Running head: Plant Mitochondrial Presequences

Author for correspondence responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantphysiol.org) is:

Prof. A. Harvey Millar
ARC Centre of Excellence in Plant Energy Biology
4th Floor MCS Building M316
University of Western Australia
35 Stirling Highway
Crawley 6009 WA
Australia
Tel: +61 8 6488 7245
Fax: +61 8 6488 4401
e-mail: hmillar@cyllene.uwa.edu.au

Journal research area: Bioenergetics and Photosynthesis
Refining the definition of plant mitochondrial presequences through analysis of sorting signals, N-terminal modifications and cleavage motifs.

Shaobai Huang, Nicolas L. Taylor, James Whelan and A. Harvey Millar§

ARC Centre of Excellence in Plant Energy Biology, M316, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009 Australia.

Footnotes:

§This work was supported by the Australian Research Council (ARC) (DP0664692) to JW and AHM. NLT is supported as ARC Australian Post-doctoral Fellow and AHM as an ARC Australian Professorial Fellow.

#Corresponding author: A.H. Millar, hmillar@cyllene.uwa.edu.au
Abstract

Mitochondrial protein import is a complex multi-step process from synthesis of proteins in the cytosol, recognition by receptors on the organelle surface, to translocation across one or both mitochondrial membranes and assembly after removal of the targeting signal, referred to as a presequence. In plants, import has to further discriminate between mitochondria and chloroplasts. In this study, we determined the precise cleavage sites in the presequences for Arabidopsis and rice mitochondrial proteins using mass spectrometry by comparing the precursor sequences with experimental evidence of the N-terminal peptide from mature proteins. We validated this method by assessments of false-positive rates and comparisons with previous available data using Edman degradation. In total, the cleavable presequences of 62 proteins from Arabidopsis and 52 proteins from rice mitochondria were determined. None of these proteins contained N-terminal acetylation, in contrast to recent findings for chloroplast stromal proteins. Furthermore the classical matrix glutamate dehydrogenase was detected with intact and N-terminal acetylated sequence indicating that it is imported into mitochondria without a cleavable targeting signal. Arabidopsis and rice mitochondrial presequences had similar pl, hydrophobicity and the predicted ability to form an amphiphilic α-helix at the N-terminal region of the presequence, but variations in length, amino acid composition, and cleavage motifs for mitochondrial processing peptidase (MPP) were observed. A combination of lower hydrophobicity and start point of the N-terminal α-helix in mitochondrial presequences in both Arabidopsis and rice distinguished them (98%) from Arabidopsis chloroplast stroma transit peptides. Both Arabidopsis and rice mitochondrial cleavage sites could be grouped into three classes, with conserved -3R (Class II) and -2R (Class I) or without any conserved arginines (Class III). Class II were dominant in both Arabidopsis and rice (55-58%), but in rice sequences there was much less frequently a phenylalanine (F) in the -1 position of cleavage site than in Arabidopsis sequences. Our data also suggest a novel cleavage motif of (F/Y)↓(S/A) in plant Class III sequences.
Introduction

Plant mitochondria play a key role in energy production and metabolism that requires the import and assembly of at least 1000 proteins. Protein import into mitochondria begins with synthesis of the precursor protein in the cytosol, followed by binding to various proteins in the cytosol, binding to receptors on the outer mitochondrial membrane, translocation across one or both mitochondrial membranes, removal of the targeting signal, termed a presequence, and intra-organelar sorting and assembly. A variety of studies have shown that there is no primary amino acid sequence conservation among presequences, but they do have a high proportion of positively charged residues and the capacity to form an amphiphilic α-helix (Roise et al., 1986; von-Heijne, 1986). Many mitochondrial presequences have a loosely conserved motif near the cleavage site comprising an arginine residue at the -2 and/or -3 position (von-Heijne et al., 1989; Schneider et al., 1998). This arginine has been experimentally shown to be an important recognition site for the mitochondrial processing peptidase (MPP) (Arretz et al., 1994; Ogishima et al., 1995; Tanudji et al., 1999). MPP is a heterodimeric enzyme that contains two similar subunits, α-MPP is involved in binding precursor proteins and β-MPP catalyses the cleavage of the presequence (Kitada et al., 1995; Luciano et al., 1997). In yeast and mammals, MPP is a soluble protein located in the matrix, but in plants, MPP is integrated into the inner membrane bound cytochrome b/c₁ complex (Braun et al., 1992; Eriksson et al., 1994; Glaser and Dessi, 1999).

The mechanism through which the targeting signal binds to a receptor protein has been revealed by NMR studies and the crystal structure of rat Tom20 (Translocase of the outer membrane) with a bound presequence (Abe et al., 2000; Saitoh et al., 2007). A dynamic binding model in which different hydrophobic residues in the presequence interact with Tom20 has been proposed. Thus the presequence has mobility in the binding site via hydrophobic interactions, with several different binding states being possible. This model accounts for the ability of a single Tom20 in yeast to bind to a diverse array of presequences. Although plants contain a protein that is called Tom20 and which has a receptor function in mitochondrial import, it is not orthologous to yeast or mammalian Tom20 (Perry et al., 2006; Lister et al., 2007). However, the NMR structure of plant Tom20 reveals a similar hydrophobic binding pocket. This has been highlighted as a case of convergent evolution of a receptor that uses a similar mechanism of binding to
recognise presequences (Lister and Whelan, 2006). Although structural studies reveal the importance of hydrophobic residues for presequence binding, several studies on yeast, mammals and plants reveal an important role for positively charged residues in presequences for import into mitochondria (Lister et al., 2005; Neupert and Herrmann, 2007). These positively charged residues may play a role in positioning the amphiphilic α-helix for binding to Tom20, and also in subsequent translocation into and across the pores forming proteins of the TOM and TIM (translocase of the inner membrane) complexes. Movement of the presequence into and across a translocase is explained by the binding chain hypothesis (Pfanner and Geissler, 2001). According to this hypothesis, a presequence binds to higher affinity sites in the import apparatus, until it is ‘trapped’ on the inside of the inner membrane by a combination of electrostatic interactions, the net negative charge on the inside of the inner membrane, and binding to matrix located HSP70 (Zhang and Glaser, 2002).

In addition to the fact that plant Tom20s are not orthologous to other Tom20s, plant mitochondria also lack the other two receptor components that have been functionally characterised in yeast, namely Tom70 and Tom22 (Lister et al., 2007). Further, mitochondrial and plastid targeting signals contain significant similarities in plants and thus plant mitochondrial presequences have evolved to differentiate from the large number and abundant nature of plastid proteins requiring import from the cytosol (Macasev et al., 2000). This raises the question of how similar plant mitochondrial targeting signals are to those of yeast and how they are differentiated from plastid transit peptides. To adequately address these questions a large number of presequences need to be assembled to define motifs that differentiate presequence classes. Traditionally, the N-terminal sequence of plant mitochondrial proteins has been obtained by Edman degradation either from purified mitochondrial protein complexes or in proteome studies (Braun and Schmitz, 1995; Jänsch et al., 1996; Millar et al., 1998,1999; Kruft et al 2001; Bardel et al 2002). The presequences could only be obtained by comparison of these N-terminal sequences with the preprotein sequence deduced from full-length cDNA sequences, which were only available in a small number of cases. Glaser et al. (1998) presented a list of ~100 plant mitochondrial presequences, these were mainly derived from prediction and/or comparisons in homologous cDNA-derived protein sequences with a core set of 31 experimentally proven presequences for plant mitochondrial proteins. Later analysis of 58 experimentally proven plant mitochondrial presequences deposited in the SWISSPROT database revealed two major classes containing an arginine residue at position -2 and -3
and one class without any conserved arginine residues (Zhang et al., 2001; Zhang and Glaser, 2002). However, this dataset relied on the sequences available at the time which were from a variety of plant species and contained redundant orthologs from similar proteins. This dataset also clearly focused on dicot plants as less than 20% of the sequences were from monocot species.

