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Abstract 
 
About 40% of the proteins encoded in eukaryotic genomes are proteins of unknown function (PUFs). 
Their functional characterization remains one of the main challenges in modern biology. In this study 
we identified the PUF encoding genes from Arabidopsis thaliana using a combination of sequence 
similarity, domain-based and empirical approaches. Large-scale gene expression analyses of 1310 
publicly available Affymetrix chips were performed to associate the identified PUF genes with 
regulatory networks and biological processes of known function. To generate quality results, the study 
was restricted to expression sets with replicated samples. First, genome-wide clustering and gene 
function enrichment analysis of clusters allowed us to associate 1,541 PUF genes with tightly co-
expressed genes for proteins of known function (PKFs). Over 70% of them could be assigned to more 
specific Biological Process annotations than the ones available in the current Gene Ontology release. 
The most highly over-represented functional categories in the obtained clusters were ribosome 
assembly, photosynthesis and cell wall pathways. Interestingly, the majority of the PUF genes appeared 
to be controlled by the same regulatory networks as most PKF genes, because clusters enriched in PUF 
genes were extremely rare. Second, large-scale analysis of differentially expressed genes (DEGs) was 
applied to identify a comprehensive set of abiotic stress response genes. This analysis resulted in the 
identification of 269 PKF and 104 PUF genes that responded to a wide variety of abiotic stresses, while 
608 PKF and 206 PUF genes responded predominantly to specific stress treatments. The provided co-
expression and DEG data represent an important resource for guiding future functional characterization 
experiments of PUF and PKF genes. Finally, the public Plant Gene Expression Database (PED, URL: 
http://bioweb.ucr.edu/PED) was developed as part of this project to provide efficient access and mining 
tools for the vast gene expression data of this study. 
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Introduction 
 
Only a small percentage of the proteins encoded in animal or plant genomes are sufficiently 
characterized with regard to their cellular functions. The functions for the majority of these proteins 
remain either completely unknown (40%) or only partially understood (Gollery et al., 2006, 2007). In 
light of this significant knowledge deficit, our understanding about existing molecular functions 
appears to be fundamentally incomplete. This is even more evident when we assume that the vast space 
of unexplored molecular and biological functions is composed of proteins with at least comparable or 
even greater diversity and importance for cellular processes than the known space. Efforts to narrow 
this knowledge gap will provide a wide spectrum of opportunities for advancing our understanding 
about plant and non-plant systems. 
 Two major methods are in use for defining proteins of unknown functions (PUFs) in model 
organisms. The widely used similarity approach considers all proteins as PUFs that show no detectable 
sequence or structural similarities to functionally characterized proteins in reference databases 
(Leinonen et al., 2004; Boeckmann et al., 2003). In contrast to this, the more conservative empirical 
approach defines as PUFs all proteins that lack direct experimental evidence as support for a specific 
function. Conceptually, the empirical approach incorporates most PUFs identified by the similarity 
approach, as well as functionally uncharacterized sequences that share sequence similarities with 
proteins of known function (PKFs). Sequence families and ortholog clusters are particularly affected by 
this fundamental difference between the two unknown definitions. For instance, when a group of 
related sequences contains one or more members of known function, then the similarity approach tends 
to assign all of them to the known space, whereas the empirical approach distinguishes between 
functionally characterized and uncharacterized candidates within groups of related sequences. As a 
result of this difference, most similarity-based PUFs of a given genome are either singletons or 
members of families that consist exclusively of uncharacterized sequences. These performance 
characteristics of the similarity concept result in an underestimation of the number of PUFs, because 
many genes in eukaryotic organisms are members of poorly characterized gene families (Horan et al., 
2005). To illustrate this, all members of large families, like protein kinases or cytochrome P450s, will 
be assigned by the similarity approach to the known protein space, even though most of their members 
remain functionally uncharacterized (Horan et al., 2005; Nelson et al., 2004; Wang et al., 2003). 
 Dividing gene products into only two categories of known and unknown sequences is an 
oversimplification of a complex knowledge system with incremental and multifaceted differences. 
Consequently, every definition for drawing a strict separation line remains artificial and controversial. 
While acknowledging these difficulties, this study will adopt this two-class system mainly for practical 
reasons. 
 To advance our knowledge beyond a roadmap of knowing what we don’t know, it is important 
to develop and apply approaches for predicting putative functions for PUFs. Bioinformatic techniques 
provide here a wide spectrum of opportunities. For instance, PUFs can be associated with remotely 
related PKFs by using sensitive sequence and structure similarity search strategies (Altschul et al., 
1997; Eddy, 1996). The detected similarities can reveal important clues for testing their functions 
experimentally. Additionally, one can predict functional features from their sequences, such as sub-
cellular targeting signals, secondary structures and membrane domains (Schwacke et al., 2003; Gollery 
et al., 2006). Proteomics and protein interaction technologies provide additional important functional 
links (Johnson and Liu, 2006). However, for plants the required proteome resources are not yet 
available on a genome-wide level. One of the most promising and readily available information 
resources for systematic functional assignment studies of PUF genes represent large-scale gene 
expression data from public microarray databases. These data sets over vast opportunities for 
associating PUF genes with molecular functions and cellular processes of co-regulated PKF genes. 
 In this study we identified and analyzed the genome-wide PUF encoding genes from 
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Arabidopsis using both, empirical and similarity strategies. Large-scale analysis of publicly available 
gene expression array data allowed us to associate PUF with PKF genes based on similarities of their 
expression and treatment response profiles. For this, cluster analysis was used to identify groups of co-
regulated PUF and PKF genes based on the similarity of their expression profiles across a wide range 
of tissue and treatment samples. Subsequently, enrichment analysis of Gene Ontology terms was 
applied to annotate the obtained clusters by over-represented gene functions. Second, statistical 
analysis of differentially expressed genes (DEGs) allowed us to identify PUFs that exhibit generic and 
specific expression changes in response to a large number of different abiotic stress treatments. Finally, 
the Plant Gene Expression Database was developed to provide to the public efficient data mining 
utilities for the complex differential expression and clustering data of this project. 
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Results and Discussion 
 
Identification of PUFs 
To obtain for this study a comprehensive set of PUFs from Arabidopsis, we compared three profoundly 
different PUF identification methods. The three approaches are based on Gene Ontology annotations, 
sequence similarities and protein domain searches. 
 First, we mined the Gene Ontology (GO) annotations to estimate the number of PKFs and PUFs 
from a manually curated knowledge system that combines empirical and computational methods for 
assigning gene functions (Berardini et al., 2004; Falcon and Gentleman, 2007). Alternative pathway 
annotation systems from KEGG and AraCyc could have been used for the same purpose (Kanehisa et 
al., 2006; Mueller et al., 2003). However, due to the limited number of Arabidopsis genes (<40%) 
assigned to pathways, the GO system, with close to 95% genome coverage, appears to be currently the 
more efficient resource for identifying nearly complete PUF sets. This number includes the direct 
assignments to the root term of each ontology which are the new GO annotations for sequences of 
unknown function (see Material and Methods for more details). 
 The evidence codes of the GO annotations specify which functional assignments are supported 
by experimental evidence data from the public domain and which annotations are solely based on 
computational prediction methods (Ashburner et al., 2000). To gain insight into the nature of the 
annotations with regard to the evidence type for assigning members to the known and unknown space, 
we combined in Table I the current set of thirteen evidence codes into four custom categories. The 
category with the highest level of functional support (Empirical) is based on direct evidence from 
traditional single sample experiments, the second one is based on large-scale screening data (Large-
Scale), the third one on computational predictions (Sequence), and the fourth one are the GO-based 
PUF entries that lack functional support from experiments or in silico analyses. The detailed 
assignment schema of the evidence codes to the four categories is provided in the legend of Table I. 
 According to the above strategy, 32-38% of the Arabidopsis genes are currently annotated by 
the GO system as PUF encoding genes (Table I). This is largely in agreement with the estimates from 
previous studies (Wortman et al., 2003; Gollery et al., 2006). Interestingly, only 7% of all entries are 
functionally characterized by traditional one-gene-at-a-time experiments in the Molecular Function 
(MF) ontology and 14% in the Biological Process (BP) ontology, while 34% and 18% have functional 
support from high-throughput experiments, respectively. This means that 93% of the genes from 
Arabidopsis code for poorly characterized proteins or PUFs when the most conservative empirical 
criteria are applied within the MF ontology. The relative amount of PUFs for the combined empirical 
and large-scale categories is 59% in the MF ontology and 68% in the BP ontology. The Cellular 
Component (CC) ontology contains by far the largest number of entries with sequence-based 
annotations and the lowest for the empirical categories. This trend is due to the majority of the CC 
annotations presently being based on computational ab initio predictions of sub-cellular localizations, 
whereas annotations with experimental support are much less frequent in this category than in the other 
two ontologies. The subsequent analysis steps of this study utilize the standard PUF set from the MF 
ontology containing 8,665 members. These genes are exclusively assigned to the root term of the MF 
ontology (GO:0003674) and they carry the evidence code ND (no biological data available). The MF 
category was selected here, because protein functions are most profoundly described at the mechanistic 
molecular level, whereas the other two ontologies, BP and CC, provide rather indirect information in 
this regard. 
 To compare the results obtained from the MF ontology with alternative PUF identification 
methods, we also used one sequence similarity and one domain-based approach using Hidden Markov 
models. First, all predicted Arabidopsis proteins were searched against the Swiss-Prot database with the 
BLASTP program (Altschul et al., 1990; Wu et al., 2006). Protein sequences that showed no 
similarities to functionally characterized proteins in the Swiss-Prot database were classified as PUFs 
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using an expectation value (E-value) of 10−6 as cutoff. Second, the same protein set was used to search 
the Pfam database with the HMMPFAM program (Eddy, 1996; Bateman et al., 2004). Likewise, 
sequences without similarities to protein domains of known function (E-value ≥ 10−2) or those 
matching exclusively domains of unknown function (DUF) were considered PUFs. Due to different 
calculation methods, the E-values of the two search algorithms are not directly comparable. Therefore, 
we chose for both methods conservative cutoff values that are commonly used for sensitive sequence 
similarity searching with low false positive detection rates (e.g. Gollery et al., 2006; Horan et al., 2005; 
Girke et al., 2004). Table II provides a comparison of the results from the three different PUF 
identification approaches. Based on the chosen confidence thresholds, all three approaches identified 
PUF sets of comparable sizes with 8,272-8,681 members, while 5,456-6,260 PUFs are common among 
two and 4,667 among all three methods. The corresponding gene lists for the three methods are 
provided in Supplement S1. 
 To simplify the description of the subsequent functional analysis steps of this study, the 
remaining text is restricted to the PUF set obtained from the MF ontology, while the data for the 
remaining PUF identification methods are included in the corresponding Supplements S1, S3, S5 and 
S7. The GO PUF set was given preference, because of the high quality of the manually curated GO 
annotation system and its broad acceptance in the scientific community. 
 
