted immediately in a Searle Isocap scintillation spectrometer without scintillation cocktail. Root samples were then weighed and their NO₃⁻ content determined.

After correction for decay, fluxes were corrected for quenching by the root tissue. A quench curve was established by comparative counting of γ-emissions in a γ-counter and positron emission in the scintillation counter. Unfortunately, the γ-counter was remote from our laboratory and its use involved loss of approximately 1 half-life in transporting the samples across campus. Hence, for all of the experiments described, counting of the positron emission was obtained by scintillation counting.

Net NO₃⁻ Uptake

Rates of net uptake of NO₃⁻ were determined by measuring the disappearance of NO₃⁻ from the external medium.

Production and Purification of ¹⁵NO₃⁻

The ¹⁵N species were produced by the proton irradiation of H₂O on the TRIUMF-ACEL CP42 cyclotron using 20 MeV protons. The 3 mL target volume was loaded remotely and an overpressure of 3 atm was used during irradiation. Typically, the irradiations were performed for 10 min with a 10 μA beam. These conditions provided ¹⁵N primarily as NO₃⁻ (>90%) (28).

The samples were transported from the TRIUMF facility to the University of British Columbia campus via an underground pipeline with transit times of 2 to 3 min. However, ¹⁴NH₄⁺, ¹⁵NO₂⁻ and some ¹⁸F were present in the
sample as contaminants. These were removed by the following procedures. \(^{18}F\) was removed by passing the sample through a SEP-PAK Alumina N Cartridge (Waters Associates) twice. Then 2 mL of \(1\%\) \(\text{H}_2\text{SO}_4\) and 1 mL of 20\% \(\text{H}_2\text{O}_2\) were added and the sample was boiled for 2.5 min to remove \(\text{NO}_3^-\) (16). The sample was cooled in an ice bath and passed through a cation exchange column (AG 50W-X8, 100–200 mesh, hydrogen form, Bio-Rad) which effectively removed \(^{15}\text{NH}_4^+\) from the sample. We routinely determined the \(t_0\) of the purified samples which were always found to be extremely close to the reported literature value (9.97 min).

NO\(_3^-\) Analysis in Plant and Solution Samples

\(\text{NO}_3^-\) from roots was extracted by boiling the tissue in deionized distilled water. \(\text{NO}_3^-\) concentration in the extract was determined by two procedures: (a) UV absorption: to 1 cm\(^2\) sample, 4 cm\(^3\) of 5\% HClO\(_4\) were added and absorbance was measured at 210 nm (3). (b) Cadmium-copper reduction method using a Technicon Autoanalyzer (30). Selected samples were analyzed using this procedure. In solution samples the two procedures concurred closely. In root samples, the UV procedure consistently overestimated [\(\text{NO}_3^-\)] by \(\sim 10 \mu\text{mol g}^{-1}\). Thus, in samples which were analyzed by the UV procedure, appropriate correction was made for this overestimate.

RESULTS

Induction of influx of \(\text{NO}_3^-\)

Figures 1 to 4 show that \(^{15}\text{NO}_3^-\) influx is a highly inducible process. In plants pretreated in various concentrations of \(\text{NO}_3^-\) (0.1 to 10 mol m\(^{-3}\)) influxes increased for the first 12 to 24 h of exposure and then declined to a steady value, reached after 48 to 72 h. These \(\text{NO}_3^-\) pretreatments caused \(^{15}\text{NO}_3^-\) influx to increase by factors of four- to fivefold compared to uninduced plants (plants never exposed to \(\text{NO}_3^-\)) except for a 5 min prewash prior to influx measurement. The time taken to attain maximum induction varied with \([\text{NO}_3^-]_0\), increasing with decreasing \([\text{NO}_3^-]_0\) (Fig. 4). During the induction period (up to the time when influx peaked), influx was positively correlated with root \([\text{NO}_3^-]_0\) (Figs. 1–5). Subsequently, influxes declined while root \([\text{NO}_3^-]_0\) either continued to increase or showed little change. At 0.01 mol m\(^{-3}\), however, both influxes and root \([\text{NO}_3^-]_0\) continued to increase throughout the experimental period (96 h) (Figs. 4 and 5).

A plot of \(^{15}\text{NO}_3^-\) influx versus root \([\text{NO}_3^-]_0\) yielded a parabola. In the range from 0 to \(\sim 50 \mu\text{mol g}^{-1}\), influxes appear to be positively related to root \([\text{NO}_3^-]_0\), whereas beyond 50 \(\mu\text{mol g}^{-1}\) they are negatively related to root \([\text{NO}_3^-]_0\) (Fig. 6).
REGULATION OF NO₃⁻ INFLUX

Figure 4. NO₃⁻ influx after pretreatment with 0.01 (○), 0.1 (△), 1.0 (□) or 10.0 (●) mol m⁻³ NO₃⁻ for 0 to 96 h (see text). Standard errors (not shown) were within 10% of the respective means.

