Quantitation of Rates of Transport, Metabolic Fluxes, and Cytoplasmic Levels of Inorganic Carbon in Maize Root Tips during K⁺ Ion Uptake

Keejong Chang and Justin K. M. Roberts
Department of Biochemistry, University of California, Riverside, California 92521

ABSTRACT

Our aim was to determine whether fixation of inorganic carbon (C₅) due to phosphoenolpyruvate carboxylase activity, is limited by the availability of C₅ in the cytoplasm of maize (Zea mays L.) root tips. Rates of C₅ uptake and metabolism were measured during K₂SO₄ treatment, which stimulates dark C₅ fixation. C₅ uptake was followed by 13C-nuclear magnetic resonance (NMR); 5 millimolar K₂SO₄ had no significant effect on 13C influx. The contribution of respiratory CO₂ production to cytoplasmic HCO₃⁻ was measured using in vivo 13C-NMR and 1H-NMR of cell extracts; K₂SO₄ treatment had no effect on respiratory CO₂ production. The concentration of cytoplasmic HCO₃⁻ was estimated to be approximately 11 millimolar, again with K₂SO₄ having no significant effect. These experiments allowed us to determine the extent to which extracellularly supplied 13C, was diluted in the cytoplasm by respiratory CO₂ and thereby measure phosphoenolpyruvate (PEP) carboxylase activity in vivo using 13C. PEP carboxylase activity in root tips was enhanced approximately 70% over controls within 12 minutes of the addition of 5 millimolar K₂SO₄. The activity of carbonic anhydrase, which provides PEP carboxylase with C₅, was determined by saturation transfer 13C-NMR to be more than 200 times that of PEP carboxylase in vivo. The regulation of PEP carboxylase in K₂SO₄-treated roots is discussed.

Fixation of C₅ into organic metabolites by plant roots was first reported more than 50 years ago (20). This dark C₅ fixation has been related to many biological functions (reviewed in refs. 2 and 15), one of which is the synthesis of organic acids, principally malate, that accompanies excess cation over anion uptake (30; reviewed in ref. 18). Malate is synthesized by the sequential actions of PEP carboxylase and malate dehydrogenase (2, 28).

Several hypotheses have been proposed to provide a mechanism linking the accumulation of malate with excess cation uptake (reviewed in ref. 10). Among these hypotheses, the most popular has been that PEP carboxylase activity is stimulated by an increase in cytoplasmic pH due to H⁺ excretion that accompanies cation uptake (reviewed in ref. 7). However, evidence for this hypothesis is contradictory (reviewed in ref. 14), and it has been proposed that cytoplasmic alkalinization during H⁺ extrusion may occur only in certain species or cell types under limited physiological conditions (3, 14). An alternative mechanism, initially proposed by Osmond and Laties (19) and later developed by Jacoby and Laties (13), is that HCO₃⁻, the form of C₅ used by PEP carboxylase, acts as the "prime mover" for organic acid synthesis. In this model, cation uptake is associated with elevation of cytoplasmic HCO₃⁻, leading to enhanced dark C₅ fixation.

The study of dark C₅ fixation in vivo has relied on 14C, 13C, and 14C isotope tracers, which permit uptake and incorporation of exogenous C₅ to be followed without complete masking by competition from endogenous 13C, produced by respiration and other decarboxylation reactions. However, a quantitative description of dark C₅ fixation requires assessment of the extent to which C₅ uptake, respiratory CO₂ formation, and cytoplasmic CO₂-HCO₃⁻ exchange provide PEP carboxylase with its inorganic substrate, HCO₃⁻. Thus, Jacoby and Laties (13) described "the inadequacy of 14CO₂ incorporation into malate as a quantitative criterion of induced synthesis" during salt-induced organic acid synthesis. These authors pointed to the potential roles of C₅ transport and the concentration of cytoplasmic HCO₃⁻ as determinants of PEP carboxylase activity in roots. Guern et al. (10) noted the lack of information concerning cytoplasmic HCO₃⁻ levels and rates of respiratory CO₂ hydration with respect to control of PEP carboxylase activity in vivo. Here, we present quantitative data regarding fluxes and concentrations of C₅ in maize root tips during K⁺-stimulated organic acid synthesis. The results are discussed with respect to the regulation of dark C₅ fixation.