Relative Amount of Expressed Genes 
To functionally associate PUF with PKF encoding genes based on the similarity of their mRNA 
expression profiles, large-scale gene expression analysis of publicly available Affymetrix GeneChip  
microarrays was performed. Only experiment sets containing at least two replicate samples were used 
for this analysis to enable statistical analysis of differentially expressed genes (DEG) and to increase 
the confidence of the obtained results. In total, the study included the raw expression data from 1,310 
Affymetrix chips from the AtGenExpress and GEO sites (Schmid et al., 2005; Barrett et al., 2006). 
Table III provides a summary of the chosen experiment sets that covers a wide spectrum of treatment 
series and tissue samples. The complete list of the analyzed data is available in Supplement S2. 
 The relative amount of expressed genes can be expected to be lower in the PUF than in the PKF 
category, because many predicted PUF genes may be the result of genome annotation artifacts or may 
represent untranscribed pseudogenes. In addition, a certain fraction of PUF genes may be expressed 
below the detection limit of the GeneChip microarray technology. To estimate the extent of these 
limitations, the amount of detectable genes across all experiment categories was compared between the 
PUF and PKF sets. The present call information of the non-parametric Wilcoxon signed rank test of the 
MAS5 algorithm provides for this purpose relatively reliable estimates (Liu et al., 2002; Schmid et al., 
2005; McClintick and Edenberg, 2006). According to this test, the amount of detectable genes between 
the PUF and PKF sets differs 0.5-8% within the five frequency intervals plotted in Figure 1. The 
detailed data set of this analysis is available in Supplement Table S3. Based on these rather small 
relative differences, it is likely that the majority of the PUF genes are expressed at high enough levels 
to obtain for them meaningful data in the downstream cluster and differential gene expression analyses 
of this study. 
 
Cluster Analysis 
Since many dynamic cellular processes are tightly associated with coordinated transcriptional changes, 
cluster analysis of gene expression profiles can be used to identify candidate sets of co-regulated genes 
that are directly or indirectly involved in related processes (Steinhauser et al., 2004a; Gachon et al., 
2005; Toufighi et al., 2005; Haberer et al., 2006; Jen et al., 2006; Vandepoele et al., 2006; Wei et al., 
2006; Gutierrez et al., 2007). For instance, if a group of genes exhibits correlated expression profiles 
and it is significantly enriched in genes involved in a specific process then it is reasonable to assume 
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that some of the PUF members of this cluster may share overlapping functions with its functionally 
characterized members. This association-based approach was applied here on a genome-wide level to 
systematically assign PUF to PKF genes based on the similarity of their expression profiles. Despite the 
great potential of this approach, it is important to keep in mind that correlation does not prove causal 
relationships. It only provides useful leads for establishing hypotheses and causal links in downstream 
investigations. Accordingly, the results of this study need to be interpreted as preliminary computer 
predictions that offer useful information for guiding future gene characterization experiments. Final 
evidence about gene and protein functions cannot be inferred directly from this data. Alternative 
network modeling approaches were not considered for this study, because of the lack of efficient 
statistical methods to efficiently represent, score and interpret the resulting network architectures on a 
genome-wide scale (e.g. Wolfe et al., 2005; Gutierrez et al., 2007; Ma et al., 2007). At this point, the 
traditional clustering approach appears to be more practical for the goals of this study. 
 To generate reliable and biologically relevant gene clusters form expression data, we evaluated 
several available clustering algorithms (e.g. K-means, SOM) and selected agglomerative hierarchical 
clustering as the method of choice (Murtagh, 1985; Eisen et al., 1998; de Hoon et al., 2004; R 
Development Core Team, 2006). The hierarchical clustering method was chosen because of three main 
advantages: (1) the method requires no prior knowledge about the optimum number of the final 
clusters, (2) it is extremely robust in joining highly similar items into proper similarity groups and (3) it 
provides an information-rich data output that represents the relative distances between all clustered 
items in a dendrogram (Becker et al., 1988). The main disadvantages of the approach are the 
complexity of its data output, the lack of predefined boundaries between clusters and its weaker 
performance in identifying local expression similarities in a small subset of the samples (Prelic et al., 
2006). However, most of these challenges can be overcome by applying efficient post-processing 
methods of the obtained dendrograms, such as tree cutting methods (e.g. Gutierrez et al., 2007). 
Popular fuzzy clustering approaches (Krishnapuram et al., 2001) that allow memberships in several 
clusters - as opposed to strict clustering with unique memberships - were not considered for this study, 
because of the difficulty to efficiently prioritize and mine the complex cluster memberships from these 
methods in the downstream functional analysis steps. As an implementation of the hierarchical 
clustering algorithm, we used the hclust function (Murtagh, 1985) from the statistical programming 
environment R (R Development Core Team, 2006). As distance measurement we used correlation 
coefficients and as cluster joining method complete linkage (see Material and Methods for more 
details). To obtain discrete clusters from the resulting dendrograms, we developed for this study a 
novel hierarchical threshold clustering (HTC) method. The corresponding R script is available in 
Supplement S10. This method selects clusters in hierarchical clustering dendrograms based on a 
maximum tolerable distance between cluster members by applying an all-against-all distance test on all 
possible sub-trees, while maintaining unique cluster memberships. As threshold we chose for this step a 
minimum correlation coefficient of 0.6. This relatively conservative HTC setting ensures that all 
members of any given cluster share with all other members of the same cluster correlation coefficients 
between the selected cutoff of 0.6 and the highest possible value of 1.0. The exact cutoff value of 0.6 
was chosen because it resulted in the highest enrichment of functionally related genes compared to 
alternative cutoff settings (Supplement S4). Additionally, other gene expression correlation studies 
have used the same or very similar cutoff values (Haberer et al., 2006; Wei et al., 2006). 
 Applying the above strategy, we calculated four separate clustering data sets using both the 
Pearson and Spearman correlation coefficients, in their signed and absolute forms as distance measures. 
The following text will refer to the four methods as PCC, SCC, PCCa and SCCa, respectively 
(Supplement S5). All four data sets were generated, because of their complementary performance 
characteristics. The clustering with absolute correlation values allows the identification of positively 
and negatively correlated gene expressions, whereas the sign-specific approach joins only positively 
correlated items into similarity groups. The rank-based Spearman approach is limited to identifying 
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global similarities in expression profiles, while the Pearson approach is very sensitive in detecting both, 
global and local similarities. In particular, the latter detects local similarities with wide amplitude 
changes relative to the background, which can result in extreme cases in co-clustering of outliers. A 
consensus approach between several or all methods was not considered, because such a strategy would 
artificially deflate the cluster sizes and compromise the transparency of the results. 
 The distributions of the obtained numbers of clusters including their sizes from the four 
clustering methods are summarized in Figure 2. Because the sign removal increases the potential pool 
sizes of gene pairs with correlation values above a given cutoff, one would expect larger cluster sizes 
for the data sets with absolute correlation values compared to their signed counterparts. This trend can 
be observed in the many individual clusters in Supplement S5, but the effect is not very pronounced in 
the global representation of Figure 2. These relative increases in cluster sizes are not as frequent as 
expected, because of two main reasons. First, the number of highly negatively correlated gene pairs is 
much smaller than the number of positively correlated gene pairs (data not shown, compare Haberer et 
al., 2006). Second, the assignment of a negatively correlated gene to a cluster at an earlier stage of the 
hierarchical clustering process can prevent other potential members from joining the same cluster at a 
given cutoff level, if they do not share the required degree of correlation with the existing members. 
This is particularly the case in combination with a complete linkage joining method, that was chosen 
for this study to minimize the number of false positive members in the generated clusters. 
 The most obvious differences among the four clustering data sets in Figure 2 are the numbers of 
singlet genes that do not join any clusters in the different methods. There are about 2000 fewer singlet 
genes in the Pearson than in the Spearman data sets. This is expected because the latter method tends to 
generate slightly lower correlation values on gene expression data. Due to space restrictions, the 
subsequent text focuses on the clustering results from the distance method with the signed Pearson 
correlation coefficients (PCC), whereas the results for the other three methods are included in 
Supplement S5. In addition, the clustering data for individual genes are available in the associated 
public database of this study (see below). 
 
