Circadian Rhythms in Photosynthesis

Oscillations in Carbon Assimilation and Stomatal Conductance under Constant Conditions

Timothy L. Hennessey* and Christopher B. Field
Department of Plant Biology, Carnegie Institution of Washington, Stanford, California 94305 (T.L.H., C.B.F.), and Department of Biological Sciences, Stanford University, Stanford, California 94305 (T.L.H.)

ABSTRACT
Net carbon assimilation and stomatal conductance to water vapor oscillated repeatedly in red kidney bean, Phaseolus vulgaris L., plants transferred from a natural photoperiod to constant light. In a gas exchange system with automatic regulation of selected environmental and physiological variables, assimilation and conductance oscillated with a free-running period of approximately 24.5 hours. The rhythms in carbon assimilation and stomatal conductance were closely coupled and persisted for more than a week under constant conditions. A rhythm in assimilation occurred when either ambient or intercellular CO₂ partial pressure was held constant, demonstrating that the rhythm in assimilation was not entirely the result of stomatal effects on CO₂ diffusion. Rhythms in assimilation and conductance were not expressed in plants grown under constant light at a constant temperature, demonstrating that the rhythms did not occur spontaneously but were induced by an external stimulus. In plants grown under constant light with a temperature cycle, a rhythm was entrained in stomatal conductance but not in carbon assimilation, indicating that the oscillators driving the rhythms differed in their sensitivity to environmental stimuli.

The availability of light changes more rapidly and predictably over the course of a day than the level of any other resource essential for photosynthesis. Because the daily rhythm of light and darkness is so predictable, it is frequently used as the signal to entrain endogenous circadian rhythms. Circadian rhythms are ubiquitous among eukaryotic organisms and regulate a wide range of physiological and behavioral processes (5, 11, 25). Circadian rhythms have been described extensively in plants, but few studies have considered the role these rhythms may play in modifying photosynthetic rates in vascular plants. Circadian rhythms could play a potentially important role in coordinating photosynthetic activity with diurnal changes in light availability.

Evidence from several approaches indicates that circadian rhythms influence photosynthetic processes. Rhythms in stomatal conductance are well documented and were described by Francis Darwin almost 100 years ago (9). More recently, rhythms in leaf conductance and stomatal opening have been recorded under constant light in intact leaves (16, 18, 20) and in isolated epidermal peels (14). Circadian rhythms in stomatal conductance could directly affect rates of carbon assimilation by limiting the flow of CO₂ into leaves.

In addition to their influence on stomatal conductance, circadian rhythms may regulate photosynthesis at other levels. Algae lack stomata, yet circadian rhythms in photosynthesis have been reported in several species of algae (3, 15, 27, 29). Among algae, processes under circadian control that may influence photosynthesis include photosystem II activity (22) and chloroplast movement (3). Among higher plants, light-induced electron flow (19) and carbohydrate partitioning (4, 6) may be influenced by circadian rhythms. Gas exchange studies with several species have indicated diurnal changes in CO₂ compensation points and dark respiration rates (7, 17, 21). Circadian rhythms in net assimilation under constant light with constant ambient CO₂ levels have been reported for several species, including barley (10), peanut (21), and Chenopodium (7).

These reports indicate that the intrinsic photosynthetic activity of vascular plants, aside from stomatal effects, may be under circadian regulation. Many aspects of this phenomenon, however, are still unclear. Perhaps most importantly, no one has reported a circadian rhythm in carbon assimilation in higher plants under conditions of constant intercellular CO₂ levels, leaving the relative influence of stomatal and nonstomatal processes on rhythms of assimilation in question. Other unknown aspects of the relationship between rhythms in stomatal conductance and carbon assimilation include the phase relationship of the rhythms and the growth conditions necessary for their expression.

MATERIALS AND METHODS
We studied photosynthesis with a computer-controlled gas exchange system modified to maintain constant environmental and/or physiological conditions over several days. The gas exchange system used in these experiments evolved from the system of Field et al. (12). Calculations relating to photosynthesis (1, 13, 28) and a description of the materials used in this system (12, 13) are available elsewhere. Four components of the gas exchange system were under computer control: two mass flow controllers (Type 825, Datametrics, Wilmington,
MA) and two sets of Peltier modules (Melcor Inc., Trenton, NJ). The flow controllers provided coarse and fine control of CO₂ levels in the gas mixture flowing through the leaf chamber. One set of Peltier modules controlled the temperature of a humidifying column, while the other set controlled the chamber temperature. The environmental variables that could be regulated with computer control of these components were air temperature, humidity, and CO₂.