MATERIALS AND METHODS

Plant Material

Maize (Zea mays L.) Funk hybrid G-4327 (Germain's Seeds, Los Angeles, CA) root tips, 2 mm long, from 2-d-old seedlings were prepared as described previously (4).

NMR Spectroscopy

Fourier transform 13C- and 1H-NMR spectra were recorded with a General Electric GN-500 spectrometer operating at 125.7 and 500.1 MHz, respectively. The pulse sequence and parameters of the 13C-NMR experiment were as described by Chang and Roberts (4). Chloriform, sealed in a coaxial capillary, was used as an external reference at 77.9 ppm. The ratios of standard and in vivo 13C resonances to the chloriform reference were unchanged when the pulse interval

1 This work was supported by National Science Foundation grant DMB 8904091.

2 Abbreviations: C₅, inorganic carbon; PEP, phosphoenolpyruvate.
was increased from the usual 2.4 to 9.6 s. The saturation transfer 13C-NMR experiment and T_1^* measurement are described in the sections below. Twenty-hertz line broadening was applied to in vivo free induction decays before Fourier transformation. 1H-NMR spectra of cell extracts were obtained with a standard water presaturation pulse sequence. Scans were collected every 4.4 s, with a spectral width of \pm 2500 Hz and using 32,000 data points; 0.5-Hz line broadening was applied.

Treatment Conditions for NMR Experiments

Approximately 2 g of root tips were loaded into a glass tube modified for perfusion. In all experiments, root tips were perfused at 10 ml/min in oxygen-saturated medium containing 5 mM Glc, 0.1 mM CaSO$_4$, and 5 mM Tris-HCO$_3^-$ (pH 7.5). 13C was either at natural abundance (1.1%) or enriched to 99% at carbon-1 of Glc (Isotech, Miamisburg, OH) or in HCO$_3^-$ (Tris-HCO$_3^-$ was prepared according to the method in ref. 6). K$_2$SO$_4$ treatment consisted of addition of 5 mM K$_2$SO$_4$ to the perfusion medium after 2 h. Experiments were performed at room temperature (24–25°C).

Measurements of Cytoplasmic [HCO$_3^-$] Derived from Extracellular C$_3^-$

13C influx Measurements. Root tips were first equilibrated with perfusion medium for 2 h, then natural abundance Tris-HCO$_3^-$ was replaced with Tris-13HCO$_3^-$ plus 0.1 mM MnCl$_2$ for 30 min (with or without 5 mM K$_2$SO$_4$), and 13C-NMR spectra were obtained in 4-min blocks. The perfusion solution was switched back to the natural abundance solution for another 30 min, and the labeling cycle was then repeated. Spectra from both cycles of four replicate experiments for the control and K$_2$SO$_4$ treatments were summed. Mn$_{2+}$ at 0.1 mM eliminates the signal from extracellular H13CO$_3^-$ without influencing signals from intracellular metabolites (data not shown). The concentration of cytoplasmic H13CO$_3^-$ derived from extracellular 13C$_3$, was then calculated. Comparison of the ratio of H13CO$_3^-$ to chloroform reference peak areas in in vivo spectra with the ratio for H13CO$_3^-$ standard solutions in vitro gave the micromoles of H13CO$_3^-$ per milliliter of sample chamber. These values were converted first to cytoplasmic H13CO$_3^-$ content (µmol/g tissue) by dividing by the proportion of the NMR sample chamber occupied by root tips (approximately 0.83) (given by the ratio of root tip sample weight to sample volume; the latter exceeded the NMR-detectable volume; this ratio was essentially unchanged during the course of these experiments), and second to cytoplasmic H13CO$_3^-$ concentration (mm) by further dividing by the proportion of cytoplasm in root tips (approximately 0.65) (cf. ref. 6).