Figure 5. Root [NO₃⁻] after pretreatment with 0.01 (○), 0.1 (△), 1.0 (□) or 10.0 (●) mol m⁻³ NO₃⁻ for 0 to 96 h. Standard errors (not shown) were within 10% of the respective means.

Deinduction/Reinduction of NO₃⁻ Influx

When plants previously fed with NO₃⁻ were transferred to N-free medium, there was a substantial decline in influx within the first few hours of N-deprivation (Figs. 7 and 9). However, ¹⁵NO₃⁻ fluxes of these 'deinduced' plants were ~1.5 times higher than those of plants which had never been exposed to NO₃⁻. Two hours after removal of NO₃⁻, ¹⁵NO₃⁻ influx had declined significantly, although there was no detectable change in root [NO₃⁻] (Fig. 9). Subsequently, N deprivation over a period of 3 days caused a gradual decrease in root [NO₃⁻] with little change of influxes (Figs. 7 and 8). In the same experiment, one set of plants each from the 24, 48, and 72 h N-deprivation treatments was resupplied with 1.5 mol m⁻³ NO₃⁻ for 12 h (reinduction). This treatment resulted in a four- to fivefold increase in ¹⁵NO₃⁻ influx compared to uninduced plants (Figs. 7 and 8), concomitant with increases in root [NO₃⁻]. These reinduced plants (24–72 h of N-deprivation followed by 12 h of NO₃⁻ exposure) showed an apparent negative relationship between ¹⁵NO₃⁻ influx and root [NO₃⁻]. With increasing duration of N deprivation, fluxes
were higher and root \([NO_3^-]\) was lower (Figs. 7 and 8) following reinduction. However, root \([NO_3^-]\) of plants which had never been deprived of \(NO_3^-\) (Fig. 8) was similar to that of the 24 h reinduced plants although \(^{15}NO_3^-\) influx of the latter was twofold higher.

DISCUSSION

In the measurement of unidirectional influx of ions, using radioactive tracers, there is an inherent error (underestimation) involved due to a concurrent efflux of the tracer during the experimental period. The magnitude of this error depends on the rate of increase of cytoplasmic specific activity and the rate of efflux. Lee and Drew (17) have considered this aspect in detail regarding \(^{15}NO_3^-\) influx in barley. They estimated that influx measured over a period of 15 min from 0.15 mol m\(^{-3}\) \(NO_3^-\) would be underestimated by 26 to 29%. Ideally, then, the influx period should be short relative to the half-life of exchange. However, influx period <5 min may result in underestimation due to failure to equilibrate the apparent free space. In the case of \(^{15}NO_3^-\) (\(t_h = 9.97\) min) studies, there is an additional requirement that the influx be sufficiently long to accumulate measurable counts. Using influx periods of 1, 2.5, 5, 7.5, and 10 min we observed, like Lee and Drew (17), that a 10 min influx period did underestimate influx (Table I). Taking the 1 min influx period as equivalent to 100%, 10 min influx values were 74% of the former. However, since determination of specific uptake rates (\(\mu\)mol g\(^{-1}\) h\(^{-1}\)) involved multiplying by 60, 24, 11, 8, 6, respectively, any error associated with remaining apparent free space \(^{15}NO_3^-\) would overestimate influx based upon a 1 min influx period. Given the need to consider the factors discussed above as well as the technical problem of handling large numbers of samples, the 10 min influx period, 2 min desorption was considered an acceptable compromise, particularly since the investigation sought to examine comparative effects of induction and negative feedback.

Induction and Deinduction of \(NO_3^-\) Uptake

It is well established that net \(NO_3^-\) uptake is subject to induction by the presence of external \(NO_3^-\) (4, 10 for review). In agreement with those of Lee and Drew (17), our results showed that plasmalemma \(^{15}NO_3^-\) influx was increased by \(NO_3^-\) pretreatment; maximum induction caused a four- to fivefold increase of influx compared to the uninduced plants (Figs. 1–4). Kinetic studies have suggested that constitutive and inducible \(NO_3^-\) uptake are mediated by two distinct ‘carrier’ systems and that the latter requires de novo protein synthesis (13, 17).