In the chloroplast, N-terminal modification of chloroplast proteins has been shown to be important for protein viability (Pesaresi et al., 2003). N-terminal acetylation can be detected by high resolution mass spectrometry (MS) through a change in mass of the N-terminal peptide. The recent systematic analysis of the Arabidopsis chloroplast proteome revealed 47 stroma proteins with N-acetylated residues and 62 without N-acetylated residues (Zybailov et al., 2008). The detection of N-terminal and non-N-terminal acetylated proteins by identifications of semi-tryptic peptides also allowed analysis of the cleavage sites and potential motifs for cleavage by processing peptidases (Zybailov et al., 2008). However, no systematic experimental analysis of N-terminal modification and potential cleavage sites of plant mitochondrial proteins has been carried out to date using such an MS approach.

In this study, we have determined Arabidopsis and rice mitochondrial protein targeting presequences and cleavage sites using an MS approach after gel- or LC-based separation and also identified a range of N-terminal modifications of mitochondrial proteins. Validation of this method was performed by false-positive analysis and comparison with previous results in Arabidopsis using an Edman degradation approach (Kruft et al., 2001). We compared the characteristics of the generated Arabidopsis and rice mitochondrial presequences and the cleavage site motifs. Comparison with experimentally proved yeast mitochondrial presequences and Arabidopsis plastid stroma transit peptides allow consideration of some evolutionary questions and insights into the different signal recognizing mechanism(s) used to distinguish between organelles.

Results

Validation of MS identified semi-tryptic peptides for defining the putative N-terminus of mature mitochondrial proteins

We separated Arabidopsis and rice mitochondrial proteins using gel based (IEF/SDS/PAGE) methods and digested the protein spots with trypsin. We also performed non-gel based liquid chromatography (LC) separation of peptides derived from trypsin
digestion of whole Arabidopsis and rice mitochondria. In conventional protein identifications after trypsin digestion using MS/MS peptide spectra, searches are usually undertaken using parameters that require peptides to be products of a defined protease digestion (e.g., trypsin digestion) of a set of precursor protein sequences predicted from gene models. Such analysis will not identify spectra for the N-terminal peptides of mature mitochondrial proteins which are derived from the processing carried out by MPP. In this study, we have exploited our lists of the Arabidopsis and rice mitochondrial proteomes (Heazlewood et al., 2004; Heazlewood et al., 2007; Huang et al., 2009) to build smaller databases in order to carry out searches of archived MS/MS spectra with the digestion parameter set to ‘no enzyme’. This allows matching of any peptides after trypsin digestion, even those derived from digestion with another enzyme such as MPP, within the specified proteins regardless of the sites of N and C-terminal cleavage.

Due to the wide latitude in the search criteria this analysis yielded many thousands of spectral matches. Using the mitochondrial database and following selection of the most N-terminal peptide matches for each protein with an ion score greater than a 20 cut-off and a p<0.05, the false-positive detection rates for rice and Arabidopsis matches by decoy were 4.5% and 3.6%, respectively which were calculated using an equation described previously (Elias et al., 2005). To further interrogate this set, and to deduce the validity of semi-tryptic peptide matches, we classified these peptides into 3 groups. Firstly, peptides that were derived at both N and C terminus by cleavage at a non-trypsin-cutting site. Secondly, peptides that were derived by a C terminus consistent with trypsin-cutting but an N-terminal cleavage at a non-tryptic site, and thirdly, peptides that were derived at both N and C termini by cleavage at a trypsin-cutting site. Displaying these groups according to ion score revealed that the first group dominated the set of spectra with ion scores of 20-24, but rapidly decreased as a proportion of the matched spectra as the ion score was raised to >37 (Figure 1). We concluded that this group were biologically unlikely matches as the samples were digested with trypsin and thus random peptide cleavages were unlikely. In contrast, the second group of semi-tryptic peptides were distributed across the four ion score ranges but peaked in the >37 ion score group, while the third tryptic peptide group was more biased to the >37 ion score group (Figure 1). In rice, if the first group is considered a refined measure of false positive matches, then this decreases from being ~50% with ion scores of 20-24 to being less than 1.4% for peptides with ion scores above 37 (Figure 1A). A similar pattern was also observed using typical spectral sets from Arabidopsis (Figure 1B). On this basis, semi-tryptic peptides with ion scores greater than
37 were selected for further analysis as high quality spectral matches to the mitochondrial proteome and as putative presequence cleavage sites. The false-detection rates for these N-terminal peptides with an ion-score threshold of 37, using a decoy random database, was 0.93% for rice and 1.09% for Arabidopsis.

To confirm that our method was not overly influence by the use of the restricted mitochondrial protein database, we searched a range of the gel spot files against the Arabidopsis proteome (TAIR8) and the rice proteome (TIGR osa5). There was no difference in the total number of identified peptides for each protein, the ion scores were unchanged and in each case the N-terminal peptide was still the top match to the protein identified (data not shown).

A further validation of the these N-terminal semi-tryptic peptides was conducted by comparison with the limited number of experimentally proven cleavage sites of known Arabidopsis mitochondrial proteins from the literature (Kruft et al., 2001) (Supplemental Table 1). Seventeen Arabidopsis mitochondrial presequences were identified by N-terminal Edman degradation of gel separated mitochondrial proteins (Kruft et al., 2001), semi-tryptic peptides for eight of the same proteins were also found in our study and all eight showed identical cleavage sites (Supplemental Table 1). In total we identified N-terminal peptides for 80 Arabidopsis mitochondrial proteins and 77 rice mitochondrial proteins. Compared with the Edman degradation method, the MS approach allows deeper analysis of more mitochondrial proteins in the absence of gel-based separations.

Proteins with non-cleavable N-terminal sequences

Amongst the N-terminal semi-tryptic peptides, 25 in rice and 18 in Arabidopsis indicated the absence of a presequence as the peptide matched very near to the beginning of the predicted precursor protein with or without removal of methionine (Table 1). Removal of methionine by methionine aminopeptidase (MAP) cleavage is known to depend on the length of the side-chain of the second amino acid (Sherman et al., 1985; Giglione and Meinnel, 2001). If the second incorporated amino acid is Ala(A), Gly(G), Pro(P), Ser(S) or Thr(T), the initiator methionine is systemically removed. If the second side-chain is large (such as Arg(R), Asn(N), Asp(D), Glu(E), Ile(I), Leu(L) and Lys(K)), the initiator methionine is retained at the N-terminus of the mature proteins, while Val(V) is intermediate for the specificity of MAP, resulting in both cleaved and uncleaved Met followed by Val. As shown in Table 1, this specificity is evident in the identified mitochondrial protein N-termini from both Arabidopsis and rice. The methionine is retained only when the second amino
acid residue was E, L, F, D or N (Table 1). This observation also represents another level of independent validation of the identified semi-tryptic peptides derived from the MS data.