Functional Categorization of Gene Expression Clusters 
Gene expression clusters with highly enriched functions provide more conclusive information about the 
potential roles of their PUF encoding members than clusters with very heterogeneous compositions. To 
functionally annotate the obtained clusters and to select the most informative gene sets with over-
represented gene functions, we performed enrichment analysis of Gene Ontology terms using the 
hypergeometric distribution as a statistical test (Falcon and Gentleman, 2007). This method computes 
the enrichment test for all ~18,000 GO nodes of the three ontology networks and ranks the results by p-
values (see Material and Methods, and Supplement S9). The results of this method are more 
comprehensive and informative than generalized functional categorization systems, like GO slim or 
high-level pathway classification systems. Clusters with fewer than 5 members were excluded from this 
analysis, because the predictive value of extremely small clusters is rather limited. The complete result 
set of this enrichment analysis is available in Supplement S6. It contains the data for 916 clusters 
composed of a total of 11,077 genes. To prioritize the clusters based on the obtained enrichment data, 
we applied two selection filters. First, each cluster of interest needed to contain at least one over-
represented GO term in one of three ontologies (enrichment filter). Second, at least 20% of the cluster 
members had to be associated with this GO term in order to select clusters with relatively homogeneous 
compositions (uniformity filter). An overview of the number of clusters that meet these filter criteria is 
provided in Table IV. It contains the results for four different p-value cutoffs of the GO term 
enrichment filter ranging from 0.05 to 10−6. The corresponding GO annotations for the prioritized 
cluster set, that passed the most stringent selection criteria of 10−6, are listed in Table V. For space and 
readability reasons, the table presents only the highest ranking GO term for each of the three 
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ontologies. The full set of GO annotations can be found in Supplement S6. The following discussion of 
selected clusters is restricted to this most conservative data set (Table V). It contains 66 clusters with a 
total of 1,279 genes that include 277 PUF genes derived from 53 clusters (see Table IV). Our focus on 
these clusters does not indicate that the other clusters of this study are biologically less important. This 
selection is mainly based on the assumption that clusters with uniform GO annotations are particularly 
informative for functionally associating PUF with PKF genes. 
 Depending on the stringency of the applied prioritization filters listed in Table IV, our 
combined clustering and GO term enrichment strategy associated 277-1,541 PUF genes to 
overrepresented GO annotations. In comparison to the GO annotations currently available for these 
PUF genes, our method associated 216-1050 of them to more specific GO terms in the MF category, 
225-1089 in the BP category and 239-1096 in the CC category (Supplement S6). The large number of 
PUF genes associated to functionally informative annotations demonstrates the great potential of our 
approach for guiding future experimental studies on these genes. 
 Based on enrichment p-values, the most highly over-represented functional categories in the 
obtained cluster set are the biological processes: ribosome assembly, photosynthesis pathways and cell 
wall metabolism (Table V). This finding is largely in agreement with related gene co-regulation studies 
in Arabidopsis (Haberer et al., 2006; Wei et al., 2006). With regard to ribosome assembly, 124 of the 
410 GO annotated genes for cytosolic, plastidial and mitochondrial ribosome components appear in 
seven clusters (see Table V, cluster IDs: 23, 32, 37, 39, 182, 239 and 299); and 272 ribosomal genes 
appear in clusters with ≥5 members of the non-prioritized data set. While cluster 23 consists 
exclusively of genes annotated as ribosomal genes (GO:0005840, p-value: 1.2*10-64), the other six 
clusters are highly enriched in ribosomal genes, and they contain among others 16 PUF genes. Equally 
interesting is the observation that photosynthesis-related annotations are highly over-represented in five 
large clusters (cluster IDs: 4, 9, 45, 110 and 304). These clusters represent 51 of all the 121 genes that 
are currently annotated by the GO system as photosynthesis components (GO:0015979). Because both 
processes, photosynthesis as well as ribosomal activities, require the coordinated assembly of many 
proteins to large complexes and protein-protein interaction networks, it is not unexpected that their 
corresponding genes are tightly co-regulated. In alignment with the association hypothesis of this 
study, several of the PUF members in these functionally extremely uniform clusters may be involved in 
processes that are connected to the enzymatic or regulatory networks of photosynthesis and ribosomal 
activities. 
 Interestingly, our method also identified a cluster (ID 77) that is highly enriched in cell wall-
related annotations (e.g. GO:0009834, p-value: 4.2*10-15), such as cellulase synthase genes. A very 
similar cluster of genes was recently described and experimentally verified by two groups (Persson et 
al., 2005; Brown et al., 2005) who specifically mined public expression data for genes that are co-
regulated with the cellulose synthase genes CESA4, 7 and 8. In addition, comparable results were 
described by Jen et al. (2006). This example demonstrates that our genome-wide expression clustering 
approach generates biologically meaningful data. An additional interesting cell wall-related cluster is 
cluster 349 that contains eight genes for proline-rich extensin domain proteins. 
 The majority of the clusters in our data set contain one or more PUF genes (Table IV), but only 
a few of the larger clusters consist predominantly of PUF genes. Cluster 17 represents an exception to 
this rule. The 43 members of this cluster contain 26 PUF genes, and its characterized members show no 
clear enrichment of specific functions. Based on the high abundance of PUF genes in the entire data set 
(~32%), PUF gene enriched clusters occur much less frequent than those enriched in PKF genes; and 
clusters consisting exclusively of PUF genes are entirely absent (Table IV). One explanation for this 
difference could be that the expression of most PUF genes is controlled by the same regulatory 
networks as many PKF genes. If this is the case, PUF genes are more likely to appear in expression 
clusters together with PKF genes than without them.  
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 Our method also identified clusters that are enriched in abiotic stress response annotations. For 
instance clusters 85 and 912 are highly enriched in heat stress-related genes (GO:0009408, p-values: 
6.7*10-18, 1.8*10-6). Interestingly, 10 of the 23 members in the cluster 85 were identified by the 
subsequent DEG analysis of this study, as genes that respond specifically to heat stress and to a much 
lesser extent to other types of abiotic stresses (see Supplement S7). Based on the available co-
expression data, the 9 PUF genes of this cluster are now excellent candidates for discovering novel 
gene functions involved in heat stress response pathways. Additionally, this example illustrates that the 
two chosen approaches of this study, expression clustering and DEG analysis, complement and confirm 
each other. The hypoxia cluster 203 is another interesting abiotic stress cluster (Supplement S6; Fukao 
and Bailey-Serres, 2004). This cluster does not appear in the most stringently prioritized data set (Table 
V), because it did not pass the applied uniformity filter. Nevertheless, it is enriched in hypoxia-
responsive genes (cluster ID 203, GO:0001666, p-value: 2.0*10-5), and it contains several members 
that are involved in cellular respiration processes, such as genes for the alcohol dehydrogenase ADH1 
(AT1G77120), a pyruvate dehydrogenase (AT4G33070) and a hemoglobin-like oxygen binding protein 
that affects ATP levels under hypoxia (AT2G16060, Hebelstrup et al., 2007). Whether the five PUF 
genes of this cluster are also involved in hypoxia-response processes, can be addressed in experimental 
studies. 
 In conclusion, the combined clustering and gene function enrichment strategy allowed us to 
associate a considerable fraction of the PUF encoding gene pool with tightly coexpressed gene sets of 
known function. Depending on the chosen stringency settings, the approach allowed us to assign 277-
1,541 PUF genes (Table IV) to more specific GO terms than those available in the latest GO annotation 
release for Arabidopsis. 
 