Physiological variables, including C₄, carbon assimilation, leaf temperature, conductance, and the VPD between leaf and air could also be regulated indirectly with this gas exchange system. In the experiments described here, actual and target values of variables under computer control were compared every 60 s. A proportional control algorithm (2) was used to set command voltages to components under computer control to maintain actual values close to target values. Data were recorded to computer disk every 12 min, and periods of rhythms were derived from sine waves fitted to the data (IGOR, WaveMetrics, Lake Oswego, OR).

The plants used in these experiments were red kidney bean, Phaseolus vulgaris L. (var Blue Lake Bush 274, W. Atlee Burpee Co., Warminster, PA), grown either in greenhouses under natural lighting near the time of the autumn equinox or in growth chambers under combined fluorescent-incandescent lighting. Plants grown in the greenhouse were maintained at temperatures of 28°C (day) and 20°C (night). Plants grown in growth chambers were exposed to the temperature and photoperiod conditions described in the legends accompanying each figure. The plants were grown individually in pots containing one liter of vermiculite and perlite (1:1 v/v). The plants were frequently super- and subirrigated with a nutrient solution and flushed with tap water weekly. Macronutrient concentrations in the nutrient solution were (mm): 2.5 NO₃⁻, 0.5 NH₄⁺, 3.0 K⁺, 1.5 PO₄³⁻, 1.0 Mg²⁺, 1.3 Ca²⁺, and 1.0 SO₄²⁻. Micronutrients were present in the following concentrations (μm): 41 BΟ₃³⁻, 9.7 Mn²⁺, 1.5 Zn²⁺, 0.3 Cu²⁺, 0.15 Co²⁺, 0.6 MoO₄²⁻, and 12.5 Fe-EDTA. The center leaflets of fully expanded trifoliate leaves were used for gas exchange measurements under a 1000 W high-intensity discharge multi-vapor lamp.

RESULTS AND DISCUSSION

Net carbon assimilation and stomatal conductance oscillated repeatedly in Phaseolus vulgaris L. plants moved from a natural photoperiod to constant light (Fig. 1A). In this experiment, a P. vulgaris leaflet that developed under natural lighting in a greenhouse was exposed to constant C₄, leaflet temperature, and VPD under light of constant intensity (Fig. 1B). Assimilation and conductance exhibited clear and persistent rhythms with little damping in the amplitude of these rhythms after 3 d under constant conditions. The rhythms were closely coupled with each other, reaching maximum values near noon and minimum values near midnight. The amplitude of the stomatal rhythm was particularly large, with conductance more than doubling between midnight and noon. The amplitude of the rhythm in carbon assimilation was smaller but still significant, with approximately a 30% increase between midnight and noon.

When the ambient CO₂ partial pressure is held constant, as in Figure 1, both stomatal and nonstomatal processes can influence the rate of carbon assimilation. Under conditions of constant C₄, the rhythm in stomatal conductance may cause a strong rhythm in C₄ (Fig. 1B). Assimilation and conductance exhibited clear and persistent rhythms with little damping in the amplitude of these rhythms after 3 d under constant conditions. The rhythms were closely coupled with each other, reaching maximum values near noon and minimum values near midnight. The amplitude of the stomatal rhythm was particularly large, with conductance more than doubling between midnight and noon. The amplitude of the rhythm in carbon assimilation was smaller but still significant, with approximately a 30% increase between midnight and noon.

When the ambient CO₂ partial pressure is held constant, as in Figure 1, both stomatal and nonstomatal processes can influence the rate of carbon assimilation. Under conditions of constant C₄, the rhythm in stomatal conductance may cause a strong rhythm in C₄ (Fig. 1B). Assimilation and conductance exhibited clear and persistent rhythms with little damping in the amplitude of these rhythms after 3 d under constant conditions. The rhythms were closely coupled with each other, reaching maximum values near noon and minimum values near midnight. The amplitude of the stomatal rhythm was particularly large, with conductance more than doubling between midnight and noon. The amplitude of the rhythm in carbon assimilation was smaller but still significant, with approximately a 30% increase between midnight and noon.