Many of the proteins detected without a cleaved N-terminus from rice and Arabidopsis were mitochondrial outer membrane or intermembrane-space located, such as porins, OMP85, small TIMs, and adenylate kinases. A further set were inner membrane proteins which may not enter the matrix, but directly insert into the inner membrane from the inter-membrane space – eg UCP3, COX VIIa, complex I and III subunits (Table 1). However in both rice and Arabidopsis a notable exception was glutamate dehydrogenase (GDH) which had an N-terminal acetylated intact sequence (Table 1 and Supplemental Figure 1). Specific peptides from other regions of the different GDH isoforms listed in Table 1, from gel protein spots, confirm that the identical N-terminal peptide can be found from each isoform. In Arabidopsis, 12 of the 16 non processed proteins had their N-terminal residue acetylated (Table 1), the only exceptions being the outer membrane porins and an unknown function protein (Table 1). In rice, the frequency of the N-terminal acetylation was lower (only 12 of 22), with a range of respiratory chain components, unknown function proteins and carrier proteins lacking acetylation. Conservation of some proteins, such as adenylate kinases and prohibitin, with N-terminal acetylation in both species was also observed (Table 1). For proteins with non-cleavable sequences detected only by LC, we cannot rule out the possibility that removed presequences are stable and have been detected by mass spectrometry. But presequence turnover is considered to be very rapid in mitochondria due to the activity of PreP (Moberg et al., 2003), so we consider this unlikely.

Proteins with presequence processing
In total, the N-terminal peptides of 62 proteins from Arabidopsis and 52 proteins from rice indicated the cleavage of N-terminal presequences (Supplemental Table 2). None of these 114 semi-tryptic peptides detected from Arabidopsis and rice mitochondrial proteins had N-terminal acetylation, which contrasts to the observation of many proteins in the chloroplastic stroma with N-terminal acetylation after presequence cleavage (Zybailov et al., 2008). It appears that the plant mitochondrial matrix may lack the necessary machinery to catalyse N-terminal acetylation. Consistent with this, the N-terminus of mitochondrial genome encoded protein ATP synthase Fo subunit 1 (Osm1g00581) was not acetylated (Table 1), while the N-terminal acetylated GDHs (Table 1) are likely to have been modified before import into the mitochondrial matrix.
Characteristics of presequences in mitochondrial proteins

Comparisons between sequences of N-terminal semi-tryptic peptides with the amino acid sequences deduced from the corresponding genes enabled us to define the cleaved presequences (Supplemental Table 2). We compared them to 105 experimentally proven yeast mitochondrial protein presequences (Supplemental Table 3) and 47 Arabidopsis chloroplastic stroma transit peptides (Supplemental Table 4) (Zybailov et al., 2008). The length of mitochondrial presequence varied greatly from 19 to 109 AA in Arabidopsis, 18 to 117 AA in rice, and 6 to 122 in yeast (Figure 2A). The majority of these proteins (~74%) had 21-70 residues (Figure 2A). The averaged amino acid lengths of the observed presequences in Arabidopsis and rice were 50 and 45, respectively, compared with a significantly shorter average length of only 31 residues in yeast (Figure 2A, Table 2). The plastid stroma transit peptides were typically longer (Table 2), with most between 50-70 AA (Figure 2A).

The amino acid composition of the presequences between Arabidopsis and rice differed. Most notably the Ala composition in rice (19.8%) was double that in Arabidopsis (9.7%) presequences and the Ser composition in rice (11.4%) was lower than that in Arabidopsis (16.2%) (Figure 2B). The four dominant amino acid residues (S, R, A, L) represented 47% and 57% of the total residues in the presequences of Arabidopsis and rice, respectively (Figure 2B). Compared with Arabidopsis, rice also had a higher proportion of the amino acid residues G and P, but had lower or similar compositions of the rest of the amino acid residues (Figure 2B). Overall it appeared that yeast and Arabidopsis mitochondrial presequences were more similar to each other in AA composition than either to the rice presequence set (Figure 2B). Interestingly, the Arabidopsis stroma transit peptides had no consistent differences in amino acid composition when compared to the mitochondrial presequences (Figure 2B). More detailed analysis of the first 10 AAs following Met showed a clear decreased proportion of Arg (R) and increased Pro (P) in the Arabidopsis stroma transit peptides (Figure 2C), which was consistent with previous findings (Bhushan et al., 2006).

The averaged pI values of the observed presequence peptides in Arabidopsis and rice were basic and very similar (Table 2 and Figure 2D). The percentages of presequence peptides with pI values greater than 11.50 in Arabidopsis and rice were 75% and 81%,
respectively (Figure 2D). Yeast mitochondrial presequences had lower average pI value of 11.32, more similar to the Arabidopsis plastid stroma transit peptide set (Table 2 and Figure 2D).

The mitochondrial presequence has the potential to form amphiphilic α-helices (von-Heijne, 1986). We predicted the secondary structure of the obtained mitochondrial presequences using a secondary structure prediction program Jpred3 (http://www.compbio.dundee.ac.uk/~www-jpred/) (Cole et al., 2008). In total, 29% and 11% of amino acid residues in Arabidopsis mitochondrial presequences were predicted to form α-helix (H) and β-sheet (E), while the corresponded numbers in rice are 34% and 5% (calculated from Supplemental Table 2). In the first ten amino acids, fifty-two of 62 (84%) presequences in Arabidopsis and 47 of 52 (90%) presequences in rice were predicted to form an α-helix (Table 2). With the possible removal of the first methionine, the formation of an α-helix in the presequence is likely to occur at the beginning of the sequence. Some of the presequences had more than 2 α-helical domains depending on the length of mitochondrial presequence (Supplemental Table 2). The formation of β-sheet domain(s) in rice and Arabidopsis mitochondrial presequence were rare (Table 2). In yeast, we found 71% of the presequences were predicted to form an α-helix in the first 10 amino acids, which was lower than those in Arabidopsis and rice, while β-sheet domains were much more common (Table 2). The stroma transit peptides had less predictable structure, with only 30% with clear α-helix domains, but over 21% with β-sheet domains (Table 2).

We also calculated the hydrophobicity values of the first 10 amino acids in presequences using TopPred program (http://mobyle.pasteur.fr/cgi-bin/MobylePortal/portal.py?form=toppred) (Claros and von-Heijne, 1994). The averaged hydrophobicity values of the first 10 amino acids were -1.30 for Arabidopsis and -1.39 for rice, respectively (Table 2), and most of them were less than zero (Figure 2E). In yeast, the averaged hydrophobicity value of the first 10 amino acid was -1.21 (Table 2). These results suggest that mitochondrial presequences had hydrophilic N-terminal sequence for import into mitochondria, in comparison the stromal transit peptides were substantially less hydrophilic with an average of only -0.2 (Table 2), and a substantial number having positive overall hydrophobicity values (Figure 2E). Remarkably, only 1 of the 47 stroma transit peptides in the first 10 amino acids had the combination of the ability to form α-helix and a hydrophobicity value less than the mitochondrial average of -1.30
This protein (At1g10760) is a phosphoglucan water dikinase and could be a dual targeted protein due to its identification in Arabidopsis mitochondria (Heazlewood et al., 2004) and plastids (Peltier et al., 2006; Zybailov et al., 2008).