Analysis of Differentially Expressed Genes (DEGs) 
DEG analysis can identify groups of genes that exhibit expression changes in response to specific 
treatments or cellular changes. Because this information is not easily obtainable from clustering of 
global expression profiles, DEG analysis of publicly available expression data complements the 
previous approach by associating PUF with PKF encoding genes based on common differential 
expression responses to environmental changes, such as abiotic stresses. If a group of genes shares 
similar expression patterns across a wide spectrum of treatments then it is likely that certain members 
are involved in similar or connected response pathways to these perturbations. The association of genes 
with these response mechanisms can provide valuable information for future functional 
characterization experiments of PUF or PKF genes. 
 One of the main challenges of performing systematic DEG analyses on large and diverse gene 
expression data sets from public sources is the identification of the given design parameters to 
determine for each experiment set its biologically most meaningful analysis strategy. This step is 
extremely crucial, because every analysis needs to focus on the specific treatment factors of an 
experiment. The alternative of performing simply all possible comparisons will provide meaningless 
results for many experimental designs, because it would generate a large number of illegitimate 
contrasts between biologically incomparable samples. In order to define reasonable analysis strategies 
for public GeneChip microarray expression data sets, all their replicates and the most useful sample 
comparisons need to be determined manually to provide the proper experimental design parameters to 
the downstream statistical methods for identifying DEGs. The MIAME and MGED Ontology 
annotations (Brazma et al., 2001; Whetzel et al., 2006) of the public microarray depositories provide 
the essential information about the experiments, but efficient facilities to completely automate the DEG 
analyses on a large scale are not available at this point. 
 To perform large-scale DEG analysis of public expression data, we chose for this study a 
human-supervised analysis strategy, in which we determined for each experiment set its optimum 
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analysis parameters. The goal of this analysis was to identify all PUF and PKF genes that respond to 
specific or a wide range of conditions by enumerating their significant expression modulations in the 
corresponding experiment classes. For this, the available experiment annotations were manually 
evaluated and the most reasonable set of sample comparisons were recorded in an experiment 
definition table that contained all the required input parameters to control the downstream statistical 
DEG analysis in an automated manner (Supplement S2). Typically, we chose for each experiment set a 
design strategy that focused the analysis on the primary treatment as the main experimental factor. 
Multifactorial analysis strategies were avoided as much as possible. For instance, when an experiment 
contained a stress treatment as the primary experimental factor and time or different tissue types as 
secondary factors, then we compared only samples from identical tissues that were collected at the 
same time points. Additionally, comparisons between different experiment sets were not considered to 
exclude unknown variables, such as sample handling differences between laboratories (Hong et al., 
2006). It is important to stress here, that depending on the design of a given experiment and its 
available annotations, it is often difficult to select a single most meaningful analysis strategy. Thus, our 
chosen strategy may not provide a perfect solution for every experiment set, but it represents a practical 
and reasonable compromise for performing systematic DEG analyses on large expression data sets 
from public databases. 
 In total our large-scale DEG analysis survey included 333 comparisons between samples with 
2-4 technical or biological replicates from 41 experiment sets of 6 experiment categories. Table III 
provides an overview of the corresponding sample and experiment sets, and Supplement S2 contains all 
detailed information including the chosen analysis strategies for these data sets. Since the abiotic stress 
category is by far the largest data set, containing 524 chip hybridizations of 254 biosamples (Kilian et 
al., 2007), the following description of our DEG results will be restricted to this most comprehensive 
treatment category (Table VI). The data for the other categories are provided in the online database of 
this project (see below). As the statistical method for identifying DEGs with the determined experiment 
analyses strategies, we used Linear Models for Microarray Data (LIMMA) from Smyth (2004, 2005) 
using in all cases as confidence threshold a false discovery rate (FDR) of ≤ 0.01 in combination with a 
minimum fold-change filter of 2. 
 Applying the above DEG analysis strategy, we were able to identify 269 PKF and 104 PUF 
genes that showed expression changes in the majority of the ten considered abiotic stress categories 
(Figure 3, Supplement S7). This set of a total of 373 generic stress DEGs was determined by filtering 
the generated DEG data set for members that showed one or more significant expression changes in at 
least 80% of all stress categories. Interestingly, 95% of these DEGs also appear in the generated gene 
expression clusters of the previous analysis (Supplement S5). The subsequent GO term enrichment 
analysis revealed that stress-related annotations are highly over-represented in this group of DEGs (see 
Supplement S8). About 48 of its members (13%) are associated with the GO term ”response to stress” 
from the BP ontology (GO:0006950, p-value: 2.0*10-13). This enrichment indicates that our strategy 
has a high selectivity for identifying stress-response genes. Therefore, many PUF encoding genes in 
this data set may be directly or indirectly involved in generic stress response pathways. Among the 
different groups of identified stress responsive genes (see below and Figure 3), the generic stress DEG 
set represents by far the largest group. 
Similarly, other studies have shown that stress-regulated genes frequently exhibit expression changes to 
a wide range of different abiotic stress treatments rather than a refined subset of stresses (Rodriguez 
and Redman, 2005; Kilian et al., 2007). The group of generic stress DEGs contains 48 genes that are 
annotated as transcription regulators in the MF ontology (GO:0030528, p-value: 2.5*10-3, Supplement 
S8). This enrichment emphasizes the central role of transcription factors for the control of many stress 
response pathways. Moreover, it opens the possibility that several of the 104 PUF genes of this data set 
may be involved in similar transcription control processes. 
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    We also used the generated abiotic stress DEG data set for identifying genes that respond 
predominantly to a specific type of stress. These specific stress DEGs were defined as follows. Firstly, 
they had to show in 25% of all comparisons of a given stress type significant changes. Secondly, they 
had to exhibit at the same time at least four times as many changes than in the other nine stresses 
(Figure 3, Supplement S7). This frequency-based filtering approach appeared to be more efficient for 
associating DEGs with specific stresses than overly strict filtering methods. This is the case because 
most stress response genes are not highly specific for a single type of stress (Kilian et al., 2007). As a 
result, strict filtering for genes responding only to a single stress will fail to identify any candidate 
genes in our comprehensive data sets. It is important to emphasize here that the chosen filtering 
approach is a practical compromise, but not a perfect solution to the problem of assigning DEGs 
reliably to different stress types. Therefore, the complete DEG results are provided in Supplement S7 
where users can apply their own custom filters and prioritize strategies. 
 With the chosen frequency filter we were able to identify specific stress DEG sets within six of 
the ten treatment types (Table VI, Figure 3). The data sets for the stress treatments - light, oxidative and 
wounding stress - did not contain any genes that meet our filtering criteria, and the drought data set 
contained only a single member. The lack of specific stress DEGs in these data sets indicates that the 
genome-wide expression response patterns to these four stresses widely overlap with those from other 
stresses. For the remaining six treatment categories we identified in total 608 PKF and 206 PUF genes 
that responded predominantly to single stresses. The functional analysis of these specific stress DEG 
sets with our GO term enrichment approach showed no outstanding enrichment of specific gene 
functions. Instead, the results contained mostly moderately enriched GO annotations from a wide 
spectrum of molecular and biological processes (Supplement S8). Similar to the generic stress data, the 
different groups of specific stress DEGs included various marker genes that are characteristic for stress-
related gene sets. For instance, they contained many genes that are annotated with the GO term 
”response to stress” (see Figure 3). This term is significantly enriched in the heat stress data set (p-
value: 1.3*10-2), while the other five treatment sets contain it with considerable, but not significantly 
enriched frequencies (p-values ≥ 5*10-2). In addition, the heat stress and genotoxic stress data sets 
showed the expected enrichment of genes that are associated with heat response and DNA repair 
processes, respectively (GO:0009408, p-value: 4.9*10-3 and GO:0006281, p-value: 6.1*10-5). 
 In summary, the above large-scale DEG study identified a comprehensive set of candidate PKF 
and PUF genes that are involved in generic and specific stress response pathways. These results suggest 
the existence of one or more abiotic stress response regulons in Arabidopsis similar to the 
environmental stress regulon (ESR) described in yeast (Gasch et al., 2000; Gasch, 2002). Furthermore, 
the generated data sets represent an important resource for other scientists, who are interested in 
addressing more specific questions relevant to abiotic stress research by querying the generated DEG 
information in alternative ways (see Supplement S7 & online database). 
 