Steady-State Measurements. Samples were initially perfused with medium containing Tris-13HCO$_3^-$ for 1.5 or 3.5 h (specified in “Results”). Just before the time of measurement, 0.1 mM MnCl$_2$ was added to the perfusion medium to eliminate the extracellular H13CO$_3^-$ signal, and spectra were acquired during the next 30 min. The concentration of cytoplasmic H13CO$_3^-$ derived from extracellular 13C at steady state was calculated from the intensity of the cytoplasmic H13CO$_3^-$ resonance, as described above.

Measurements of Cytoplasmic [HCO$_3^-$] Derived from Respiration

Samples were perfused with medium containing 5 mM [1-13C]Glc. The concentration of cytoplasmic H13CO$_3^-$ derived from [1-13C]Glc was determined from the intensity of the in vivo cytoplasmic H13CO$_3^-$ resonance, after subtraction of the contribution from 13C natural abundance, as described above. Immediately after 13C-NMR data collection, tissue samples were frozen in liquid nitrogen and extracted with HClO$_4$ (4). The cleared, neutralized extracts were loaded onto pre-filled anion-exchange columns (AG-1-X8; Bio-Rad, Richmond, CA), which were washed with deionized H$_2$O to remove carbohydrates and amino acids. The eluate between 2 and 2.4 N formic acid containing was evaporated to dryness, dissolved in 0.6 ml D$_2$O (Sigma), and analyzed by 1H-NMR. The ratio of 13C/12C in carbon-1 of Glc-6-P, and hence the isotopic enrichment of respiratory substrate (see “Results”) was obtained from the ratio of peak areas of 1H attached to [1-13C] Glc-6-P and [1-13C]Glc-6-P in the 1H-NMR spectra. This information was used to convert the concentration of cytoplasmic H13CO$_3^-$ derived from [1-13C]Glc to the concentration of total (12C + 13C) cytoplasmic HCO$_3^-$ derived from respiration (Table II).

Measurement of Carbonic Anhydrase Activity in Vivo by Saturation Transfer 13C-NMR

Root tips were perfused with medium containing Tris-13HCO$_3^-$. Standard NMR experimental procedures were followed (9, 22, 23). Three different low-power irradiation frequencies were used to obtain three spectra from each sample: the resonance frequencies of H13CO$_3^-$ and H13CO$_2$ and a frequency midway between these two resonances (to control for any imperfections in the selectivity of the irradiation). The three spectra were collected as interleaved blocks of 16 scans each; interleaving allows time-dependent variables to be distributed equally throughout the experimental period. Selective irradiation was turned off during spectrum acquisition. Scans were made every 2.4 s using a spectral width of \pm15,000 Hz and 16,000 data points.

Exchange of 13C between HCO$_3^-$ and CO$_2$ can be described as follows:

$$\text{HCO}_3^- + \text{H}^+ \xrightleftharpoons{k_1}{k_2} \text{CO}_2 + \text{H}_2\text{O}$$

(1)

where k_1 is the pseudo-first-order rate constant for converting HCO$_3^-$ to CO$_2$, and k_2 is the rate constant for CO$_2$ conversion back to HCO$_3^-$. Saturation transfer experiments were performed under steady-state conditions so that:

$$\text{Rate of } \text{HCO}_3^- \text{ synthesis } = k_1 \times [\text{HCO}_3^-] = k_2 \times [\text{CO}_2].$$

(2)

k_1 was calculated by solution of the following simultaneous equations (9):

$$k_1 = \frac{1}{T_1} \cdot \frac{1}{M^*} - \frac{1}{T_1}$$

(3)
for

$\frac{1}{T_1'} = \frac{1}{T_1} + k_1 \tag{4}$

where T_1 is the true longitudinal relaxation time of H13CO$_3^-$; T_1' is the longitudinal relaxation time of the H13CO$_3^-$ resonance, measured in the presence of selective saturation of the 13CO$_2$ resonance; and M^* is the ratio of the intensity of the H13CO$_3^-$ signal during 13CO$_2$ irradiation, to the intensity of H13CO$_3^-$ in the control spectrum, calculated after subtraction of the contribution of extracellular H13CO$_3^-$ (which undergoes exchange at a rate too slow for measurement by saturation transfer NMR). The rate of synthesis of HCO$_3^-$ (μmol/min/g tissue) was then obtained by inserting the values of k_1, and the tissue HCO$_3^-$ content (described above), into Equation 2.