There are conflicting reports in the literature regarding the concentration dependence of the induction of \(NO_3^-\) uptake. For example Breteler and Nissen (1) observed that induction was independent of \([NO_3^-]_0\) in beans. By contrast, Neyra and Hageman (22) and Maeck and Tischner (19) reported that induction was concentration dependent. In our study, the induction of \(^{15}NO_3^-\) influx was dependent upon \([NO_3^-]_0\) (Fig. 4). This is contrary to the results of Maeck and Tischner (19) who found that in sugarbeet, induction was more rapid at lower \([NO_3^-]_0\) in the range 0.1 to 5 mol m\(^{-3}\). It is clear that in the barley cultivar we have used, 0.01 mol m\(^{-3}\) \([NO_3^-]_0\)
was not adequate to produce maximum induction even after 96 h of pretreatment (cf. ref. 1).

There is general agreement that induction of the NO₃⁻ uptake system specifically requires the presence of external NO₃⁻ (12, 13, 23). Neither NH₄⁺ (12) and by implication, no other product of NO₃⁻ reduction, is capable of inducing NO₃⁻ uptake. Although the induction of NO₃⁻ uptake and NO₃⁻ reduction appear to be synchronized, there is now strong evidence that the former is independent of the latter (21, for review see 4, 10). However, Deane-Drummond (5) suggested two components of induction of NO₃⁻ uptake in Chara: one independent of nitrate reductase activity and the other related to (perhaps dependent upon) the reduction of NO₃⁻ or subsequent steps.

An increase of influx and net flux with increasing root [NO₃⁻] during induction (Figs. 1–5) suggests that maximum induction required a critical value of root [NO₃⁻]. The deinduction experiments (Figs. 7–9), however, clearly show that the induction of NO₃⁻ uptake is not a function of mean root [NO₃⁻]; influx (Fig. 9) and net uptake (data not shown) had decreased within 2 h of removal of the external NO₃⁻ source. Yet there was no detectable change in root [NO₃⁻] (24, 29). Further starvation decreased root [NO₃⁻] by ~30% with little change in influx (Figs. 7–9) Resupplying NO₃⁻ to these starved plants increased their root [NO₃⁻] to almost the same level as unstarved plants (Fig. 8) yet influx of the former was two- to threefold higher than the latter (Fig. 7). It appears safe to assume that induction is dependent upon the cytoplasmic [NO₃⁻] (23, 29). Considering the reported short half-life for NO₃⁻ exchange and small pool size of cytoplasmic NO₃⁻ (6, 16) (RJ Ritchie, personal communication), it is likely that in our deinduction experiments cytoplasmic [NO₃⁻] was significantly reduced within 2 h although mean root [NO₃⁻] (principally vacuolar [NO₃⁻]) showed no appreciable change.

In some plants, e.g. barley cv. Midas (17, 18), two corn cultivars (27) and Arabidopsis thaliana (8), NO₃⁻ starvation for a few hours to days actually increased NO₃⁻ uptake; further deprivation, however, caused reduction in NO₃⁻ uptake, eventually to the constitutive levels. These genotypes may be more efficient in the retrieval of vacuolar NO₃⁻ to maintain cytoplasmic [NO₃⁻] at some value which is critical for the maintenance of the induced condition. The corn cultivars which were the subject of the study by Theyker et al. (27) differed substantially in the duration of elevated fluxes following NO₃⁻ deprivation. There is also evidence that there are substantial genotypic differences among barley cultivars in the retrieval of vacuolar K⁺ (20). Note that in Midas (the barley cultivar used by Lee and Rudge [18], and Lee and Drew [17]), root [NO₃⁻] of plants deprived of NO₃⁻ for 1, 2, or 3 d were approximately 20, 10, and 2 µmol g⁻¹, respectively, compared to ~80 µmol g⁻¹ in unstarved plants (Table 3 in Lee and Rudge [18]). By contrast, in the cultivar Klondike (employed in the present study), starvation for 1, 2, or 3 d decreased root [NO₃⁻] to ~50, 40, and 20 µmol g⁻¹ compared to ~80 µmol g⁻¹ in unstarved plants (Fig. 8). These dramatic differences in the rates of depletion of vacuolar [NO₃⁻] between cultivars must reflect the differences in their capacities to mobilize vacuolar NO₃⁻.

Clarkson (4) has questioned the existence of a constitutive (uninduced) NO₃⁻ uptake system on the basis of a failure to measure net NO₃⁻ uptake in uninduced plants. We have also observed that net uptake was not detectable until ~3 h after exposure to NO₃⁻. However, the same plants showed a 1³NO₃⁻ influx of ~0.7 µmol g⁻¹ h⁻¹ upon first exposure to NO₃⁻ (5 min prewash and 10 min uptake in NO₃⁻ solution) (Fig. 3). This indicates that the constitutive NO₃⁻ uptake system was present but that during the first few hours of induction efflux nearly matched the influx. After about 6 h of exposure to NO₃⁻, efflux, relative to influx, decreased (Fig. 3) to a steady value.