Plant Unknown-eome and Gene Expression Databases 
To provide efficient access to the extensive data sets of this study, we have developed two publicly 
available online portals: the Plant Unknown-eome Database (POND, 
http://bioweb.ucr.edu/scripts/unknownsDisplay.pl) and the Plant Gene Expression Database (PED, 
http://bioweb.ucr.edu/PED). The POND interface provides query and download options for the latest 
PUF sets from Arabidopsis. Their predictions are based on the three search methods used for this study: 
(1) BLASTP searches against the PKFs from Swiss-Prot, (2) HMM searches against the Pfam domain 
database and (3) retrieval of the ’unknown’ annotations from the Gene Ontology system (MF). 
 The PED integrates our diverse co-expression data with a variety of online tools for user-
friendly DEG analysis, cluster visualization and data mining (Figure 4). The aim of this service is not 
to duplicate or compete with the excellent web resources that are already available for array-based 
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expression data from plants, such as GEO, Genevestigator, BAR, AtGenExpress, ATC, PageMan, 
CSB.DB and MetNet (Barrett et al., 2006; Grennan, 2006; Zimmermann et al., 2004, 2005; Toufighi et 
al., 2005; Schmid et al., 2005; Jen et al., 2006; Usadel et al., 2006; Steinhauser et al., 2004b; Yang et 
al., 2005). Instead PED complements the available resources by providing a subset of the publicly 
available Affymetrix expression data from Arabidopsis in pre-analyzed form using various statistical 
methods for DEG identification combined with expression cluster information for co-regulation 
analysis. To provide high-confidence data, the database is restricted to data sets with two or more 
replicates. The following text provides a brief overview of the most interesting features of the database. 
 All expression data in PED were normalized with the RMA and MAS5 algorithms (Irizarry et 
al., 2003; Qin et al., 2006). The incorporation of the expression values from both normalization 
methods increases the utility spectrum of the provided data sets. The quantile-based RMA method 
generates more accurate expression measures for weakly expressed genes, whereas the MAS5 scaling 
approach is more appropriate for comparisons between expression studies (Lim et al., 2007). The 
option to identify DEGs by statistical modeling is a very unique feature of this online service. For this, 
PED provides the results of experiment design-based expression changes from several statistical 
methods, such as LIMMA (Smyth, 2004, 2005). The corresponding experiment analysis strategies are 
available for online viewing and download. A combinatorial query page allows searching for DEGs by 
specific treatments and filtering by various quantitative values to obtain candidate gene lists with 
strategies that resemble typical microarray analysis routines. Furthermore, the expression intensity and 
DEG data in PED are fully integrated with a comprehensive set of gene co-expression data from 
correlation and cluster analyses. To identify for a gene of interest its most positively or negatively co-
regulated neighbors, the interface contains a correlation tool that provides for every gene on the arrays 
the Pearson and Spearman correlation profiles against all other genes. Information on discrete 
expression clusters is combined with the correlation data. It contains the four separate HTC cluster data 
sets that were generated by this study using as distance measures the two correlation coefficients in 
their signed and absolute forms (see previous section). An expression profile plotting tool is available 
for evaluating the quality of expression clusters or visualizing the expression patterns for custom gene 
sets across all samples in the database. This utility offers convenient options for inspecting the vast 
number of expression clusters of this study efficiently. Extensive download options for imports into 
local spreadsheet programs are available on all query levels for intensity, DEG, correlation and cluster 
data. 
 While the backend of the database is based on PostgreSQL and the web interface is 
implemented in Java, the framework of data analysis and online tools is largely designed around R and 
BioConductor utilities (R Development Core Team, 2006; Gentleman et al., 2005). The latter design 
feature will allow us to routinely add to PED’s online services in the future additional useful tools from 
the wide spectrum of statistical data analysis packages that are provided by the R open source 
community. 
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Conclusion 
We present here one of the most comprehensive gene co-regulation studies that are currently available 
for Arabidopsis. Our study is unique by focusing on the analysis on PUF genes and their systematic 
association with functional annotations of PKF genes. By applying a combination of genome-wide 
cluster and DEG analysis methods, we identified many interesting groups of potentially co-regulated 
genes from a wide range of biological processes and stress response pathways. This approach allowed 
us to assign 1,541 PUF genes to relative specific and functionally informative GO terms. These gene 
associations provide a valuable resource for guiding future functional characterization experiments of 
PUF and PKF genes. In addition, the developed large-scale expression data analysis methods and the 
associated database represent important components of a future open-source framework for other 
scientists who are interested in performing similar studies, or utilizing public gene expression resources 
more efficiently. Finally, users of the provided data sets should keep two limitations in mind. First, the 
generated associations are hypotheses and not final proofs of gene functions. Second, even the most 
careful statistical approaches for large-scale data can only reduce, but not fully eliminate errors in the 
decision making processes associated with the interpretation of microarray data. 
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Material and Methods 
 
Sequence Similarity and Domain Searches 
Sequence similarity searches of the Arabidopsis proteome against the SwissProt database were 
performed with the BLASTP program (Altschul et al., 1997) using an E-value of 1*10-6 as cutoff and 
the default settings for the remaining parameters. The Arabidopsis protein sequences were obtained 
from the TAIR site (version 7 release, ftp://ftp.arabidopsis.org/home/tair/Sequences) and the SwissProt 
sequences (Wu et al., 2006) were downloaded from the ExPASy site (release 54.4, 
ftp://ftp.expasy.org/databases/uniprot). To query only the functionally characterized protein space, all 
entries annotated as sequences of unknown function were removed from the SwissProt data set. 
 To identify protein domains of known function in the above Arabidopsis proteins, domain 
searches against the hidden Markov models of the Pfam database (Bateman et al., 2004) were 
performed with the HMMPFAM program (Eddy, 1996) using an E value of 1*10-2 as cutoff. The 
global models of the Pfam release 22 were used for these searches 
(ftp://ftp.sanger.ac.uk/pub/databases/Pfam/). Matches against domains of un known function (DUF) 
were ignored in the post-processing of the search results in order to identify only candidate sequences 
with domains of known functions. 
 
GO Analysis 
The Arabidopsis gene-to-GO mappings from TAIR/TIGR were used for all GO analysis steps of this 
study. They were downloaded from the Gene Ontology site (10-12-2007 release, http://gene 
ontology.org). Direct assignments to the root node of each ontology were considered as unknown 
function annotations. These root assignments, in combination with the evidence code ND (No 
biological Data available), are the new official GO terms for sequences of unknown function. The 
former terms, molecular function unknown (GO:0005554), biological process unknown (GO:0000004) 
and cellular component unknown (GO:0008372), were discontinued by the consortium on 10-17-2006. 
In the subsequent GO term enrichment analysis steps, the new unknown annotations to the root were 
considered as artificial terminal annotations. This was necessary, because the root node is connected 
with all other genes in the GO network, which makes it impossible to obtain for the new unknown 
annotations meaningful enrichment data with most GO analysis approaches. This modification does not 
affect the results for any of the other GO nodes. 
 The hypergeometric distribution was used to test gene sets for the over-representation of GO 
terms. To perform this test, we developed a set of modular functions using the R language for statistical 
computing for their implementation (R Development Core Team, 2006). The corresponding 
GOHyperGAll script computes for a given sample population of genes the enrichment test for all nodes 
in the GO network, and returns raw and adjusted p-values. As an adjustment method for multiple 
testing, it uses the Bonferroni method according to Boyle et al. (2004). GOHyperGAll is based on the 
GOstats package (Falcon and Gentleman, 2007) from the BioConductor project (Gentleman et al., 
2005), and it provides similar utilities as the hyperGTest function included in this package. The main 
differences of our method are that it simplifies the usage of custom gene-to-GO mappings, and it 
contains various utilities for efficiently analyzing large numbers of gene sets from cluster analyses in 
batch mode. All functions of the GOHyperGAll script are available in Supplement S9. 
 
Microarray Analysis 
A total of 1,310 Affymetrix raw data Cel files were downloaded from the AtGenExpress and GEO sites 
(Schmid et al., 2005; Barrett et al., 2006; Kilian et al., 2007). All of them are derived from the 
Affymetrix ATH1 gene GeneChip microarray for Arabidopsis, and the corresponding samples 
contained at least two replicate samples. A summary of the utilized experiment sets is provided in 
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Table III, while a detailed description of the analyzed data with their experimental design parameters is 
provided in Supplement S2. The required probe set-to-locus mappings for the ATH1 chip were 
obtained from TAIR (ftp://ftp.arabidopsis.org/home/tair/Microarrays/Affymetrix, version 2-5-2007). 
All ambiguous probe sets on this chip were treated in the gene enumeration steps of this study in the 
following manner: controls and probe sets matching no or several loci in the Arabidopsis genome were 
ignored in the downstream analysis steps. In addition, redundant probe sets that represent the same 
locus several times were counted only once. 
 The normalization of the raw data Cel files was performed in R using the MAS5 and RMA 
algorithms, that are implemented in the affy package form the BioConductor project (Irizarry et al., 
2003, 2006; Qin et al., 2006). To allow in the DEG analysis comparisons between the different samples 
of an experiment set, the RMA normalization was performed in batches for entire experiments sets 
(Table III). This batch normalization is only required for the quantile-based RMA approach, but not for 
the MAS5 scaling approach. The present call information of the non-parametric Wilcoxon signed rank 
test was computed with the affy package to estimate the amount of unexpressed genes (Liu et al., 2002; 
McClintick and Edenberg, 2006). The obtained expression values from both normalization methods 
were uploaded to the PED database. 
 For the DEG analysis, the replicates and the most appropriate sample comparisons were 
determined manually for each experiment set. The generated analysis strategies were recorded in 
experiment definition tables (Supplement S2). These tables were used to control the downstream DEG 
analysis steps in an automated manner by providing all information on replicates and sample 
comparisons to the statistical test methods. The actual analysis of DEGs was performed with the 
LIMMA package from Smyth (2004, 2005). The Benjamini & Hochberg method was selected to adjust 
p-values for multiple testing and to determine FDRs (Benjamini and Hochberg, 1995). As confidence 
threshold we used an adjusted p-value of ≤ 0.01 in combination with a minimum fold-change filter of 
2. All DEG analyses were performed on both the MAS5 and RMA normalized data sets. While both 
DEG analysis results were uploaded to the PED database, only the RMA set is discussed in this study, 
because the RMA algorithm provides more accurate measurements on weaker expressed genes (Qin et 
al., 2006). 
 
