Effect of Increases in Oxygen Concentration during the Argon-Induced Decline in Nitrogenase Activity in Root Nodules of Soybean

Bryan J. King and David B. Layzell
Department of Biology, Queen’s University, Kingston, Ontario, Canada K7L 3N6

ABSTRACT

When intact nodulated roots of soybean (Glycine max L. Merr. nodulated with Bradyrhizobium japonicum strain USDA 16) were exposed to an atmosphere lacking N2 gas (Ar:O2 80:20), total nitrogenase activity (measured as H2 evolution) and respiration (CO2 evolution) declined with time of exposure. In Ar-inhibited nodules, when the O2 concentration in the rhizosphere was increased in a linear ‘ramp’ of 2.7% per minute, 93% of the original H2 evolution and 99% of the CO2 evolution could be recovered. The internal nodule O2 concentration (estimated from leghemoglobin oxygenation) declined to 56% of its initial value after 60 minutes of Ar:O2 exposure and could be partially recovered by the linear increases in O2 concentration. Nodule gas permeability, as estimated from the lag in ethylene production following exposure of nodules to acetylene, decreased to 26% of its initial value during the Ar-induced decline. Collectively, the results provide direct evidence that the Ar-induced decline results from decreased nodule gas permeability and indicate that the decline in permeability, rather than being immediate, occurs gradually over the period of Ar:O2 exposure.

The nodules of various legumes undergo a distinct decline in TNA and CO2 evolution following exposure to 10% acetylene (2, 3, 12–14, 22, 23). A similar decline occurs when N2 in the gas phase is replaced by an inert gas such as Ar (5, 13). Both the acetylene- and Ar-induced declines can be largely prevented by carrying out experiments with nodules adapted to higher O2 concentrations (5, 23). Furthermore, Witty et al. (22) showed that nodules could recover from the acetylene-induced decline if the rhizosphere O2 concentration was increased in stepwise increments. The O2 dependence of the acetylene- and Ar-induced declines (5, 23), and the ability of O2 at least to partially overcome the acetylene-induced decline (22), suggest that both declines are caused by a decrease in the nodule gas permeability (P), which restricts the entry of O2 for respiration in support of nitrogenase activity (23). However, this suggestion is based on theoretical considerations of the relationship between O2 concentration gradients, O2 uptake rates, and P. To date, neither P nor the infected cell O2 concentration (O2) has been measured in acetylene- or Ar-inhibited nodules, nor has it been demonstrated whether increases in O2 concentration can overcome the Ar-induced decline.

In addition, various actinomycete symbioses also exhibit acetylene-induced declines or transient fluctuations of TNA (16, 17, 19), which are superficially similar to those of legumes. However, the anatomy of the nodules formed in these symbioses differs considerably from that of legume nodules, and the main barrier to gas diffusion is thought to be associated with the Frankia endosymbiont itself (18) rather than with the uninfected nodule cortex, as appears to be the case in legumes (20, 24). Silvester and Winship (16) have provided evidence that the acetylene- and O2-induced transient responses in several actinomycyte symbioses are associated with the Frankia vesicles and are not due to changes in nodule gas permeability. Rather, the authors attribute them to a biochemical ‘switch-off’ of nitrogenase activity. A similar switch-off has previously been suggested to occur in soybean nodules in response to increases in O2 concentration (5–7) and could possibly be involved in the response of legumes to acetylene and Ar:O2 as well.

Therefore, on the basis of the studies to date, it may be premature to attribute either the acetylene- or Ar-induced declines to decreased P, either in whole or in part. In light of this, the aims of the present study were two-fold: to characterize the time course of the Ar-induced decline in respiration and H2 evolution in intact, attached soybean nodules; and to determine whether or not the decline results from decreased P and consequent O2 limitation of nitrogenase activity.

MATERIALS AND METHODS

Plant Culture and Gas Exchange Measurements

Seeds of soybean (Glycine max L. Merr. cv Harosoy 63 or Maple Arrow) were inoculated with Bradyrhizobium japonicum USDA 16, a strain which lacks uptake hydrogenase activity (10), and grown in silica sand culture as described previously (5) in a growth chamber with 16-h photoperiod,
25°C day and 20°C night. The design of the growth pots (8) permitted sealing for open circuit gas exchange measurements of H₂ and CO₂ evolution from the root systems. The gas exchange system contained computer-controlled mass flow controllers (model FMA-100 series, Omega Engineering, Stamford, CT) which allow linear changes in gas concentrations at a constant total flow rate. CO₂ evolution was measured by infrared gas analyzers (model 225, Mark III, Analytical Development Corp., Hoddesdon, UK), O₂ evolution with an O₂ electrode (model CB1D, Hansatech, King’s Lynn, UK), and H₂ evolution with custom-built H₂ analyzers (11). The complete system has been described previously (6, 8). At a gas flow rate of 500 mL min⁻¹ past the root systems, the time constant for the entire system was approximately 30 s.