Longitudinal relaxation times (T_1') were measured by the selective saturation recovery method (8). Seven different delays, τ, ranging from 10 ms to 10 s, were used between the saturating train of pulses and the observed pulses. Scans were made every 2.4 s using a spectral width of $\pm 15,000$ Hz and 16,000 data points. The seven spectra were acquired in interleaved blocks of 16 scans cycling over approximate 1.5 h. $1/T_1'$ is the slope of the plot of $\ln(M_e - M_0)$ versus τ, where M_e and M_0 are the intensities at delay time 10 s and the different delay times, τ, respectively. The H13CO$_3^-$ NMR signals in these experiments contain contributions of similar magnitude from both cytoplasmic and extracellular H13CO$_3^-$.

Hence, in principal, if these two H13CO$_3^-$ pools relaxed at different rates, plots to determine $1/T_1'$ would consist of a curve from superposition of at least two lines. However, actual plots of relaxation data were highly linear, with $r^2 = -0.9955$ and -0.9963 for control and K$_2$SO$_4$ treatment experiments, respectively ($P > 0.95$). This result indicates that T_1' values for extracellular and cytoplasmic HCO$_3^-$ are very similar.

Measurements of Dark C, Fixation in Vivo

Root tips having an initial fresh weight of 0.052 ± 0.003 g (mean ± SD, $n = 10$) were loaded into capsules made from plastic pipet tips containing a coarse plastic mesh plug. Up to 10 capsules were connected in series with plastic tubing and perfused as in the NMR experiments. At the specified times, capsules were disconnected from the series and perfused for 4 min with solution containing H14CO$_3^-$ (Amersham, Arlington Heights, IL) at 0.05 Ci/mol. Incorporation of radioactivity was linear for >10 min under all treatment conditions (data not shown). Boiling acetic acid (1 mL) was added to stop the reaction at the end of each labeling period and to remove the unreacted H14CO$_3^-$. Samples were kept in a fume hood for 36 h to allow radioactive activity to escape and were counted in 3.5 mL of scintillation cocktail (Ecolume; ICN, Cleveland, OH) in a Beckman LS-3801 counter.

RESULTS

C, Influx and the Contribution of Extracellular C, to Cytoplasmic HCO$_3^-$

We tested the hypothesis (13, 19) that salt-induced stimulation of organic acid synthesis (30) is due to elevation of cytoplasmic HCO$_3^-$ by monitoring the flux of exogenous 13C into root tips and the steady-state concentration of cytoplasmic H13CO$_3^-$. We consider essentially all intracellular HCO$_3^-$ to be located in the cytoplasm; the contribution of vacuolar HCO$_3^-$ to total intracellular HCO$_3^-$ is negligible, because the acidic pH of the plant cell vacuole favors conversion of most HCO$_3^-$ to CO$_2$.

The influx of 13C into root tips was followed by observing the intensity of the cytoplasmic H13CO$_3^-$ resonance over time, after addition of 5 mM Tris-H13CO$_3$ to the perfusion medium (Fig. 1). Influx was not influenced by K$_2$SO$_4$ treatment, which stimulates malate synthesis (6). This result suggests that K$_2$SO$_4$ treatment does not elevate cytoplasmic HCO$_3^-$ by enhanced transport of C. Steady-state 13C-NMR measurements of cytoplasmic H13CO$_3^-$ confirmed this inference by showing that the concentration of exogenously derived cytoplasmic H13CO$_3^-$ is independent of the presence of K$_2$SO$_4$ (Table I). Thus, under the conditions used in these experiments, ap-