Cluster Analysis 
The correlation and cluster analysis steps were performed in R on the MAS5 normalized expression 
data set. For this, the mean values from replicated biological measurements were combined in one large 
expression matrix. The RMA data were not used for cluster analysis, because they are less reliable for 
correlation studies than MAS5 data (Lim et al., 2007). The Pearson and Spearman correlation 
coefficients were calculated with the cor function in R. The obtained correlation coefficients were 
transformed into a correlation-based distance matrix after subtracting their values from 1. Four separate 
distance matrices were calculated for the Pearson and Spearman correlation coefficients in their signed 
and absolute forms. The matrices were passed on to the hclust function (Murtagh, 1985; R 
Development Core Team, 2006) that performs agglomerative hierarchical clustering. Complete linkage 
was used as cluster joining method. 
    In order to obtain from hierarchical dendrograms discrete clusters, we developed a new hierarchical 
threshold clustering (HTC) method for this project. This method identifies sub-clusters in dendrograms 
based on a minimum tolerable similarity cutoff between all cluster members. This is achieved by 
applying an all-against-all similarity test for the clusters from all possible sub-trees. At the same time, 
unique cluster memberships are maintained and all items in the processed dendrogram are assigned to 
clusters with one or more members. The corresponding HTC R script is available in Supplement S10. 
As cutoff we used for this cluster selection procedure a correlation coefficient of ≥0.6. This cutoff was 
chosen because it resulted in the highest enrichment of functionally related genes compared to 
alternative cutoffs settings (Supplement S4). As a result of this method, the members of every 
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identified cluster shared with all other members of the same cluster correlation coefficients between 0.6 
and 1.0. 
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Figure Legends 
 
 
Figure 1: Relative Amount of Detectable Genes.  
The relative amount of present calls is plotted for all genes (ALL), the PKF set and the PUF set using 
the five frequency intervals (bins): 0, 1-25, 26-50, 51-75 and 76-100% present calls. All experiment 
sets of this study were used for generating this plot. The complete present call data set for the 
individual experiment categories is available in Supplement Table S3. 
 
 
Figure 2: Cluster Distributions.  
The numbers of clusters (a) and genes (b) are plotted for the cluster size intervals (bins) that are given 
along the abscissa. Each set of four bars, from left to right, contains the data for the clustering results 
using PCC, absolute PCC, SCC and absolute SCC values as distance measures, respectively. 
 
 
Figure 3: Generic and Specific Stress DEGs.  
The number of PUF and PKF encoding genes are plotted that were identified as generic and specific 
stress DEGs. The values above the bars provide the corresponding numbers of genes that are currently 
annotated with the GO term ”response to stress” (GO:0006950 in BP ontology). The different stress 
types are given along the abscissa. Genes responding to the majority of the 10 abiotic stresses were 
considered as generic stress DEGs (Generic), while those responding predominantly to a specific type 
of stress were classified as specific stress DEGs. The following filters were used for assigning genes to 
the two stress categories. (1) Generic stress-response genes are those that showed in at least 80% of all 
stress treatments one or more significant changes. (2) Whereas, specific stress-response genes are those 
that showed in ≥25% of all comparisons of a given stress significant changes, and exhibited there ≥4 
times as many changes than in the other nine stresses. For both filters, the observed expression changes 
were only counted when they meet our confidence criteria of a FDR ≤0.01 and a fold change ≥2. The 
specific stress data for the four treatment sets - light, oxidative, drought and wounding - are not plotted 
here, because their data sets did not contain any DEGs that meet our specific stress criteria. 
 
Figure 4: Plant Gene Expression Database (PED).  
The outline illustrates important utilities of the database (URL: http://bioweb.ucr.edu/PED). 
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Tables 
 
 

 Empirical Large-Scale Sequence PUFs Missing 
MF 1,918 9,061 4,677 8,665 2,228 
% 7 34 18 33 8 
BP 3,731 4,777 4,462 10,194 3,385 
% 14 18 17 38 13 
CC 3,333 1,661 8,527 8,426 4,602 
% 13 6 32 32 17 

Any 5,837 11,005 12,851 14,071 0 
% 22 42 48 53 0 

 
Table I: Functional Classification by Gene Ontologies.  
The numbers of protein coding loci from Arabidopsis are given for custom categories of evidence 
codes of the three gene ontologies: MF, Molecular Function, BP, Biological Process and CC, Cellular 
Component. A description of the evidence codes is available on the Gene Ontology project site 
(http://www.geneontology.org/GO.evidence.shtml). The number of loci with annotations in Any of the 
three ontologies are given in the last two rows. The percentage values are calculated relative to the total 
number of protein coding genes represented in the three ontologies. The evidence codes are grouped 
into the following custom categories of functional assignments: Empirical data (IC, IDA, IGI, IMP, IPI, 
TAS), Large-Scale experiments (IEP, RCA, NAS, NR), Sequence similarity or feature predictions 
(IEA, ISS) and PUFs lacking functional data (ND). The column Missing accounts for genes that lack 
annotations within the listed ontologies. 
 
 
 
Method SWP Pfam GOMF 
SWP 8,681 (32%) 6,260 (23%) 5,456 (20%) 
Pfam  8,272 (31%) 5,788 (21%) 
GOMF   8,665 (32%) 
All 4,667 (17%)   
Any 12,781 (47%)   

  
Table II: PUF Identification by Different Methods.  
The table provides a matrix representation of the number of PUFs determined by the three different 
identification methods: BLASTP searches against the SWP database, HMMpfam searches against Pfam 
and the GOMF approach from Table I. The amount of PUFs common between pairwise comparisons of 
methods are provided in the corresponding row and column intersects of the matrix. The numbers of 
PUFs identified by All three methods or by at least one of them (Any) are given in the last two rows, 
respectively. The percentage values are calculated relative to the total number of protein coding genes. 
The complete gene lists for the PUF sets are available in Supplement S1. 
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Category Cel Samples Comp ExpSet 
Abiotic Stress 524 254 129 10 
Biotic Stress 200 72 55 6 
Chemical Treatment 99 46 35 9 
Tissue & Development 237 79 40 1 
Genotype 86 29 28 4 
Hormone Treatment 164 80 46 11 
Sum 1310 560 333 41 

Table III: Analyzed Gene Expression Arrays.  
The table provides an overview of the different categories of GeneChip microarray experiments (1st 
column) that were analyzed in this study. The following numeric columns contain the number of raw 
data (Cel) files, the amount of the corresponding biosamples (Samples), the number of performed 
comparisons in the DEG analysis (Comp) and the number of experiment sets (ExpSet) the raw data are 
derived from. A more detailed list of this data is available in Supplement S2. 
 
 
 
 
 
 
 
 
 
Filter Clusters Genes 
None 916 (794) 11,077 (2,884) 
0.05 519 (429) 6,262 (1,541) 
0.01 373 (301) 4,893 (1,126) 
0.001 212 (170) 3,315 (744) 
1e-06 66 (53) 1,279 (277) 

  
Table IV: Overview of GO Term Enrichment Analysis.  
The amount of clusters and genes are provided for different cluster prioritization filters that were 
applied to the GO term enrichment data of Supplement S6. The values in parentheses represent the 
corresponding number of clusters containing PUF genes and the number of PUF genes in these clusters, 
respectively. The first row contains the counts for the unfiltered data set that considered only clusters 
with ≥5 members. The subsequent rows refer to the counts after applying the following two-component 
filter with four different stringency settings. (1) To select clusters with enriched GO terms, the clusters 
had to contain one or more over-represented GO terms in at least one of the three ontologies based on 
the Bonferroni corrected p-values of the enrichment analysis. The four different p-value cutoffs used 
for this filter are given in the first column. (2) In addition, ≥20% of the cluster members needed to be 
associated with the selected GO term in order to favor functionally homogeneous clusters. 
 