Characteristics of cleavage sites of mitochondrial proteins

Defining the presequences allowed us to define the peptide cleavage sites for a considerable number of mitochondrial proteins (Supplemental Table 2). A prediction of the cleavage sites of the same mitochondrial proteins was also performed using the most widely used bioinformatic tool TargetP (http://www.cbs.dtu.dk/services/TargetP/) (Emanuelsson et al., 2000). In Arabidopsis, 20 of the 62 (32%) sequences had the same cleavage site in the predicted and observed sets, and in rice the number was 15 out of 52 (29%) (Supplemental Table 2). Only ~30% prediction accuracy of cleavage sites by TargetP suggested the necessity of cleavage site identification using an experimental approach, and also a greater need to investigate consensus sequences at cleavage sites in order to improve future prediction.

The 114 mitochondrial presequences represented a diverse and expanded pool for further analysis of the characteristics of mitochondrial presequence cleavage sites. We extracted the experimentally proven 57 plant mitochondrial presequences from the SwissProt database (Supplemental Table 5A), which were very close to the previously reported number of 58 (Zhang et al., 2001; Zhang and Glaser, 2002). Only 19 Arabidopsis and 5 rice proteins were listed in the extracted set (Supplemental Table 5A). Further literature searches for experimentally proven plant mitochondrial presequences (Supplemental Table 5B) added 23 proteins to this list, but did not add any new Arabidopsis and rice mitochondrial presequences. Therefore the current dataset provides an enriched set for comparison of cleavage characteristics of the two main model plants which are also a dicot and a monocot. To identify conserved amino acid residue(s) at cleavage sites, we performed sequence logos analysis (http://weblogo.berkeley.edu/logo.cgi) (Crooks et al., 2004) using the 15 C-terminal residues of the presequences and the 15 residues from the N-terminus of the mature proteins (Figure 3). Overall, the 114 Arabidopsis and rice mitochondrial protein appeared to have conserved motif of RX(F/Y/L)↓(S/A)(S/T) (X denotes any amino acids and ↓ denotes the cleavage site) (Figure 3). We did not find in the plant sequences any over-representation of arginine at position -10 or the characteristic octapeptide reported in mammalian and yeast mitochondrial presequences.
that are cleaved first by MPP and then by mitochondrial intermediate peptidase (MIP) (Isaya et al., 1991). There are some differences in the region of cleavage site between rice and Arabidopsis, with clear over-representation of phenylalanine (F) in the -1 position in Arabidopsis and high frequency of alanine in the mature protein sequence upstream of the cleavage region in rice (Figure 3). Comparison with the stromal cleavage site showed the distinction of the mitochondrial signature for MPP cleavage versus the plastid stroma processing peptidase (SPP) cleavage (Figure 3).

Previously, analysis of the plant mitochondrial presequences were classified into three groups based on conserved arginine position, class I (-2R), class II (-3R) and class III (no conserved arginines) (Sjoling and Glaser, 1998; Zhang et al., 2001). The class II (-3R) proteins represented 55% and 58% of total Arabidopsis and rice proteins, respectively (Figure 4). In class II (-3R), sequence logos analysis indicated that phenylalanine (F) in the -1 position in Arabidopsis dominated, while in rice Y, F, L were evenly distributed (Figure 4). In class I (-2R), Arabidopsis sequences appear to have a conserved motif of RX↓XST (Figure 4), as was noted previously in analysis of plant mitochondrial presequences from a variety of species (Zhang et al., 2001). But for rice, such a conserved motif was not conclusive, perhaps due to the limited numbers of sequences for analysis rather than a real biological difference (Figure 4). In class III (non conserved arginines) presequences, both Arabidopsis and rice appear to have a motif of (F/Y)↓(S/A) (Figure 4). Such an observation is in contrast to the previous report that class III presequences had no significant conservation in amino acid content around the cleavage sites (Zhang et al., 2001), perhaps due to the smaller sample size available at the time. Interestingly, yeast non-R sequences lacked any similar motifs, with an even larger set of 24 sequences in this class. The yeast dataset also had other motif(s) based on R in a -10 position, which was likely to be cleaved by the mitochondrial intermediate peptidase (MIP) (Isaya et al., 1991). This additional group with a motif of RX(F/L)XX(S/T) was most similar to the class II (-3R) group in plants but shifted by 8 AA from the cleavage site.

We assessed the similarity between the presequences of orthologous proteins in the rice and Arabidopsis datasets (Supplemental Table 6). There were 19 sets of cross-species orthologs. There was no apparent conservation of the amino acid sequence of mitochondria presequences, and also no clear conservation of cleavage motif in most
cases. The most striking similarity was in presequence length that was well conserved within 17 of the 19 ortholog sets, but ranged from 20-100 AA across the proteins.

We also investigated the predicted secondary structure of 30 AA around the cleavage sites (Supplemental Table 2) to test the possible linkage between the cleavage processing and α-helix formation as suggested previously (Sjoling and Glaser, 1998). We found the numbers of proteins to be predicted to form α-helix and/or β-sheet across the cleavage site are similar (Supplemental Figure 2). Furthermore, there was no linkage between the formation of form α-helix and β-sheet across the three classes (I, II, III) of cleavage sites (Supplemental Table 2). All these results obtained from Arabidopsis and rice suggested that an α-helix is not essential at cleavage sites based on our dataset.

Discussion

We have determined Arabidopsis and rice mitochondrial protein N-terminal modifications, presequences and cleavage sites using a mass spectrometry approach based on identification of semi-tryptic peptides. This approach was validated by false-positive matching predictions and comparison with previous results using an Edman degradation approach (Kruft et al., 2001). These validations were further enhanced by the observation that the peptides matched lacking only the N-terminal Met were nearly all mitochondrial proteins located in membrane or inter-membrane space locations and all clearly followed the known specificity of methionine aminopeptidase cleavage as reported previously (Sherman et al., 1985; Giglione and Meinnel, 2001). Compared with Edman degradation and site-directed mutagenesis methods, the MS approach combined with gel and LC separation of peptides/proteins allowed direct and broader analysis of mitochondrial proteins for single amino acid resolution presequence analysis, albeit limited by the fact that the MS cannot identify semi-tryptic peptides less than ~6 amino acid residues. In total, a dataset of mitochondrial presequences for 62 Arabidopsis proteins and 52 rice proteins was generated, which significantly expands the known experimentally proven plant mitochondrial presequences currently deposited in the Swiss-Prot database, and greatly enhances the limited number of mitochondrial presequences known from monocot plants (Supplemental Table 5).
Surprisingly, we found the classic mitochondrial matrix protein, glutamate dehydrogenase, with an intact and N-terminal acetylated presequence without any cleavage evident in either Arabidopsis or rice (Table 2). Glutamate dehydrogenases function in the catabolism of glutamate and in assimilating free ammonia, thus representing an important branch point between carbon and nitrogen metabolism. In mitochondria, GDH is considered to function in the deaminating direction to form 2-oxoglutarate and contribute to NADH production for further ATP generation (Thomas, 1978; Aubert et al., 2001). Interestingly, in human and bovine liver mitochondria, the GDHs (P00367, P00366) contain 53 and 57 amino acid presequences, respectively (Moon and Smith, 1973; Julliard and Smith, 1979; Hochstrasser et al., 1992). Alignment of the mammalian and plant mitochondrial GDHs indicate that the plant N-terminal regions that appear to be responsible for mitochondrial targeting are much shorter than the presequences of the mammalian GDH proteins (data not shown). We recently observed the two Arabidopsis mitochondrial GDHs (At5g07440, GDH2; At5g18170, GDH1) shifting pI or molecular mass in 2D gels of mitochondrial extracts from shoots and cultured stem cells (Lee et al., 2008). Re-analysis of peptide spectra from those gel spots has revealed that both had the intact N-terminal sequence with acetylated methionine as shown in Table 1, indicating the presequence processing is not the cause of these observed pI differences (data not shown). The physiological or biochemical significance of the plant matrix GDH lacking a cleavable N-terminal presequence is not clear.