When the ambient CO₂ partial pressure is held constant, as in Figure 1, both stomatal and nonstomatal processes can influence the rate of carbon assimilation. Under conditions of constant C₄, the rhythm in stomatal conductance may cause a strong rhythm in C₄ (Fig. 1B). Assimilation and conductance exhibited clear and persistent rhythms with little damping in the amplitude of these rhythms after 3 d under constant conditions. The rhythms were closely coupled with each other, reaching maximum values near noon and minimum values near midnight. The amplitude of the stomatal rhythm was particularly large, with conductance more than doubling between midnight and noon. The amplitude of the rhythm in carbon assimilation was smaller but still significant, with approximately a 30% increase between midnight and noon.
levels. Under these light and temperature conditions, the amplitude of the assimilation rhythm with constant \(C_i \) was approximately 50% of the amplitude with constant \(C_a \).

When calculating the intercellular \(CO_2 \) partial pressure, one assumes that the degree of stomatal opening is approximately the same across a leaf. Variation in stomatal opening, or 'patchiness,' can occur in ABA-treated and water-stressed plants, producing spatial variation in \(C_i \) and photosynthetic activity across a leaf (8, 24, 26). The plants used in these experiments, however, were well-watered and unlikely to exhibit patchiness. To confirm this assumption, we assayed patchiness across leaflets maintained in constant light with a video-imaging technique (8). We found no significant patchiness across leaflets at noon or midnight, indicating that patchiness did not affect our measurement of \(C_i \) or cause the rhythm in assimilation (data not shown).

The amplitude of rhythms in conductance and assimilation damped under constant conditions, but these rhythms were clearly evident after more than a week in constant light (Fig. 2A). The rhythms in carbon assimilation and stomatal conductance remained in phase with each other over this long period of time during which \(C_i \) was held constant. Synchronization of assimilation and conductance indicated strong coupling between the rhythms, even when the rhythm in assimilation was the direct result of nonstomatal processes. Prolonged exposure to constant conditions also made clear that the period of these rhythms was slightly longer than 24 h; sine waves fitted to the data in Figure 2A had periods of 24.5 h. This is typical of circadian rhythms, which generally have free-running periods close to, but not exactly, 24 h in length.

The demonstration of a circadian rhythm in carbon assimilation with constant intercellular \(CO_2 \) levels is consistent with other studies on vascular plants indicating the involvement of nonstomatal processes in photosynthetic rhythms (7, 10, 19). Until this time, however, no one has documented a rhythm in carbon assimilation under conditions of constant \(C_i \). Also, the conclusions of previous studies on this phenomenon were based on short-term experiments, generally 3 d or less in length, with sampling intervals of 3 h or longer. In this study, the rhythm was analyzed over a long period of time with frequent sampling, allowing accurate calculation of the free-running period of the rhythm in carbon assimilation. Furthermore, these experiments establish the phase relation-
these
that
presented
greenhouses
with
chamber
at constant
or as a
(data
of the
expression
entrained
three other plants.

under
constant
absence
temperature.

vulgaris leaflet exposed
darkness
temperature
This
grown
in
and
darkness,
carbon
of the
dilution
from
conductance.
The
conditions did
difficulty
grown
constant
light (200
μmol
m⁻²
s⁻¹)
and
constant
intercellular
CO₂
(28
Pa).
This plant developed in a growth chamber under constant light
(approximately 200 μmol
m⁻²
s⁻¹) at a
constant temperature of 28°C. The leaflet temperature (29°C) and
VPD (1 kPa) were held constant during this experiment. The data
shown are from a single plant but are representative of data from
three other plants.

The leaflet described in Figure 2 developed in a growth chamber
at constant temperature under a 12-h photoperiod
with a light intensity of approximately 400 μmol
m⁻²
s⁻¹ during the photoperiod. When leaflets that developed in
greenhouses under natural lighting were exposed to the same
conditions with constant Cᵢ, there was no difference in the
expression of the rhythms in assimilation and conductance
data not shown). Apparently, a defined photoperiod in
the absence of any temperature change was sufficient
to entrain these rhythms. Also, it was the timing of the photoperiod
that entrained these rhythms and not whether the photoperiod
was presented as a square wave, as occurs in a growth
chamber, or as a sinusoidal wave, as occurs under natural lighting in
a greenhouse.

The damping of rhythms under constant conditions
suggests that external time cues during growth, such as cycles
of light and darkness, are necessary for expression of rhythms in
assimilation and conductance. This suggestion was confirmed
by studies with plants grown under constant light at a constant
temperature. Carbon assimilation and stomatal conductance
in plants grown under these conditions did not oscillate (Fig.
3), unlike plants grown under a cycle of light and darkness.
This result demonstrated that circadian rhythms in photosynthesis
do not occur spontaneously, but must be induced and
coordinated by an external signal.