Table V    

    
CLID CLSZ PUF Sample P-value Ont GO Term  
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Reproduction    
115 20 5 2 3.00E-06 BP GO:0010344: seed oilbody biogenesis  
115 20 5 11 0.014 CC GO:0016020: membrane  
115 20 5 4 4.30E-07 MF GO:0045735: nutrient reservoir activity  

Carbohydr
ate 
metabolis
m  

     

95 21 4 4 5.90E-06 BP GO:0006073: glucan metabolic process  
95 21 4 8 1.80E-10 CC GO:0005618: cell wall  
95 21 4 4 1.90E-07 MF GO:0005199: structural constituent of cell wall  

131 18 1 6 1.10E-10 BP GO:0006007: glucose catabolic process  
131 18 1 7 1.80E-05 CC GO:0005739: mitochondrion  
131 18 1 2 1.30E-05 MF GO:0004738: pyruvate dehydrogenase activity  
248 11 2 3 9.30E-07 BP GO:0005982: starch metabolic process  
248 11 2 9 1.70E-07 CC GO:0009507: chloroplast  
248 11 2 5 0.003 MF GO:0016740: transferase activity  
300 11 3 3 1.70E-08 BP GO:0005983: starch catabolic process  
300 11 3 5 0.011 CC GO:0044444: cytoplasmic part  
300 11 3 2 0.0025 MF GO:0016758: transferring hexosyl groups  
548 7 0 3 2.30E-08 BP GO:0006084: acetyl-CoA metabolic process  
548 7 0 2 1.70E-06 CC GO:0009346: citrate lyase complex  
548 7 0 3 7.30E-09 MF GO:0046912: transferring acyl groups  
686 6 1 3 5.60E-08 BP GO:0005982: starch metabolic process  
686 6 1 2 0.0018 CC GO:0005829: cytosol  
686 6 1 2 3.10E-06 MF GO:0001871: pattern binding  
599 5 0 2 7.30E-06 BP GO:0016138: glycoside biosynthetic process  
599 5 0 2 0.19 CC GO:0043231: intracellular membrane organelle  
599 5 0 3 5.00E-07 MF GO:0004497: monooxygenase activity  

Nucleotide metabolism     
25 39 10 8 2.60E-07 BP GO:0006259: DNA metabolic process  
25 39 10 3 0.0045 CC GO:0044427: chromosomal part 
25 39 10 2 0.033 MF GO:0003777: microtubule motor activity  
29 37 5 13 2.10E-14 BP GO:0006259: DNA metabolic process  
29 37 5 6 5.30E-07 CC GO:0005694: chromosome  
29 37 5 15 1.20E-06 MF GO:0003677: DNA binding  
41 33 5 4 1.30E-05 BP GO:0006399: tRNA metabolic process  
41 33 5 21 1.80E-15 CC GO:0009536: plastid  
41 33 5 2 0.019 MF GO:0004812: aminoacyl-tRNA ligase activity  

Translation    
23 37 0 36 9.80E-45 BP GO:0006412: translation  
23 37 0 37 1.20E-64 CC GO:0005840: ribosome  
23 37 0 36 5.30E-65 MF GO:0003735: structural constituent of ribosome  
32 35 3 31 2.70E-35 BP GO:0006412: translation  
32 35 3 33 2.00E-50 CC GO:0030529: ribonucleoprotein complex  
32 35 3 31 2.40E-52 MF GO:0003735: structural constituent of ribosome  
37 36 11 8 0.00097 BP GO:0006412: translation  
37 36 11 11 5.50E-08 CC GO:0005739: mitochondrion  
37 36 11 4 0.00026 MF GO:0008135: translation factor activity  
39 34 1 29 7.70E-32 BP GO:0006412: translation  
39 34 1 29 4.60E-46 CC GO:0005840: ribosome  
39 34 1 29 3.10E-48 MF GO:0003735: structural constituent of ribosome  

182 11 0 9 4.50E-10 BP GO:0006412: translation  
182 11 0 10 1.80E-16 CC GO:0005840: ribosome  
182 11 0 10 7.80E-18 MF GO:0003735: structural constituent of ribosome  
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239 13 0 8 2.50E-08 BP GO:0006412: translation  
239 13 0 6 3.30E-08 CC GO:0005840: ribosome  
239 13 0 6 8.40E-08 MF GO:0003735: structural constituent of ribosome  
299 11 1 7 3.40E-07 BP GO:0006412: translation  
299 11 1 7 2.40E-11 CC GO:0005840: ribosome  
299 11 1 7 2.40E-11 MF GO:0003735: structural constituent of ribosome  

Lipid metabolism      
73 26 8 6 1.80E-14 BP GO:0019915: sequestering of lipid  
73 26 8 7 6.50E-09 CC GO:0005576: extracellular region  
73 26 8 4 1.60E-06 MF GO:0045735: nutrient reservoir activity  

279 10 2 2 9.30E-06 BP GO:0019374: galactolipid metabolic process  
279 10 2 2 0.01 CC GO:0031967: organelle envelope 
279 10 2 5 1.90E-07 MF GO:0042578: phosphoric ester hydrolase activity  

Transport     
47 34 8 2 0.00042 BP GO:0045036: protein targeting to chloroplast  
47 34 8 23 2.20E-17 CC GO:0009536: plastid  
47 34 8 8 1 MF GO:0003674: molecular function (PUF term)

288 11 4 3 2.40E-07 BP GO:0045036: protein targeting to chloroplast  
288 11 4 4 1.10E-07 CC GO:0009941: chloroplast envelope  
288 11 4 2 0.016 MF GO:0022804: transmembrane transporter activity  
536 7 0 5 9.20E-06 BP GO:0006810: transport  
536 7 0 5 3.60E-09 CC GO:0005794: Golgi apparatus  
536 7 0 4 7.20E-05 MF GO:0005215: transporter activity 
708 6 1 3 4.70E-08 BP GO:0006606: protein import into nucleus  
708 6 1 3 6.40E-07 CC GO:0005635: nuclear envelope  
708 6 1 3 2.30E-06 MF GO:0008565: protein transporter activity  
765 5 1 2 3.20E-05 BP GO:0006820: anion transport  
765 5 1 2 2.10E-05 CC GO:0005741: mitochondrial outer membrane  
765 5 1 2 8.80E-07 MF GO:0008308: voltage-gated ion channel activity  

Biological process    
17 43 26 28 1.10E-08 BP GO:0008150: biological process (PUF term)
17 43 26 23 1.50E-05 CC GO:0005575: cellular component (PUF term) 
17 43 26 26 2.70E-09 MF GO:0003674: molecular function (PUF term)

Photosynthesis    
4 134 43 28 2.20E-37 BP GO:0015979: photosynthesis  
4 134 43 67 1.30E-89 CC GO:0044436: thylakoid part  
4 134 43 2 0.00058 MF GO:0010242: oxygen evolving activity  
9 88 18 6 2.00E-05 BP GO:0015979: photosynthesis  
9 88 18 47 4.20E-30 CC GO:0009507: chloroplast  
9 88 18 2 7.00E-04 MF GO:0004045: aminoacyl-tRNA hydrolase activity  

45 32 5 7 2.90E-10 BP GO:0015979: photosynthesis  
45 32 5 21 3.10E-16 CC GO:0009507: chloroplast  
45 32 5 5 1 MF GO:0003674: molecular function (PUF term)

110 20 6 3 8.00E-05 BP GO:0015979: photosynthesis  
110 20 6 12 9.00E-10 CC GO:0009507: chloroplast  
110 20 6 2 0.00093 MF GO:0004176: ATP-dependent peptidase activity  
304 9 2 7 1.60E-15 BP GO:0015979: photosynthesis  
304 9 2 5 1.90E-11 CC GO:0009523: photosystem II  
304 9 2 3 5.10E-07 MF GO:0046906: tetrapyrrole binding  
428 8 2 2 0.024 BP GO:0006091: generation of metabolites and energy  
428 8 2 6 5.10E-07 CC GO:0005739: mitochondrion  
428 8 2 2 1.80E-06 MF GO:0004449: isocitrate dehydrogenase activity  
555 5 1 3 1.20E-06 BP GO:0015979: photosynthesis  
555 5 1 3 3.80E-10 CC GO:0009502: photosynthetic electr. transport chain  
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555 5 1 3 3.30E-06 MF GO:0009055: electron carrier activity  
923 5 2 3 5.20E-08 BP GO:0009853: photorespiration  
923 5 2 3 3.90E-08 CC GO:0030964: NADH dehydrogenase complex  
923 5 2 2 0.0047 MF GO:0003735: structural constituent of ribosome  

Cell organization and biogenesis   
77 24 5 6 4.20E-15 BP GO:0009834: secondary cell wall biogenesis  
77 24 5 3 0.011 CC GO:0031225: anchored to membrane  
77 24 5 6 1.70E-05 MF GO:0016757: transferring glycosyl groups  

108 18 7 2 0.00084 BP GO:0009831: cellulose and pectin modification  
108 18 7 18 1.30E-09 CC GO:0016020: membrane  
108 18 7 2 0.0076 MF GO:0008289: lipid binding  
349 9 0 7 1.00E-15 BP GO:0009664: cellulose and pectin biogenesis  
349 9 0 6 0.00028 CC GO:0012505: endomembrane system  
349 9 0 7 7.60E-19 MF GO:0005199: structural constituent of cell wall  
953 5 1 2 9.70E-07 BP GO:0010020: chloroplast fission 
953 5 1 2 0.029 CC GO:0009507: chloroplast  
953 5 1 4 0.044 MF GO:0005488: binding  

Secondary metabolism   
12 73 13 3 0.0076 BP GO:0046148: pigment biosynthetic process 
12 73 13 34 1.30E-18 CC GO:0009536: plastid  
12 73 13 3 0.00059 MF GO:0003746: translation elongation factor activity  