The protein import mechanisms of mitochondria and chloroplast have a variety of common features, but each is sufficiently different to allow the specificity of proteins to be imported (Macasev et al., 2000; Zhang and Glaser, 2002). This selectivity for import is determined by discrete targeting signals in mitochondrial and chloroplastic precursor proteins and by the different protein complexes located in the outer membrane of organelles that recognise these sequences (TOM and TOC complexes, respectively). Some chloroplastic transit peptides look like mitochondrial-targeting peptides and in vitro can be imported into fungal mitochondria (Hurt et al., 1986; Brink et al., 1994). Chloroplastic and mitochondrial targeting signals have some similar features, such as basic pI values (Table 2), but still plant TOM complex can distinguish chloroplastic transit peptides from mitochondrial presequences (Glaser et al., 1998). Compared with chloroplastic stroma transit peptides, our data suggested that formation of an \(\alpha \)-helix with low hydrophobicity at the beginning of mitochondrial presequences, presumably caused by a different composition of amino
acids such as Arg (R) and Pro (P), could be crucial in distinguishing chloroplastic transit peptides from their mitochondrial counterparts (Table 2, Figure 3C). Our data also supported the previous suggestion that, in general, mitochondrial presequences contained a segment of 12-15 amino-acids that can form a basic, amphipathic helix (von-Heijne, 1986). The basic pI of the presequences from both Arabidopsis and rice mitochondrial proteins could be essential for organelle targeting, potentially via binding with molecular chaperones such as HSP70s (Zhang and Glaser, 2002). Differentiation between mitochondria and chloroplast targeting could be determined by the secondary structure and the relative hydrophobicity at the beginning of the targeting signals, which may be required for binding to TOM or TOC or in co-ordination of other molecular chaperones.

In evolutionary terms, the presequences for mitochondrial targeting in yeast, could be divergent to those in plants, due to the absence of chloroplasts in the former. This is supported by the observations that yeast mitochondrial proteins had shorter presequences with less hydrophilic and lower frequency to form α-helices at the beginning of a presequence (Table 2). Interestingly, yeast mitochondrial presequences had higher frequency of β-sheet formation at the N-terminus, in fact as high as that seen in chloroplastic transit peptides (Table 2). All these data are consistent with selectivity in plant mitochondrial target signal evolution that distinguishes them from chloroplastic transit peptides, and may have diverged them from the requirements found in yeast.

In plant TOM complexes, the absence of a homolog for yeast Tom22 and changes in its partner receptor, Tom20, revealed a significant re-arrangement of the receptor machinery on plant mitochondria (Macasev et al., 2000). Furthermore, there are significant variations in Tom20 between Arabidopsis and rice, the former having 4 copies in its genome and the latter only one copy, like in yeast (Lister et al., 2007). The diversification of Tom20 sequences in Arabidopsis might allow more variation in mitochondrial presequences than in rice, and could be one reason for the longer but less basic and hydrophilic presequences (Table 2) and different amino acid compositions (such as R, A, L, S in Figure 3) found in Arabidopsis. We could not find any presequence clusters among those identified Arabidopsis and rice proteins using phylogenetic tree analysis (data not shown), consistent with previous claims (Glaser et al., 1998; Sjoling and Glaser, 1998). For Arabidopsis chloroplastic transit peptides, multiple subgroups with distinctive chloroplastic-targeting sequence motifs has been recently revealed by site-mutagenesis.
analysis (Lee et al., 2008). However, these seven groups of distinctive motifs represented less than half of the >200 predicted chloroplastic transit peptides (Lee et al., 2008), indicating sequence diversity among chloroplastic transit peptides is substantial beyond the groups identified.

One approach to determine the cleavage sites of the plant specific membrane-bound MPP (Braun et al., 1992; Eriksson et al., 1994; Glaser and Dessi, 1999) is to conduct statistical analysis of plant mitochondrial sequences to define common features around the cleavage sites (Zhang et al., 2001). Our sequence logo analysis revealed that both Arabidopsis and rice mitochondrial cleavage sites could be grouped into three classes as previously suggested (Zhang et al., 2001), with conserved -3R (class II) and -2R (class I) or without any conserved arginines (Class III) (Figure 4). Class II (-3R) group consisted of 55-58% of the observed Arabidopsis and rice mitochondria, indicating that RXX↓(S/A)(S/T) could be the major motif for MPP processing (Figure 4). In this class we additionally show that rice had an even distribution of Y, F or L in the -1 position, rather than the dominated F observed in Arabidopsis (Figure 4). The dominance of dicots in the list of presequences used by Zhang et al (2001) explains the dominant F at the -1 position observed in that study, and suggests that species differences in MPP specificity could be very significant amongst plants. The class I (-2R) group in Arabidopsis appears to have a motif of RX↓XST, effectively a one amino acid position shift of class II (-3R) (Figure 4), suggesting no real distinction between class I and II groups in binding or catalysing site for MPPs. For the class III group (no conserved R), our data suggested a cleavage motif of (F/Y)↓(S/A), which has substantial similarities in the -1 and +1 position to the Class III group (-3R) (Figure 4). It is not known whether MPPs or another protease are involved in presequence cleavage of the class III proteins.

Mitochondrial protein import is a complex process with multiple steps including presequence signal recognition before import, import via TOM and TIM, and presequence cleavage after import. The presequences for mitochondrial protein import in the dicot Arabidopsis and the monocot rice appear to be conserved based on the present study, but with some variations, such as in length and amino acid compositions of presequences, and specific aspects of the cleavage motifs for MPP. Future combinations of mass spectrometry approaches with analysis by site-directed mutagenesis, in vitro import and cleavage activity assays could provide a deeper insight into the mechanisms of
mitochondrial proteins import and potentially more detailed pictures of variations between model species. This will aid in a broader understanding of the specialisation of the protein targeting to mitochondria required in plants due to the dominant role of plastids and the relative abundance of plastid precursors in plant cells.

Material and Methods

Arabidopsis culture cell and mitochondrial preparation

A heterotrophic Arabidopsis cell culture was maintained under the same conditions as described in Millar et al. (2001). Arabidopsis cell suspension was cultured in growth medium (1x Murashige and Skoog medium without vitamins, 3% sucrose, 0.5 mg/liter naphthaleneacetic acid, 0.05 mg/liter kinetin, pH5.8) at 22°C under a 16/8-h day/night regime and light intensity of 90 µmol m⁻² s⁻¹ with orbital shaking at 120 rpm. Cultures were maintained in 250 ml Erlenmeyer flasks by the inoculation of 25 ml of 7-10-day-old cells into 100 ml of fresh growth medium. Dark-grown cells used for mitochondrial isolation were subcultured from 7-day-old light-grown cultures and grown under the same conditions as described for light cell cultures.