Experiments with plants grown in growth chambers at a
constant temperature demonstrated that cycles of light
and darkness were sufficient to entrain circadian rhythms (Fig.
2A). In natural environments, significant changes in temperature
often accompany changes in light intensity. Temperature
rhythms can sometimes entrain circadian rhythms in the
absence of any change in light intensity (23), although this

Figure 3. Net carbon assimilation and stomatal conductance of a P.

vulgaris leaflet exposed to constant light (200 μmol
m⁻²
s⁻¹) and
constant intercellular
CO₂
(28
Pa). This plant developed in a growth chamber under constant light
(approximately 200 μmol
m⁻²
s⁻¹) at a
constant temperature of 28°C. The leaflet temperature (29°C) and
VPD (1 kPa) were held constant during this experiment. The data
shown are from a single plant but are representative of data from
three other plants.

Figure 4. (A) Net carbon assimilation and stomatal conductance of
a P. vulgaris leaflet exposed to constant light (200 μmol
m⁻²
s⁻¹) and
constant intercellular
CO₂
(28
Pa) at a constant leaflet temperature
(28°C). The VPD (1 kPa) was also held constant during this experi-
ment. (B) This plant developed in a growth chamber under constant
light (approximately 200 μmol
m⁻²
s⁻¹) with a 24-h cycle of high
(28°C) and low (18°C) temperatures. The data are plotted against
hours in constant light at a constant temperature. The data shown
are for a single plant but are representative of experiments from three
other plants.

Copyright © 1991 American Society of Plant Biologists. All rights reserved.
Downloaded from on October 31, 2017 - Published by www.plantphysiol.org
In plants grown under cycles of light and darkness, rhythms in carbon assimilation and stomatal conductance were synchronized (Figs. 1A, 2A). This was not the case in plants grown under constant light with a temperature cycle, in which only a rhythm in stomatal conductance was induced (Fig. 4A). Possibly, the oscillator regulating stomatal conductance responds to both light and temperature while the oscillatory system regulating carbon assimilation is entrained only by cycles in light availability.

The persistence of a rhythm under constant conditions with a free-running period of approximately 24 h is the most significant feature of a circadian rhythm. Additional characteristics of a circadian rhythm are temperature compensation of the rhythm’s period and sensitivity of the rhythm to a phase-shift with the appropriate stimulus. There is already evidence that circadian rhythms in stomatal conductance are temperature compensated (14) and can be phase-shifted by altering the photoperiod (16, 20). The rhythms in assimilation and conductance in P. vulgaris also satisfy these corollary criteria of circadian rhythms (manuscript in preparation, T.L.H.).

Gas exchange studies over the last several decades have provided a detailed description of photosynthesis in intact leaves. Most gas exchange studies, however, have recorded photosynthetic responses over periods of time too brief to reveal the effect of circadian rhythms on photosynthesis. The results presented here demonstrate that circadian rhythms have a significant influence on photosynthetic processes in P. vulgaris. In plants grown under natural conditions, circadian rhythms in stomatal conductance and carbon assimilation were coordinated with each other and the photoperiod so that, even in the absence of external time cues, maximum rates of photosynthesis occurred near noon and minimum values near midnight. Although the rhythm in carbon assimilation was closely coupled with the rhythm in stomatal conductance, nonstomatal processes were a significant component of the rhythm in carbon assimilation. Also, these rhythms varied in their sensitivity to environmental stimuli: cycles of light and darkness during growth entrained circadian rhythms in both stomatal conductance and carbon assimilation, but a temperature cycle under constant light induced only a rhythm in stomatal conductance.

Modification of photosynthetic responses by circadian rhythms may benefit plants by coordinating physiological activity with diurnal changes in light availability. The rhythmic opening and closing of stomata, for example, enhances the flow of CO₂ into a leaf during the day while minimizing water loss and evaporative cooling at night. Similarly, circadian rhythms in nonstomatal processes may reflect the partitioning of resources between photosynthetic activity during the day and nonphotosynthetic activities at night. A thorough description of photosynthesis must account for the potentially important role circadian rhythms play in regulating photosynthetic processes.

Acknowledgments

We thank Winslow Briggs for his comments during the preparation of this manuscript.

Literature Cited

Copyright © 1991 American Society of Plant Biologists. All rights reserved.