Time Course of the Ar-induced Decline and the Effect of Increasing O₂ Concentration

Plants were connected two at a time to the gas exchange system, and H₂ and CO₂ evolution from the root systems were monitored under N₂:O₂ (80:20) until steady state rates were obtained, as described in Hunt et al. (5). The balance gas was then switched from N₂ to Ar, and monitoring was continued under Ar:O₂ until new, lower steady-state rates of H₂ and CO₂ evolution were obtained (typically after 60 to 80 min). A linear increase ("ramp") in O₂ concentration from 20 to 100% was then carried out as in Hunt et al. (6), over a period of 15, 30, or 60 min, corresponding to rates of increase ("ramp rates") of 5.3, 2.7, and 1.3% O₂ min⁻¹, respectively. The gas exchange rates during the ramps were monitored continuously. At the end of each ramp, when the nodulated roots were exposed to 100% O₂, monitoring was continued until steady-state gas exchange rates were obtained.

As a control, plants were exposed to 30-min ramps from 20 to 100% O₂ (a ramp rate of 2.7% O₂ min⁻¹) in N₂:O₂, and the rates of H₂ and CO₂ evolution were monitored as above.

Measurement of Infected Cell O₂ Concentration

O₂ was measured by a noninvasive, pulse-modulated spectrophotometric technique which monitors leghemoglobin oxygenation of individual nodules. The complete method is described elsewhere (9) and in the present study was modified to allow continuous gas exchange measurements to be made during the measurements of O₂. This involved sealing the gas exchange pot with a Plexiglas lid around the base of the shoot and sealing the fiber optic probe into the side of the pot with Terostat sealant (Teroson GmbH, Hiedelberg, Germany) and vacuum grease prior to measurements of O₂.

After steady-state rates of CO₂ and H₂ evolution were obtained under N₂:O₂ (80:20), the nodulated roots were exposed for 45 s to 100% N₂ (5 L min⁻¹) to provide a spectrophotometric measurement of deoxygenated leghemoglobin. When the measurement had stabilized upon return to N₂:O₂, the balance gas was switched to Ar and gas exchange measurements were continued under Ar:O₂ (80:20) until the Ar-induced decline had run its course. A second 45-s anaerobic treatment was then implemented. This was followed by a 15-min ramp to 60% O₂ (i.e. a ramp rate of 2.7% min⁻¹, as in the 30-min ramp to 100% O₂ described above). After this treatment, a third and final anaerobic treatment was carried out.

Immediately following the final anaerobic treatment, the root system was reexposed to 100% N₂ for approximately 5 min to ensure that leghemoglobin was completely deoxygenated during the 45-s treatments. Finally, the root system was exposed to 100% O₂ until leghemoglobin was fully oxygenated (about 5 min), and then the plant was harvested as described above.

In a separate experiment, point measurements of O₂ were obtained by periodic anaerobic treatments at various times during the Ar:O₂ exposure. For this experiment, concurrent measurements of H₂ and CO₂ evolution were not made.

Measurement of P

P was measured for control and Ar:O₂-treated plants by the lag-phase technique of Weisz and Sinclair (21). Plants were connected one at a time to the gas exchange system, and rates of H₂ and CO₂ evolution were monitored under N₂:O₂ at 500 mL min⁻¹ until steady-state was obtained. For each control plant, the flow rate was then increased to 3000 mL min⁻¹ and the pot was flushed with 10% acetylene. Syringe samples of 1 mL of gas were then withdrawn downstream from the pot at intervals of 10 or 15 s for the next 2 to 3 min. The samples were subsequently analyzed for ethylene by flame ionization gas chromatography.

The experimental plants were exposed to Ar:O₂ (80:20) until steady-state gas exchange rates were obtained following the Ar-induced decline. Acetylene was then introduced, and samples were withdrawn for measurement of ethylene as for the control plants.