![Figure 1. 13C influx into the cytoplasm of maize root tips. Tissue was initially perfused with 5 mM natural abundance HCO$_3^-$ for 2 h, then switched to 5 mM H13CO$_3^-$ plus 0.1 mM MnCl$_2$ at time 0, either without (○—○) or with (▲—▲) 5 mM K$_2$SO$_4$ (see "Materials and Methods"). The lines are best logarithmic fits to each data set. An analysis of covariance of cytoplasmic H13CO$_3^-$ versus log time, using the SAS program (SAS Institute, Inc., Cary, NC), indicated no significant difference between the control and K$_2$SO$_4$-treated tissue at the 95% confidence level.](www.plantphysiol.org)
proximately 4.4 mM of the total cytoplasmic HCO$_3^-$ was derived from the perfusion medium.

Contribution of Respiratory CO$_2$ to Cytoplasmic HCO$_3^-$

Respiration also provides C$_4$ to sustain organic acid synthesis. We measured this contribution to determine whether K$_2$SO$_4$ treatment elevated cytoplasmic HCO$_3^-$ by stimulating metabolic CO$_2$ production. Root tips were labeled with [1-13C]Glc, and the amount of cytoplasmic H13CO$_3^-$ derived from this substrate was determined from in vivo 13C-NMR spectra (Table II, column A). Whereas the concentration of cytoplasmic H13CO$_3^-$ increased with time of perfusion in [1-13C]Glc, indicating increased consumption of [1-13C]Glc by the cytoplasm, the contribution of extracellular CO$_2$ to the concentration of total (13C + 13C) cytoplasmic HCO$_3^-$ derived from respiration required knowledge of the 13C isotopic enrichment in the respiratory substrate. To this end, we determined the 13C isotopic enrichment in carbon-1 of Glc-6-P in root tip extracts by 1H-NMR (Fig. 2, Table II, column B). Unlike Glc and sucrose, Glc-6-P is located exclusively in the cytoplasm; therefore, isotope analysis of carbon-1 of Glc-6-P allowed changes in [1-13C]Glc uptake and compartmentation, and thus mixing with endogenous respiratory carbohydrate, to be quantitated. Whereas the 13C enrichment in carbon-1 of Glc-6-P increased with time, K$_2$SO$_4$ treatment had no significant effect on 13C enrichment (Table II, column B) and, thus, on HCO$_3^-$ derived from Glc-6-P (Table II, column C). Therefore, under all conditions, respiration from Glc-6-P contributed approximately 6.8 mM HCO$_3^-$ to the cytoplasmic HCO$_3^-$ pool. Combining this value with the contribution of extracellular C$_4$ to cytoplasmic HCO$_3^-$ at steady state (Table I) gave a contribution of total cytoplasmic HCO$_3^-$ of approximately 11 mM, which was constant with time and independent of K$_2$SO$_4$ treatment (Table II, column D). These results are consistent with the absence of any detectable salt-induced stimulation of respiration in maize root tips (6).

The above estimate of cytoplasmic HCO$_3^-$ derived from respiration assumes that carbohydrate is the exclusive respiratory substrate in this tissue. The strong dependence of respiration in maize root tips upon exogenous sugars (24) lends credence to this assumption. We tested the validity of this assumption in separate experiments in which the intensity of the cytoplasmic H13CO$_3^-$ NMR resonance was measured in root tips treated with HCO$_3^-$ and Glc at natural abundance (1.1% 13C). If root tip respiration depended significantly on noncarbohydrates, a significantly higher concentration of cytoplasmic HCO$_3^-$ than the levels given in Table II (column D) would be observed. However, the concentration of cytoplasmic HCO$_3^-$ in the natural abundance 13C-NMR experiments was found to be 13.5 mM (SE ± 2.0, n = 7). This result is not significantly different from the data in Table II (at the 95% confidence level by Student's t test), indicating that carbohydrate is the predominant respiratory substrate in this tissue.