Negative Feedback Regulation of NO₃⁻ Uptake

In contrast to the situation for induction, the signals responsible for negative feedback effects on NO₃⁻ uptake are not known with certainty. Potential candidates might include NO₃⁻ and products of NO₃⁻ reduction such as NO₂⁻, NH₄⁺, or amino acids. In earlier reports from this laboratory (6, 7, 11), it was suggested that NO₃⁻ influx is insensitive to prior NO₃⁻ treatment and that the major source of regulation of NO₃⁻ uptake was through effects on efflux (7, 8, 13). Lee and Drew (17), by contrast, have demonstrated that withholding exogenous NO₃⁻ for 3 days caused a significant increase in the Vₘₐₓ for ³¹NO₃⁻ influx.

Our results suggest that the situation is much more complex than hitherto realized. We observed that during the induction period (until the peak induction was achieved), influxes were positively correlated with root [NO₃⁻] (Figs. 1–5). Subsequently influxes declined, and root [NO₃⁻] showed typical negative feedback effects on influx (Figs. 1, 2, 4, and 5). A plot of [NO₃⁻] influx against root [NO₃⁻] from Figures 4 and 5 yielded a parabola which nicely summarizes these 'positive' and negative feedback effects during induction and postinduction phases, respectively (Fig. 6). It is clear that similar fluxes can be attained at very different [NO₃⁻] pretreatments (and root [NO₃⁻]) simply because they are in two different phases. This may explain why Glass et al. (11) observed no negative feedback effects of various NO₃⁻ pretreatments on ¹³NO₃⁻ influx in barley.

Although influx was negatively correlated with root [NO₃⁻] during the postinduction period (Fig. 6), the arguments advanced by Lee and Rudge (18) suggest that neither root [NO₃⁻] per se nor [NH₄⁺] was responsible for the negative feedback regulation of NO₃⁻ influx but, rather, some products of NH₄⁺ assimilation (18). Their argument is based, in part, upon the work of Breitler and Siegerist (2). The latter observed that methionine sulfoximine and azaserine, inhibitors of glutamine synthetase and glutamate synthase, respectively, increased tissue [NH₄⁺] but relieved, rather than increased, the negative feedback effects (referred to as 'repression' by Breitler and Siegerist) of NH₄⁺ supply. In addition, it has long been known that net NO₃⁻ uptake is inhibited by provision of certain amino acids (4, 10 for review). However, there appear to be differences among species in sensitivity to particular amino acids (8, for review 4). In addition, the study by Lee and Rudge (18) demonstrated that prior accumulation of NO₃⁻ or NH₄⁺ reduced net NH₄⁺ uptake to similar extents, indicating a common negative feedback regulation for NO₃⁻ and NH₄⁺ uptake which they interpreted as being from some
product of \(\text{NH}_4^+ \) assimilation. We have also observed that preloading barley for 24 h with 10 mol m\(^{-3} \) \(\text{NH}_4^+ \) (in the presence of 0.2 mol m\(^{-3} \) \(\text{NO}_3^- \)) reduced influx to the same extent as preloading with 10 mol m\(^{-3} \) \(\text{NO}_3^- \), although root \([\text{NO}_3^-]\) in the latter was much greater than the former (our unpublished data, see also ref. 14). Though the above arguments are suggestive, we feel that they are not sufficiently convincing to warrant eliminating \(\text{NO}_3^- \) and \(\text{NH}_4^+ \) from consideration as sources of negative feedback.

For example, vacuolar \([\text{NO}_3^-]\) may still influence \(\text{NO}_3^- \) influx across the plasmalemma through indirect effects. By controlling \(\text{NO}_3^- \) fluxes across the tonoplast, cytoplasmic \([\text{NO}_3^-]\) and flux of \(\text{N} \) through the glutamine synthetase-GOGAT pathway may be determined. This, in turn, according to the above arguments would exert negative feedback inhibition upon plasmalemma \(\text{NO}_3^- \) influx. Such a model is consistent with the observed negative correlation between influx and root \([\text{NO}_3^-]\) when \(\text{NO}_3^- \) was the sole source of \(\text{N} \) (Fig. 6). It would also explain the fact that this negative relationship no longer existed when plants were fed with \(\text{NH}_4^+ \) (our unpublished data).