Isolation of mitochondria from cell culture was carried out according to the method modified from Millar et al. (2001) and Meyer et al (2007). Cells (250g) were incubated at 25°C for 3 h in ~800 ml of enzyme buffer (0.4 M mannitol, 36 mM MES, 0.4% (w/v) cellulose (“Onozuka,” Yakult Pharmaceutical, Tokyo, Japan), 0.05% (w/v) pectolyase (“Y-23”, Kyowa Chemical Products, Osaka, Japan), pH 5.7. Protoplasts were harvested by washing twice in enzyme buffer without cellulose and pectolyase and centrifugation at 800 x g for 5 min. Cells were disrupted in ice-cold extraction buffer (0.45 M mannitol, 50 mM tetrasisodium pyrophosphate, 0.5% (w/v) PVP, 0.5% (w/v) BSA, 2 mM EGTA, 20 mM cysteine, pH 8.0) by five strokes in a Potter-Elvehjem homogenizer. The homogenate was then centrifuged at 18,600 g for 20 min at 4°C. The pellet of crude organelles was carefully resuspended in ice cold mannitol washing buffer (0.3 M mannitol, 0.1% (w/v) BSA, 10 mM TES, pH 7.5). Following one stroke in a Potter-Elvehjem homogenizer, the crude organellar fraction was gently layered over a 35 ml discontinuous Percoll gradient density gradient consisting of 18% (5 ml) over 23% (25 ml) and 40% (5 ml) Percoll solution in mannitol washing medium. The gradient was then centrifuged at 40,000 g for
45 min at 4°C with brake-off. The mitochondrial fraction was seen as an off-white band near the 23-40% (v/v) Percoll interface. The upper layers of the density gradient were removed, and the mitochondrial band was collected. The transferred mitochondrial band was diluted ~5 fold with sucrose wash medium (0.3 M sucrose, 0.1% (w/v) BSA, 10 mM TES, pH 7.5) and centrifuged at 24,000 g for 10 min at 4°C. The mitochondrial-enriched homogenate was collected, and the Percoll density gradient centrifugation was repeated once as described for the first gradient. Afterwards, the mitochondrial sample were washed three times at 21,000 g for 20 min each at 4°C using the sucrose wash medium as described above but not containing BSA. The amount of mitochondrial protein was determined (Bradford, 1976).

Growth of rice seedlings and mitochondrial preparation

Batches of 200 g rice (Oryza sativa cv Amaroo) seed were washed in 1% (w/v) beach for 10 min, rinsed in distilled water, and grown in the dark in vermiculite trays (30 x 40 cm) at a constant 30°C, watered daily, and the shoots harvested at 10 d for mitochondrial isolation (Heazlewood et al., 2003). Rice shoots were harvested using scissors and cut into 5-10 mm lengths into a beaker on ice. Cut shoots (100 g) were ground in a pre-cooled mortar and pestle using acid-washed sand in 300 mL of homogenization solution (0.3 M Sucrose, 25 mM tetrasodiumpyrophosphate, 2 mM EDTA, 10 mM KH₂PO₄, 1% (w/v) polyvinylpyrrolidone-40 (PVP-40), 1% (w/v) bovine serum albumin, and 20 mM ascorbate, pH 7.5). After filtering the homogenate through four layers of Miracloth, it was centrifuged for 5 min at 1,000 g at 4°C, and the supernatant was centrifuged again at 20,000 g for 20 min at 4°C. The resultant organelle pellet was resuspended in wash buffer (0.3 M sucrose, 10 mM TES-KOH, pH 7.5, and 0.1% (w/v) bovine serum albumin), and the two centrifugations steps were repeated to produce a washed organelle pellet. This resuspended pellet was layered over 0% to 4.4% (w/v) PVP-40 preformed gradient in a 28% (v/v) Percoll self-forming gradient in wash buffer and centrifuged at 30,000 g for 45 min at 4°C with brake-off. Mitochondria formed a band toward the bottom of the gradient, the upper plastid material was discarded, and the mitochondrial band was removed in an attempt to minimize contamination of peroxisomal material from the bottom of the gradient. After 0-4.4% Percoll gradient centrifugation, mitochondrial samples were washed three times with washing medium (0.3 M sucrose, 10 mM TES, pH 7.5) and centrifuged at 21,000 g for 20 min at 4°C. The amount of mitochondrial protein was determined according to the method of (Bradford, 1976).
Two-dimensional gel electrophoresis
Mitochondrial protein samples from Arabidopsis and rice (700 µg) were extracted by addition of cold acetone (-20°C) to a final concentration of 80% (v/v). Samples were stored at -80°C for 4 h and then centrifuged at 20 000g at 4°C for 15 min. The pellets were resuspended in IEF sample buffer (7 M urea, 2 M thiourea, 4% (w/v) CHAPS, 40 mM Tris-base, pH 8.5). Aliquots of 450 µL were used to re-swell immobilized pH gradient strips pH3-10 NL; 24 cm (GE Healthcare) according to the manufacturer’s instructions. The strips were run for 24 h in Ettan IPGphor3 (GE Healthcare) according to the manufacturer’s instruction. The strips were then transferred to an equilibration buffer (50 mM Tris-HCl (pH 6.8), 4 M urea, 2% (w/v) SDS, 0.001% (w/v) bromophenol blue and 100 mM β-mecaptoethanol) and incubated for 20 min at room temperature with rocking. After a brief wash in 1 x gel buffer, the strips were transferred on top of 12% acrylamide glycine gels and covered with 1.2% (v/w) agarose in gel buffer. Second dimensional gels were run at 50 mA per gel for 6 h. Proteins were visualized by colloidal Coomassie (G250) staining.

Analysis of peptides from in-gel digested protein samples
After Arabidopsis and rice mitochondrial proteins were separated by 2D-IEF/SDS/PAGE, protein samples to be analysed were cut from the gels and were in-gel digested with trypsin according to the method described by (Taylor et al., 2005). Samples were then dried in a vacuum centrifuge, resuspended in 5% (v/v) acetonitrile and 0.1% (v/v) formic acid and analysed on an Agilent XCT Ultra Ion Trap mass spectrometer (Agilent Technologies) according to (Meyer et al., 2007). Resulting MS/MS-derived spectra were analysed against our in-house rice mitochondrial protein database mainly extracted from our recently generated rice mitochondria protein list (Huang et al., 2009), and in-house Arabidopsis mitochondrial protein database extracted from SUBA (Heazlewood et al., 2007) (http://www.plantenergy.uwa.edu.au/applications/suba/index.php). The database was searched using the Mascot search engine version 2.2.03 with selection none enzyme digestion and utilizing error tolerances of ±1.2 Da for MS and ±0.6 Da for MS/MS, ‘Max Missed Cleavages’ set to 1, with variable modification of Oxidation (M), Carbamidomethyl (C), Acetylation (N-term), instrument set to ESI-TRAP and peptide charge set at 2+ and 3+. RICE-ALL.pep is a non-redundant database with systematically named protein sequences based on rice genome sequencing and annotation. Results were filtered using ‘Standard
scoring’, ‘Max. number of hits’ set to ‘AUTO’ and ‘ion score cut-off’ at 20. The significance threshold $P \leq 0.05$ and ‘Require bold red’ were also set.