Measurement of Carbonic Anhydrase Activity in Vivo

In the experiments leading to the results in Table I, we were able to observe a 13C-NMR signal from intracellular 13CO$_2$ that was approximately 0.038 times the intensity of the cytoplasmic H13CO$_3^-$ signal (data not shown). This ratio of concentrations is similar to that predicted by the Henderson-Hasselbalch equation (viz. 0.042) for a HCO$_3^-$ solution at pH 7.5, in equilibrium with respect to CO$_2$-HCO$_3^-$ exchange. Such similarity suggests that cytoplasmic 13CO$_2$ and H13CO$_3^-$ pools are in near equilibrium, i.e., that the rate of carbon exchange between 13CO$_2$ and H13CO$_3^-$ is much faster than either the rates of production or consumption of individual C$_4$ species in root tip cytoplasm or the rates of influx or efflux of C$_4$ species into or out of the cytoplasm. Such rapid exchange between 13CO$_2$ and H13CO$_3^-$ would require significant carbonic anhydrase activity in vivo.

We therefore determined the activity of carbonic anhydrase in maize root tips by measuring the unidirectional rate of 13CO$_2$-H13CO$_3^-$ exchange by saturation transfer 13C-NMR. This method is capable of monitoring chemical reactions in

<table>
<thead>
<tr>
<th>Table II. Concentration of Cytoplasmic HCO$_3^-$ Derived from Respiration and Total Cytoplasmic HCO$_3^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Results are from four replicates at each time point.</td>
</tr>
<tr>
<td>Time</td>
</tr>
<tr>
<td>(5 mM)</td>
</tr>
<tr>
<td>h</td>
</tr>
<tr>
<td>1-2</td>
</tr>
<tr>
<td>3-4</td>
</tr>
<tr>
<td>3-4</td>
</tr>
</tbody>
</table>

a Added at 2 h. b Determined from intensity of the H13CO$_3^-$ resonance in NMR spectra of tissue perfused with [1-13C]Glc, obtained during the last hour before extraction (see "Materials and Methods"). Error values are ranges. c Determined from 1H-NMR spectra of extracts (see Fig. 2 legend and "Materials and Methods"). d Calculated by multiplying [H13CO$_3^-$] by the ratio (13C + 13C)16C in carbon-1 of Glc-6-P and by (6) number of carbons in Glc). Errors values are so. e Determined as the sum of column C, plus [HCO$_3^-$] derived from extracellular HCO$_3^-$ (Table I). Error values are ranges.
which the average lifetimes of reacting species are within approximately an order of magnitude of nuclear magnetic relaxation times (T_1, generally approximately 1 s) (see ref. 21). Saturation transfer NMR is incapable of measuring 13CO$_2$-H13CO$_3^-$ exchange in aqueous bicarbonate solutions (data not shown), because the rate of exchange is too slow under these conditions; k'_b (the first-order rate constant for hydration of CO$_2$) is approximately 4.8×10^{-2} s$^{-1}$ at pH 7.6 and 25°C (16). However, we do observe transfer of magnetization from intracellular 13CO$_2$ to cytoplasmic H13CO$_3^-$ in maize root tips, seen as a decrease in the intensity of the H13CO$_3^-$ resonance when the 13CO$_2$ resonance is saturated (Fig. 3, compare spectra A, B, and B-A), which is indicative of carbonic anhydrase activity in vivo. Transfer of magnetization is also evident in the reverse direction from H13CO$_3^-$ to 13CO$_2$ (compare spectra A and C in Fig. 3), which is qualitatively consistent with 13CO$_2$-H13CO$_3^-$ exchange described by Equation 1 ("Materials and Methods").