P for the control and Ar:O₂ treatments was estimated from t using the computer program developed by Weisz and Sinclair (21). Mean nodule radius was determined for each plant, and central zone radius was estimated from nodule radius using the data of Bergersen (1) for central zone volume relative to that of the whole nodule. The lag time of the gas exchange system (about 10 s) was accounted for in the calculations.

All data are expressed as means ± 1 SE. The differences between means were tested for statistical significance at the 5% level using Student's t distribution and a two-tailed test.

RESULTS

Time Course of the Ar-Induced Decline

The rates of H₂ and CO₂ evolution during exposure of nodulated roots to Ar:O₂ (80:20) followed a highly reproducible pattern, as shown for three individual plants in Figure 1. The original rate of H₂ evolution in N₂:O₂ is indicated by point a. The initial peak in H₂ production (point b), caused by the diversion of e⁻ from N₂ reduction to H₂ production, was reached within 4 min of Ar:O₂ exposure and was immediately followed by a steep decline. A trough value (c) was reached at approximately 7 min. The decline was then followed by a partial recovery in the form of a broad peak (d). The duration and shape of this broad peak was variable; frequently it consisted of a relatively sharp initial peak followed by a broad shoulder (e.g. Fig. 1C). However, the height of peak d was always lower than that of peak b.
Effect of Increases in External O₂ Concentration on TNA and Respiration

When control plants were exposed to ramped increases in O₂ concentration from 20 to 100% O₂ in N₂ (ramp rate 2.7% min⁻¹), the fluctuations in CO₂ and H₂ evolution were as shown in Figure 2. As O₂ concentration increased, H₂ and CO₂ evolution were initially inhibited, and this was followed by oscillations which were similar to the patterns observed previously for stepwise increases in O₂ concentration of 10 or 20% in N₂ (5) and for ramps at 2% O₂ min⁻¹ from 20 to 30% in N₂ (6). At high O₂ concentrations, progressive damage to nitrogenase appeared to occur, so that at about 80% O₂ and above, H₂ evolution had declined to zero, and CO₂ evolution was correspondingly lower. No stimulation of H₂ or CO₂ evolution relative to the initial values was seen at any time, and no distinct O₂ optimum was apparent.

The response to ramped increases in O₂ concentration after 60 to 80 min of Ar:O₂ exposure was very different from that of the control plants under N₂:O₂. Representative examples for the 5.3, 2.7, and 1.3% min⁻¹ ramps are shown in Figure 1, panels A through C. All three ramps caused an immediate and pronounced stimulation of H₂ evolution, reaching a peak indicated as f, and a corresponding increase in CO₂ evolution occurred. Following the peak, a decline in H₂ evolution occurred, such that by the time 100% O₂ was reached, H₂ evolution was reduced to zero (g). A concurrent, but less pronounced decline in CO₂ evolution was observed.

The mean values for maximum recovery of TNA and CO₂ evolution during the ramps and the mean O₂ concentration under which the maximum values were obtained are shown in Table I. Both the 2.7 and 1.3% min⁻¹ ramp rates caused greater than 90% recovery of TNA. The 2.7% min⁻¹ ramps caused a 99% recovery of CO₂ evolution, and the 1.3% min⁻¹ ramps, a 107% recovery. The 5.3% min⁻¹ ramp rate caused 79% recovery of H₂ evolution, with a sharp O₂ optimum, and 99% recovery of CO₂ evolution.

Figure 1. Time course of H₂ (---) and CO₂ (---) evolution following the exposure of intact nodulated soybean roots to Ar:O₂ (80:20), and the effect of linear increases in rhizosphere O₂ concentration (---). The O₂ concentration was increased at rates of 5.3% min⁻¹ (A), 2.7% min⁻¹ (B), and 1.3% min⁻¹ (C). The significance of points a through g is explained in "Results." The mean rates of H₂ and CO₂ evolution and the recovery obtained during the ramps are given in Table I.

Peak d was followed by a second, gradual decline to a new steady-state value (e), which was on average 30% ± 3 (n = 9) of the original rate, and which was obtained 60 to 80 min after the start of Ar:O₂ exposure.