Analysis of peptides from whole mitochondria digests

Whole Arabidopsis and rice mitochondrial protein extracts were digested overnight at 37°C in the presence of trypsin and insoluble components were removed by centrifugation at 20,000 g for 5 mins. Samples were analysed on an Agilent 6510 Q-TOF mass spectrometer with an HPLC Chip Cube source (Agilent Technologies). The Chip consisted of a 40 nl enrichment column (Zorbax 300SB-C18 5 µm pore size) and a 150 mm separation column (Zorbax 300SB-C18 5 µm pore size) driven by Agilent Technologies 1100 series nano/capillary liquid chromatography system. Both systems were controlled by MassHunter Workstation Data Acquisition for Q-TOF (ver B.01.02, Build 65.4, Patches 1,2,3,4, Agilent Technologies). Peptides were loaded onto the trapping column at 4 µl min$^{-1}$ in 5% (v/v) acetonitrile and 0.1 (v/v) % formic acid with the chip switched to enrichment and using the capillary pump. The chip was then switched to separation and peptides eluted during a 1 h gradient (5% (v/v) acetonitrile - 40% (v/v) acetonitrile) directly into the mass spectrometer. The mass spectrometer was run in positive ion mode and MS scans run over a range of m/z 275-1500 and at 4 spectra s$^{-1}$. Precursor ions were selected for auto MS/MS at an absolute threshold of 500 and a relative threshold of 0.01, with max 3 precursors per cycle, and active exclusion set at 2 spectra and released after 1 min. Precursor charge-state selection and preference was set to 2$^+$ and then 3$^+$ and precursors selected by charge then abundance. Resulting MS/MS spectra were opened in MassHunter Workstation Qualitative Analysis (ver B.01.02, Build 1.2.122.1, Patches 3, Agilent Technologies) and MS/MS compounds detected by “Find Auto MS/MS” using default settings. The resulting compounds were then exported as mzdata files which when appropriate were combined using mzdata Combinator v1.0.4 (The West Australian Centre of Excellence in Computational Systems Biology, http://www.plantenergy.uwa.edu.au/wacecsb/software.shtml). Searches were conducted using Mascot Search Engine version 2.2.03 (Matrix Science) with non-enzyme digestion and mass error tolerances of ± 100 ppm for MS and ±0.5 Da for MS/MS, ‘Max Missed Cleavages’ set to 1, with variable modification of Oxidation (M), Carbamidomethyl (C), Acetylation (N-term), instrument set to ESI-QUAD-TOF and peptide charge set at 2$^+$ and 3$^+$. Results were filtered using ‘mudpit scoring’, ‘Max. number of hits’ set to ‘400’ and ‘ion score cut-off’ at 20. The significance threshold $P \leq 0.05$ and ‘Require bold red’ were also
set.

Bioinformatics tools

A prediction of the cleavage sites of mitochondrial proteins were performed using the web server of TargetP (http://www.cbs.dtu.dk/services/TargetP/). The pl values of mitochondrial presequences and chloroplast stromal transit peptide were analysed using Compute pl/Mw tool (http://au.expasy.org/tools/pi_tool.html). The hydrophobicity values of amino acid residues in protein were analysed using web server TopPred program (http://mobyle.pasteur.fr/cgi-bin/MobylePortal/portal.py?form=toppred) (Claros and von-Heijne, 1994). The averaged hydrophobicity values of the first 10 AAs in proteins were presented in the Supplemental Tables 2, 3 and 4. The secondary structure of the obtained mitochondrial presequences and chloroplastic stroma transit peptides using the web server Jpred3 (http://www.compbio.dundee.ac.uk/~www-jpred/) (Cole et al., 2008). The H and E denoted the secondary structures of α-helix and β-sheet, respectively. Sequence logo were created using the web server Weblogo (http://weblogo.berkeley.edu/logo.cgi) (Crooks et al., 2004). Fifteen C-terminal residues of the presequences and the 15 residues from the N-terminus of the mature proteins were used for sequence logo analysis.

Statistics Analysis

The significance of the difference between proportions were analysed using RatioDiff which computes p-values based on the comparison of proportions in paired samples (http://www.ce4csb.org/applications/ratiodiff/).
Table 1. Rice and Arabidopsis mature mitochondrial proteins with uncleavable presequences with or without removal of the first methionine. GI represent the accession numbers of the genes encoding proteins identified in rice (Os) and Arabidopsis (At). TP represents the cleavage site predicted by the Target P program. Met represents the first methionine removed from semi-tryptic peptide. Score represents the ion score of peptide identified by MS. Expt represents separation of proteins by gel-based or LC-based approaches before MS identification. Acetyl represents the detected semi-tryptic peptide with (Yes) or without (No) N-terminal acetylation. * denotes N-terminal peptides with specific ion scores listed here from individual gel spots that contained other gene-specific peptides.

<table>
<thead>
<tr>
<th>GI</th>
<th>Description</th>
<th>TP</th>
<th>Mot</th>
<th>Semi-tryptic Peptide</th>
<th>Score</th>
<th>Expt</th>
<th>Acetyl</th>
<th>Score</th>
<th>Expt</th>
<th>Acetyl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Os03g42799</td>
<td>expressed protein</td>
<td>35</td>
<td>-</td>
<td>MFLCAGPR</td>
<td>40</td>
<td>LC</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Os08g33460</td>
<td>expressed protein</td>
<td>-</td>
<td>-</td>
<td>MNTDITASVKPEPVYD</td>
<td>116</td>
<td>LC</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Os03g03770</td>
<td>Complex I B18-like subunit</td>
<td>-</td>
<td>-</td>
<td>MEAAAGVOLGTSKOIATQAEM</td>
<td>81</td>
<td>Gel</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Os08g42380</td>
<td>TIM8</td>
<td>-</td>
<td>-</td>
<td>MENSAMQMR</td>
<td>51</td>
<td>LC</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Os07g10500</td>
<td>Complex III 14 kDa protein-like</td>
<td>78</td>
<td>-</td>
<td>MLSSLSAWLNPR</td>
<td>69</td>
<td>LC</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Os12g13380</td>
<td>adenylate kinase A</td>
<td>-</td>
<td>M</td>
<td>AANLEDVPSMELMTELLR</td>
<td>118</td>
<td>LC</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Os11g20790</td>
<td>adenylate kinase B</td>
<td>-</td>
<td>M</td>
<td>AAAANLEDVPSMDLMNELLR</td>
<td>154, 41</td>
<td>LC/Gel</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Os08g15170</td>
<td>ATP synthase epsilon chain</td>
<td>13</td>
<td>M</td>
<td>SATTAAPPPW</td>
<td>56</td>
<td>LC</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Os05g30030</td>
<td>catalytic/ oxidoreductase, acting on NADH or NADPH</td>
<td>24</td>
<td>M</td>
<td>AAAAAGELAAYR</td>
<td>58</td>
<td>LC</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Os07g45320</td>
<td>COX VII-like protein</td>
<td>-</td>
<td>M</td>
<td>TAEFPVPR</td>
<td>48</td>
<td>LC</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Os03g48110</td>
<td>expressed protein</td>
<td>-</td>
<td>M</td>
<td>GFYMEEAIMLR</td>
<td>83</td>
<td>LC</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Os03g62420</td>
<td>expressed protein</td>
<td>10</td>
<td>M</td>
<td>AEPENAAAPAAPAPAPAPAPP</td>
<td>65</td>
<td>LC</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Os04g02670</td>
<td>expressed protein</td>
<td>22</td>
<td>M</td>
<td>PFTGPGSVSTLVAR</td>
<td>65</td>
<td>LC</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Os11g48040</td>
<td>mitochondrial uncoupling protein 3</td>
<td>-</td>
<td>M</td>
<td>PEGKSPFSPFR</td>
<td>68</td>
<td>LC</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Os06g50000</td>
<td>Complex I B22-like subunit</td>
<td>75</td>
<td>M</td>
<td>ATAGFLAR</td>
<td>54</td>
<td>LC</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Os05g39390</td>
<td>outer membrane protein (OMP85)</td>
<td>-</td>
<td>M</td>
<td>ATADQQPINDAEHM</td>
<td>93</td>
<td>LC</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Os09g19737</td>
<td>Porin</td>
<td>-</td>
<td>M</td>
<td>VGPGLYPEK</td>
<td>54, 48</td>
<td>LC/Gel</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Os05g45950</td>
<td>Prohibitin</td>
<td>-</td>
<td>M</td>
<td>AAPPAGPGGLYDIGK</td>
<td>57, 52</td>
<td>LC/Gel</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Os04g38900</td>
<td>Prohibitin</td>
<td>24</td>
<td>M</td>
<td>AGPAAFSLNIAK</td>
<td>91, 82</td>
<td>LC/Gel</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Os03g59220</td>
<td>Complex III 14 kDa protein-like</td>
<td>81</td>
<td>M</td>
<td>SMALSAWSFWVNPR</td>
<td>93</td>
<td>LC</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Os07g48244</td>
<td>Complex III 6.7 kDa protein-like</td>
<td>27</td>
<td>M</td>
<td>ALPSASGLFR</td>
<td>66</td>
<td>LC</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Os05g33210</td>
<td>Complex III 8.0 kDa protein-like</td>
<td>60</td>
<td>M</td>
<td>GLWDALYR</td>
<td>41</td>
<td>LC</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Matrix