Spectra such as Figure 3, A and B, when combined with measurements of the longitudinal relaxation time (T_1') of cytoplasmic H13CO$_3^-$ and the cytoplasmic HCO$_3^-$ content (μmol/g tissue) permit estimation of in vivo carbonic anhydrase activity (see "Materials and Methods"). For control ($n = 4$) and K$_2$SO$_4$-treated ($n = 5$) samples, respectively, T_1' was determined to be 2.5 ± 0.2 and 2.4 ± 0.4 s, and the ratio M^* was found to be 0.77 ± 0.06 and 0.73 ± 0.04. Insertion of these values and the cytoplasmic HCO$_3^-$ content into Equations 2 to 4 gives a carbonic anhydrase activity of 43 ± 14 (control) and 52 ± 21 (+K$_2$SO$_4$) μmol/min/g tissue. Thus, K$_2$SO$_4$ treatment had no significant effect on carbonic anhydrase activity. This result supports the view that flux of C$_i$ through carbonic anhydrase is much faster than rates of C$_i$ transport (as indicated in Fig. 1, which shows a unidirectional rate of influx of approximately 2 μmol/min/g fresh weight).
and CO\textsubscript{2} production from respiration (estimated from ref. 23 at approximately 1 \(\mu \)mol CO\textsubscript{2}/min/g tissue). This issue is considered further in “Discussion.”

Measurement of PEP Carboxylase Activity in vivo

The results in Tables I and II indicate that extracellularly derived C\textsubscript{i} is diluted in the cytoplasm two- to threefold by respiratory CO\textsubscript{2}. This dilution is of practical significance with regard to the in vivo measurement of PEP carboxylase activity using radiolabeled C\textsubscript{i} (cf. 28). Previous estimates of in vivo PEP carboxylase activity in plants have used the specific radioactivity of extracellular C\textsubscript{i} to convert disintegrations per minute (DPM) of C\textsubscript{i} fixed into micromoles C\textsubscript{i} fixed (1, 31). However, the dilution of extracellular C\textsubscript{i} by respiratory CO\textsubscript{2} means that, for maize root tips, such a conversion would lead to a significant underestimation of in vivo PEP carboxylase activity. We calculated the specific radioactivity of intracellular H14CO\textsubscript{3}- from the specific radioactivity of extracellular H14CO\textsubscript{3}- using the data in Figure 1 and Tables I and II to determine the dilution factor at various times after addition of exogenous C\textsubscript{i} isotope. We then determined the effect of K\textsubscript{2}SO\textsubscript{4} treatment on the in vivo activity of PEP carboxylase in maize root tips by measuring the unidirectional rate of incorporation of H14CO\textsubscript{3}- into acid-stable metabolites and correcting for the specific radioactivity of intracellular H14CO\textsubscript{3}- (Fig. 4). Potassium sulfate treatment led to a stimulation of PEP carboxylase activity at the earliest time measured (4 min) and was maximal (approximately 70% higher than control tissue) within 12 min of K\textsubscript{2}SO\textsubscript{4} addition.

DISCUSSION

The results presented here allow critical evaluation of the hypothesis (13, 19) that the enhanced C\textsubscript{i} fixation accompanying cation transport is due to elevation of cytoplasmic HCO\textsubscript{3}- levels. It is apparent that the maximal unidirectional rates of dark C\textsubscript{i} fixation (approximately 0.17 \(\mu \)mol/min/g tissue, Fig. 4) are much lower than the rates of reactions that provide PEP carboxylase with its inorganic substrate, HCO\textsubscript{3}-: C\textsubscript{i} uptake (approximately 2 \(\mu \)mol/min/g tissue, Fig. 1), carbonic anhydrase activity (>40 \(\mu \)mol/min/g tissue), and respiration (approximately 1 \(\mu \)mol/min/g tissue from ref. 23, assuming a respiratory quotient of 1). Hence, we conclude that the K\textsubscript{2}SO\textsubscript{4}-induced synthesis of organic acids in maize root tips (6) is not due to salt effects on C\textsubscript{i} availability in the cytoplasm. This view is reinforced by observation of approximately 11 mm HCO\textsubscript{3}- in root tip cytoplasm (Table II), which is about two orders of magnitude higher than the \(K_m \) of PEP carboxylase for HCO\textsubscript{3}- (17). Only in roots exhibiting much lower rates of respiration than maize root tips and under conditions of low extracellular C\textsubscript{i} would it appear possible for rates of cytoplasmic HCO\textsubscript{3}- production to be reduced to rates of dark C\textsubscript{i} fixation. And those circumstances would most likely lead to additional limitations on dark C\textsubscript{i} fixation, such as availability of PEP.