143 17 2 4 8.70E-08 BP GO:0046148: pigment biosynthetic process 
143 17 2 8 1.40E-05 CC GO:0009536: plastid  
143 17 2 5 0.0023 MF GO:0016491: oxidoreductase activity  
347 10 2 3 1.20E-07 BP GO:0009686: gibberellin biosynthetic process  
347 10 2 4 0.95 CC GO:0005575: cellular component (PUF term)  
347 10 2 5 1.80E-10 MF GO:0016706: oxidoreductase activity  
432 8 1 5 6.00E-13 BP GO:0009813: flavonoid biosynthetic process  
432 8 1 2 0.00017 CC GO:0009705: membrane of vacuole   
432 8 1 2 0.00023 MF GO:0016706: oxidoreductase activity  
600 5 0 2 9.30E-07 BP GO:0009718: anthocyanin biosynthetic process  
600 5 0 2 0.63 CC GO:0005575: cellular component (PUF term)  
600 5 0 4 0.00049 MF GO:0016740: transferase activity  

Response to stimulus   
68 22 3 7 5.40E-07 BP GO:0006952: defense response 
68 22 3 11 0.02 CC GO:0016020: membrane  
68 22 3 5 1.10E-06 MF GO:0004888: transmembrane receptor activity  
85 23 9 10 6.70E-18 BP GO:0009408: response to heat  
85 23 9 10 0.21 CC GO:0005575: cellular component (PUF term)  
85 23 9 2 0.043 MF GO:0005516: calmodulin binding 
90 22 5 6 1.60E-09 BP GO:0009408: response to heat  
90 22 5 5 0.04 CC GO:0005634: nucleus  
90 22 5 3 0.00052 MF GO:0051082: unfolded protein binding  

346 10 3 2 0.03 BP GO:0009628: response to abiotic stimulus  
346 10 3 9 6.20E-08 CC GO:0009536: plastid  
346 10 3 3 0.57 MF GO:0003674: molecular function (PUF term)
356 9 9 8 1.10E-15 BP GO:0009733: response to auxin stimulus  
356 9 9 3 0.021 CC GO:0043231: intracellular membrane-bound organelle  
356 9 9 9 7.70E-05 MF GO:0003674: molecular function (PUF term)
480 8 1 3 3.80E-05 BP GO:0006979: response to oxidative stress  
480 8 1 7 1.10E-08 CC GO:0005739: mitochondrion  
480 8 1 2 7.20E-05 MF GO:0046933: hydrogen ion transporting ATP synthase  
586 7 1 3 4.20E-05 BP GO:0009737: response to abscisic acid stimulus  
586 7 1 2 0.00013 CC GO:0008287: serine/threonine phosphatase complex  
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586 7 1 3 5.50E-07 MF GO:0015071: protein phosphatase type 2C activity  
748 5 0 3 6.50E-08 BP GO:0009404: toxin metabolic process  
748 5 0 4 0.01 CC GO:0005737: cytoplasm  
748 5 0 3 6.90E-08 MF GO:0004364: glutathione transferase activity  
912 5 0 4 7.30E-08 BP GO:0006457: protein folding  
912 5 0 3 1.80E-06 CC GO:0009532: plastid stroma  
912 5 0 3 1.20E-06 MF GO:0051082: unfolded protein binding  

Physiological process   
36 34 6 15 0.0011 BP GO:0043170: macromolecule metabolic process  
36 34 6 11 2.00E-08 CC GO:0043228: non-membrane-bound organelle  
36 34 6 7 3.50E-06 MF GO:0003735: structural constituent of ribosome  
81 24 8 3 0.0011 BP GO:0051188: cofactor biosynthetic process 
81 24 8 14 6.70E-08 CC GO:0009536: plastid  
81 24 8 8 1 MF GO:0003674: molecular function (PUF term)

130 15 1 3 3.80E-07 BP GO:0010119: regulation of stomatal movement  
130 15 1 2 1 CC GO:0005575: cellular component (PUF term) 
130 15 1 5 0.041 MF GO:0016787: hydrolase activity  
134 17 7 12 1.10E-20 BP GO:0006511: ubiquitin-dependent catabolic process  
134 17 7 12 1.70E-28 CC GO:0000502: proteasome complex  
134 17 7 7 6.50E-08 MF GO:0008233: peptidase activity  
199 13 1 9 3.90E-07 BP GO:0009058: biosynthetic process  
199 13 1 6 5.60E-12 CC GO:0044445: cytosolic part  
199 13 1 6 2.10E-08 MF GO:0003735: structural constituent of ribosome  
224 12 3 2 0.045 BP GO:0044249: cellular biosynthetic process  
224 12 3 8 1.00E-07 CC GO:0009507: chloroplast  
224 12 3 2 0.043 MF GO:0003723: RNA binding  
293 11 3 2 0.00012 BP GO:0042775: ATP synthesis coupled electr. transport  
293 11 3 9 3.80E-11 CC GO:0005739: mitochondrion  
293 11 3 3 2.10E-05 MF GO:0015078: hydrogen ion transmembr. transporter  
366 8 1 3 7.90E-06 BP GO:0006457: protein folding  
366 8 1 6 4.50E-10 CC GO:0005783: endoplasmic reticulum  
366 8 1 2 0.0016 MF GO:0031072: heat shock protein binding  
406 9 1 4 1.00E-06 BP GO:0006511: ubiquitin-dependent protein catabolic   
406 9 1 4 6.20E-09 CC GO:0000502: proteasome complex  
406 9 1 3 0.00063 MF GO:0008233: peptidase activity  
520 7 0 2 3.00E-06 BP GO:0006121: mitochondrial electron transport  
520 7 0 2 3.40E-06 CC GO:0045273: respiratory chain complex II  
520 7 0 3 4.90E-07 MF GO:0016627: oxidoreductase for CH-CH groups  
728 6 0 6 5.50E-12 CC GO:0005783: endoplasmic reticulum  
728 6 0 2 0.0051 MF GO:0008233: peptidase activity  
790 5 1 3 8.60E-06 BP GO:0006511: ubiquitin-dependent catabolic process  
790 5 1 3 1.10E-08 CC GO:0005839: proteasome core complex  
790 5 1 3 0.00012 MF GO:0008233: peptidase activity  
895 5 0 5 0.0099 BP GO:0008152: metabolic process 
895 5 0 5 2.20E-07 CC GO:0005739: mitochondrion  
895 5 0 2 9.50E-08 MF GO:0004774: succinate-CoA ligase activity  
943 5 2 2 0.029 BP GO:0009058: biosynthetic process  
943 5 2 4 4.70E-07 CC GO:0005783: endoplasmic reticulum  
943 5 2 2 0.44 MF GO:0003674: molecular function (PUF term)

 
Table V: GO Term Enrichment Data for Prioritized Clusters.  
The GO annotations for the most conservative cluster prioritization filter from Table IV are provided. 
The three filtering criteria for selecting the presented clusters are described in the previous legend. 
Based on space and readability considerations, only the highest ranking GO term within each ontology 
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is included here. As a result of our prioritization criteria, every cluster listed has at least one GO term 
assigned that meets both, the enrichment (p-value ≤10-6) and uniformity (≥20%) criteria. If an 
ontology did not contain a GO term passing these filters then the candidate with the lowest p-value was 
chosen. GO slim terms are used as table subtitles to organize the clusters based on a general biological 
process classification schema. The different columns provide the identifiers of each cluster (CLID), the 
number of genes (CLSZ), the number of PUF genes, the number of genes matching a given GO term 
(Sample), the Bonferroni corrected p-value of the hypergeometric distribution test (P-value), the 
ontology type (Ont) and the corresponding GO Term, respectively. The complete list of enriched GO 
terms and the associated gene identifiers for these clusters are available in Supplement S6. 
 
 
 
 
 
 
 
 
Stress Chips Samples Comp 
Heat 68 34 17 
Cold 48 24 12 
Osmotic 48 24 12 
Salt 48 24 12 
Drought 56 28 14 
Oxidative 48 24 12 
Wounding 56 28 14 
UV-B 56 28 14 
Light 48 16 10 
Genotoxic 48 24 12 

  
Table VI: Abiotic Stress Treatments.  
The table provides an overview of the different types of abiotic stress experiment sets (Stress) that were 
used in the DEG analysis of this study. The numeric columns contain the number of the analyzed 
GeneChip microarrays (Stress), the number of the corresponding biosamples (Samples) and the number 
of the performed comparisons (Comp). A more detailed list of this data is available in Supplement S2. 
 
Supplemental Data 
  
 S1: PUF sets (Excel table) 
 
 S2: GeneChip R microarray experiments and analysis strategies (Excel table) 
 
 S3: PMA data (Excel table) 
 
 S4: HTC cutoff selection (PDF) 
 
 S5: Cluster data (Excel table) 
 

 www.plantphysiol.orgon September 19, 2017 - Published by Downloaded from 
Copyright © 2008 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org


 S6: GO analysis of clusters (Excel table) 
 
 S7: DEG analysis (Excel table) 
 
 S8: GO analysis of DEGs (Excel table) 
 
 S9: R script for GO term enrichment analysis (text file) 
 
 S10: R script for HTC clustering (text file) 
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