The pattern of CO₂ evolution (Fig. 1) was somewhat different, and the changes were less pronounced, probably due to the presence of a background of root respiration and nodule respiration not associated with nitrogenase activity. The responses of CO₂ evolution could be ascribed to nodule activity only, since denodulated roots showed no response to either Ar:O₂ exposure or to increases in O₂ concentration (data not shown). After exposure to Ar:O₂, there was no rapid inhibition of CO₂ evolution corresponding to trough c for H₂ evolution. Instead, CO₂ evolution began to decline gradually, with the time of onset of the decline varying among individual plants (cf. Fig. 1, A and C, for two extremes). The pattern of this decline appeared to reflect that of the second, gradual decline in H₂ evolution following peak d. After 60 to 80 min of Ar:O₂ exposure, the rate of CO₂ evolution approached a new steady-state, which was on average 77% ± 2 (n = 9) of the original rate.

Figure 2. Time course of H₂ (---) and CO₂ (---) evolution in intact nodulated soybean roots during linear increases in rhizosphere O₂ concentration (---) from 20 to 100% in N₂.
Table I. Recovery of H₂ and CO₂ Evolution in Infect Nodulated Roots Exposed to Ar:O₂ (80:20) for 60 to 80 min and then Subjected to a Linear Increase in O₂ Concentration from 20 to 100% over 15, 30, or 60 min (corresponding to ramp rates of 5.3, 2.7, and 1.3% min⁻¹, respectively).

<table>
<thead>
<tr>
<th>Ramp Rate</th>
<th>H₂ Evolution in Ar:O₂</th>
<th>CO₂ Evolution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% O₂ at peak rate</td>
<td>% of initial</td>
</tr>
<tr>
<td>1.3</td>
<td>3</td>
<td>44 ± 2</td>
</tr>
<tr>
<td>2.7</td>
<td>4</td>
<td>51.9 ± 5.6</td>
</tr>
<tr>
<td>5.3</td>
<td>2</td>
<td>41.3</td>
</tr>
</tbody>
</table>

Changes in Infected Cell O₂ Concentration during the Ar-Induced Decline

Before the Ar:O₂ exposure (shown for a typical plant in Fig. 3A), the mean O₂ under N₂:O₂ (80:20) was 34 nm (Fig. 3B). During the stable phase of gas exchange following the Ar-induced decline (Fig. 3A), O₂ declined to 11 nm (Fig. 3B), and after the 2.7% min ramp to 60% O₂ (Fig. 3A), it had recovered to 24 nm (Fig. 3B). The ramp recovered 98% ± 3 of the original H₂ evolution rate and 99% ± 2 of the original CO₂ evolution rate.

When O₂ was measured at various points during the Ar-induced decline (Fig. 3C), it was seen to decline gradually, reaching 59% of its initial value within 30 min and 56% of the initial value after 60 min.

Changes in Nodule Gas Permeability during the Ar-Induced Decline

Typical data for ethylene production from the control (N₂:O₂) and Ar:O₂-treated root systems are shown in Figure 4A. For both treatments, the rate of ethylene production increased during the first 30 to 60 s after the start of acetylene exposure, followed by the establishment of a plateau between 60 and 120 s. Logarithmic transformation of the data as described by Weisz and Sinclair (21) yielded straight lines over the first 60 to 90 s from the start of acetylene exposure (Fig. 4B). The t was determined as the reciprocal of the slope of these lines.

For the control (N₂:O₂) plants, P, as determined from t by the procedure of Weisz and Sinclair (21), was 24.0 ± 7.0 µm s⁻¹ (n = 3), and for the Ar:O₂ treated plants it was 6.2 ± 1.1 µm s⁻¹ (n = 3). The Ar:O₂ treatment, therefore, caused P to decline to 26% of its initial value.

DISCUSSION

O₂ Regulation and the Ar-Induced Decline

The observation that ramped increases in O₂ concentration during the stable phase of the Ar-induced decline cause pronounced recovery of TNA and respiration (Fig. 1; Table 1) shows that O₂ limitation of TNA and respiration occur during the Ar-induced decline, most likely due to a decrease in gas permeability in the pathway of O₂ diffusion to the infected cells. This suggestion is supported by the observation that O₂ decreases significantly during the Ar-induced decline (Fig. 3, B and C), and that O₂ can be recovered by ramps in O₂ concentration (Fig. 3B). Such O₂ limitation appeared not to be present in the control plants under N₂:O₂ (Fig. 2), since for these plants the ramps in O₂ concentration did not cause stimulation of either H₂ or CO₂ evolution, but rather caused pronounced, transient inhibition followed by oscillations,
similar to the pattern observed by Hunt et al. (5, 6). Further confirmation of the hypothesis that the Ar-induced decline is caused by decreased \(P \) is provided by use of the lag-phase technique of Weisz and Sinclair (21), which showed that \(P \) declined to 26% of its initial value during the decline (Fig. 4).