It has been argued that growth rates and/or root:shoot ratios are the prime regulators of the uptake of \(\text{NO}_3^- \) and other nutrient ions, e.g. \(\text{K}^+ \), \(\text{PO}_4^{2-} \), \(\text{Cl}^- \) (9, 25). We determined growth parameters (data not shown) and, consistent with the results of Lee and Rudge (18), found no correlations between \(\text{NO}_3^- \) influx and growth rates or root:shoot ratios. Recently, we have demonstrated (26) that these growth factors were not directly involved in the regulation of \(\text{K}^+ \) influx.

Induction and Negative Feedback Regulation Are Independent Processes

It has been shown that pretreatment with \(\text{NH}_4^+ \) or certain amino acids failed to inhibit the induction of \(\text{NO}_3^- \) uptake by external \(\text{NO}_3^- \); the same treatments were, however, effective in inhibiting \(\text{NO}_3^- \) uptake after induction (4). Our experiments further demonstrate the independence of induction and negative feedback inhibition processes; when \(\text{NO}_3^- \) was resupplied to plants which were deprived of external \(\text{NO}_3^- \) for 1 to 3 d, they all showed elevated fluxes (compared to unstarved plants) despite the fact that their root \([\text{NO}_3^-]\) were vastly different (Figs. 7 and 8). In these experiments, although fluxes were substantially increased in all \(\text{NO}_3^- \) deprivation treatments (1–3 d of deprivation), there was some indication of a negative relationship between influx and root \(\text{NO}_3^- \) within 12 h of reexposure to \(\text{NO}_3^- \) (Fig. 7). It appears that root \([\text{NO}_3^-]\) (vacuolar \([\text{NO}_3^-]\)) did not affect the process of induction but had accelerated the appearance of negative feedback effects. These observations are consistent with the model described above.

CONCLUSIONS

1. Induction of \(^{15}\text{NO}_3^- \) influx required the presence of external \(\text{NO}_3^- \) even when mean root \([\text{NO}_3^-]\) was relatively high. We suggest that the maintenance of an induced state depends upon some critical cytoplasmic \([\text{NO}_3^-]\). Upon removal of nitrate from the medium, plants depend on retrieval of \(\text{NO}_3^- \) from the vacuole for the maintenance of cytoplasmic \([\text{NO}_3^-]\) and the state of induction. Interspecific and intraspecific genetic differences in the efficiency of retrieval of vacuolar \(\text{NO}_3^- \) may account for the reported differences in influx patterns upon removal of \(\text{NO}_3^- \) from the medium.

2. Induction is not an all or none phenomenon; it increases with time depending on \([\text{NO}_3^-]\) until peak induction has been attained.

3. The inducible ‘carrier’ system responsible for \(\text{NO}_3^- \) uptake, appears to be very labile (4) and decays within a few hours of removal of external \([\text{NO}_3^-]\) since the cytoplasmic \(\text{NO}_3^- \) pool is small with a short half life of exchange.

4. \(\text{NO}_3^- \) influx is subject to negative feedback inhibition.

 However, we consider that it may be premature to focus exclusively upon products of ammonium assimilation as the source(s) of negative feedback inhibition of \(\text{NO}_3^- \) influx.

5. Induction and negative feedback inhibition of \(\text{NO}_3^- \) influx appear to be independent processes. Although vacuolar \(\text{NO}_3^- \) may not affect induction directly it may, nevertheless, exert an indirect effect upon induction through its effect upon cytoplasmic \([\text{NO}_3^-]\). Slow release of \(\text{NO}_3^- \) from the vacuole may result in ‘deinduction.’ Likewise (through effects upon cytoplasmic \([\text{NO}_3^-]\)) and, hence, the flux of \(\text{N} \) through the GS-GOGAT pathway vacuolar \(\text{NO}_3^- \) may exert indirect effects upon negative feedback via reduced \(\text{N} \) derivatives.

ACKNOWLEDGMENTS

We gratefully acknowledge the following: TRIUMF for providing \(^{15}\text{NO}_3^- \), Mr. David Mitchell, Dr. David Drakeford, Dr. J. Kulp and Ms. Hope Lester for assistance during this work, and Drs. Thomas Ruffy and Raymond Ritchie for helpful criticism of the manuscript.

LITERATURE CITED

7. Deane-Drummond CE, Glass ADM (1983) Short term studies of nitrate uptake into barley plants using ion-specific electrodes and \(^{36}\text{ClO}_4^- \). II. Regulation of \(\text{NO}_3^- \) efflux by \(\text{NH}_4^+ \). Plant Physiol 73: 105–110