The in vivo activity of carbonic anhydrase is >200-fold greater than the unidirectional rate of dark C\textsubscript{i} fixation (Fig. 4). By comparison, Holtum et al. (12) found that the excess of carbonic anhydrase over PEP carboxylase activity in various plants displaying crassulacean acid metabolism ranged from 7- to >100-fold. This contrasts with C\textsubscript{i} mesophyll cells in rapidly photosynthesizing maize leaves, where carbonic anhydrase activity may be only just sufficient to provide PEP carboxylase with HCO\textsubscript{3}- and so sustain high rates of photosynthesis (11).

In vitro, malate acts as a potent inhibitor of PEP carboxylase activity (27, 32). However, although PEP carboxylase in vivo may be inhibited by cytoplasmic malate, the inhibition does not appear to be critical, because PEP carboxylase activity and cytoplasmic malate levels are positively, not negatively, correlated. Thus, the K\textsubscript{2}SO\textsubscript{4}-induced stimulation of dark C\textsubscript{i} fixation (i.e. PEP carboxylase activity), which peaks approximately 20 min after addition of K\textsubscript{2}SO\textsubscript{4} (Fig. 4), is accompanied by an increase in cytoplasmic malate levels, which double within approximately 45 min (6). At later times, both the rate of C\textsubscript{i} fixation and cytoplasmic malate levels decline slightly. Hence, any inhibitory effect of malate on PEP carboxylase in vivo must be saturated at the concentration of malate found in root tip cytoplasm (3.5—7.5 mm) (6) and at the cytoplasmic concentrations of other effectors of PEP carboxylase, which have been identified in studies of PEP carboxylase in vitro (see ref. 17 for review).

It appears that the regulation of PEP carboxylase in vivo during salt-stimulated organic acid synthesis is quite distinct from the pattern of regulation evident during anapleurotic malate synthesis associated with ammonium assimilation. In studies of dark ammonium assimilation in the green alga *Selenastrum*, regulation of PEP carboxylase appears to be dominated by the induced synthesis and accumulation of the PEP carboxylase activator glutamine (25) and accompanied by a decline in levels of the PEP carboxylase inhibitors glutamate, 2-oxoglutarate, aspartate, and malate (25, 26, 29). This is the converse of metabolite behavior in maize root tips during K\textsubscript{2}SO\textsubscript{4}-induced dark C\textsubscript{i} fixation, in which levels of cytoplasmic malate, glutamate, and aspartate increase (5, 6),
and glutamine remains low (K. Chang and J.K.M. Roberts, unpublished observations). Thus, the activation of PEP carboxylase during ion uptake must involve a unique regulatory mechanism that does not depend on removal of the products of dark C\textsubscript{4} fixation from the cytoplasm.

ACKNOWLEDGMENTS

We thank Dr. Tai-houn Tsuo and Mr. Jackson Chow (Department of Statistics, University of California, Riverside) for assisting with the statistical analyses and Dr. Cecelia Webster for criticism during the preparation of this manuscript.

LITERATURE CITED

6. Chang K, Roberts JKM (1991) Cytoplasmic malate levels in maize root tips during K+ ion uptake determined by 13C-NMR spectroscopy. Biochim Biophys Acta 1092: 29–34

16. Magid E, Turbeck BO (1968) The rates of the spontaneous hydration of CO\textsubscript{2} and the reciprocal reaction in neutral aqueous solutions between 0° and 38°. Biochim Biophys Acta 165: 515–524

22. Roberts JKM (1990) Observation of uridine triphosphate: glucose-1-phosphate uridylyltransferase activity in maize root tips by saturation transfer 31P-NMR. Estimation of cytoplasmic PP\textsubscript{i}. Biochim Biophys Acta 1051: 29–36