Collectively, these experiments constitute the first detailed study of the Ar-induced decline in legume nodules. This study corroborates previous reports on the acetylene-induced decline (13, 22, 23) and provides direct and conclusive evidence that the Ar-induced decline in soybean, like the acetylene-induced decline, is caused by a decrease in \(P \), which restricts the entry of \(O_2 \) for respiration in support of nitrogenase activity.

Time Course of the Ar-Induced Decline

Given that the overall decline in \(H_2 \) and \(CO_2 \) evolution results from decreased \(P \), the cause of the distinct pattern of transient responses in \(H_2 \) evolution during Ar:O\(_2\)-treated plants can be partially addressed. The pattern of responses is very similar to the ‘decline/recovery/decline’ pattern seen by Schuller et al. (14) for acetylene reduction in soybean. Schuller et al. suggested that the initial, steep decline they observed was due to a decrease in \(P \) caused by the cessation of \(NH_3 \) production. The resulting reduction in \(O_2 \) availability might then act as a counter-stimulus, triggering an increase in \(P \), an increase in \(O_2 \), and a resultant recovery of respiration and TNA. They suggested that ultimately, however, the cessation of \(NH_3 \) production was the stronger stimulus, leading to a second decrease in \(P \) and the second, long-term decline in respiration and TNA. Schuller et al. provided no evidence in support of this hypothesis and did not suggest a mechanism by which the lack of \(NH_3 \) or a product of its assimilation might lead to a decrease in \(P \).

The results of the present study appear to contradict this hypothesis in several respects. First, the sharp initial decrease in \(H_2 \) production (between points b and c on Fig. 1) was not accompanied by a sharp decline in \(O_2 \) (Fig. 3C) or in \(CO_2 \) evolution (Fig. 1), such as would be expected if a sharp decrease in \(P \) occurred at this time. Instead, \(O_2 \) declined gradually throughout the first 30 min of Ar:O\(_2\)-treated plants. The decline in \(CO_2 \) evolution, while variable in its time of onset, was also gradual, occurring over a period of 60 to 80 min.

Second, the recovery of TNA between 10 and 20 min (point d on Fig. 1) was not accompanied by a recovery of \(O_2 \), or of \(CO_2 \) evolution; rather, \(P \) was declining throughout this phase (Fig. 3C), and \(CO_2 \) evolution was either stable or declining (Fig. 1).

In light of these results, we suggest that the observed decreases in \(P \) and in \(O_2 \), can account for the long-term decline in TNA and respiration but cannot account for the short-term transient responses. An alternative hypothesis to explain the transient responses is that the observed inhibition and recovery of TNA are due to a reversible inhibition of nitrogenase. Such a biochemical mechanism has been suggested previously as an explanation for the transient responses to increased \(O_2 \) concentration in soybean (5-7) and in actinomycete symbioses (15, 19) and for the transient responses to acetylene in actinomycete symbioses (16). The means by which Ar:O\(_2\) exposure or increasing \(O_2 \) concentration could cause such reversible inhibition is not clear. Possibly, the effect arises from perturbation of metabolite pools such as ATP and reductant within the nodule, as has been suggested for the transient responses to increased \(O_2 \) concentration in soybean (6). If a common biochemical mechanism underlies the transient responses to Ar:O\(_2\), 10% acetylene, and increased \(O_2 \) concentration, this could be an important feature of the regulation of nitrogen fixation in both legume and actinomycete symbioses. This possibility warrants detailed investigation.

The changes in \(P \), which account for the long-term Ar-induced decline, and which appear not to occur in actinomycete symbioses (16), may be a separate phenomenon from the short-term responses. The mechanism by which Ar:O\(_2\) exposure affects \(P \) is not clear. It has been suggested that \(P \) is regulated by osmotic changes in the nodules, possible within a region of the nodule inner cortex (4). Further studies in our laboratory will address the feasibility of this hypothesis.

ACKNOWLEDGMENTS

We wish to thank Dr. Randall Weisz for kindly providing the
ARGON-INDUCED DECLINE IN SOYBEAN NODULES

LITERATURE CITED

Copyright © 1991 American Society of Plant Biologists. All rights reserved.