Osmlg00580 ATP synthase F0 subunit 1 - MEFSPR 37 LC No
Os03g58040 glutamate dehydrogenase 18 - MNALATSR* 73 LC/Gel Yes
Os04g45970 glutamate dehydrogenase 2 18 - MNALATSR* 52 LC/Gel Yes

AT5G50810 TIM8 - MDPSSMANNPELOFLAGKEK 74, 75 LC Yes
AT3G46560 TIM9 - MDASMAGMDLDGPEEDEK 68, 57 LC/Gel Yes
AT4G23885 Unknown protein - MNVVKHLK 37 LC Yes
AT4G15940 fumarylacetoacetate hydrolase family protein - MTSQMR 60, 44 LC Yes
AT5G50370 adenylate kinase - ATSSAASVMDIOTVDLMSELLR 108, 91 LC Yes
AT5G63400 adenylate kinase - ATGGAAADLEDVPEISQME 112, 113 LC Yes
AT1G22840 CYTOCHROME C-1 - M ASFDAPPGNAK 51, 46 LC/Gel Yes
AT5G40770 ATPB6 (Prohibitin 3) - M GSOQAAVFLSFLNAK 65, 54 LC/Gel Yes
AT3G62810 complex I family protein / LVR family 12 YVEALIAVR 86, 79 LC/Gel Yes
AT3G12260 complex I B14 subunit 66 M AAPFALR 48 Gel Yes
AT5G15090 porin - VGPGLYETIK* 43, 41 LC/Gel No
AT5G67500 porin - M SKGPGLYDIK* 38 LC/Gel No
AT4G20150 similar to Os07g0498300 69 M PSAMTVGGALGLTGQMSNA 41 Gel No
AT2G29530 TIM10 - M ASPIPGVT 63, 61 LC Yes
AT1G15120 Complex III 7.8 kDa protein - M ADDEVDPKK 54, 51 LC Yes

Matrix

AT5G07440 glutamate dehydrogenase (α-subunit) 18 - MNALATNR* 60, 6 LC/Gel Yes
AT5G18170 glutamate dehydrogenase (β-subunit) 18 - MNALATNR* 60, 9 LC/Gel Yes
Table 2. Comparison of key characteristics of the observed Arabidopsis (62) and rice (52) mitochondrial presequences (Supplemental Table 2), 105 yeast mitochondrial presequences (Supplemental Table 3) and 47 Arabidopsis chloroplastic stroma transit peptides (Supplemental Table 4). Length represents the averaged length of mitochondrial or stroma targeting signals. pI represents the pI value of the mitochondrial or stroma targeting signals. The hydrophobicity represents the averaged hydrophobicity value of the first 10 amino acid residues in the N-terminus of each signal. The α-helix and β-sheet represent the predicted formation of α-helix and β-sheet in the first 10 amino acids in the N-terminus of each set of targeting signals.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Arabidopsis mitochondria</th>
<th>Rice mitochondria</th>
<th>Yeast mitochondria</th>
<th>Arabidopsis stroma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>49.6</td>
<td>44.7</td>
<td>31.2*</td>
<td>54.2</td>
</tr>
<tr>
<td>pI</td>
<td>11.61</td>
<td>11.84</td>
<td>11.32</td>
<td>11.27</td>
</tr>
<tr>
<td>Hydrophobicity (1-10 AA)</td>
<td>-1.30</td>
<td>-1.39</td>
<td>-1.21</td>
<td>-0.20*</td>
</tr>
<tr>
<td>α-Helix (1-10 AA)</td>
<td>52/62 (83.9%)</td>
<td>47/52 (90.4%)</td>
<td>75/105 (71.4%)</td>
<td>14/47 (29.8%)*</td>
</tr>
<tr>
<td>β-Sheet (1-10 AA)</td>
<td>2/62 (3.2%)</td>
<td>1/52 (1.9%)</td>
<td>19/105 (18.1%)*</td>
<td>10/47 (21.3%)*</td>
</tr>
</tbody>
</table>

Note: * denotes p-value < 0.01 level when compared with the Arabidopsis mitochondrial set.
Figure legends:

Figure 1. The typical distribution of the number of N-terminal peptide matches to mitochondrial proteins against increasing spectral ion scores for the quality of these matches. The most N-terminal peptide matches from rice (A) and Arabidopsis (B) mitochondrial proteins were obtained using an LC-MS/MS approach (see methods). The open bars represent non-tryptic peptide matches; the gray bars represent semi-tryptic peptide matches and the black bars represent tryptic peptide matches. A tryptic peptide match has an N-terminal immediately following an Arg or Lys residue in the intact protein sequence from which it is obtained, and C-terminal residue of either Arg or Lys; a semi-tryptic peptide match has a C-terminal residue of either Arg or Lys, but its N-terminus can begin at any point in the intact protein sequence, while a non-tryptic peptide has neither N-terminal immediately following an Arg or Lys residue, nor a C-terminal Arg or Lys residue.

Figure 2. Characteristics of targeting signals from the 62 Arabidopsis mitochondrial proteins, 52 rice mitochondrial proteins compared to 105 yeast mitochondrial proteins and 47 Arabidopsis chloroplastic stroma proteins. (A) Frequency distribution of amino acid length, (B) Compositions of amino acid residues in the signals without counting the first methionine, (C) Compositions of 10 amino acid residues after the first methionine, (D) The pI values of sequences, (E) The averaged hydrophobicity values of the first 10 amino acids. Arabidopsis and rice mitochondrial data were extracted from Supplemental Table 2. Yeast mitochondrial data were extracted from Supplemental Table 3 and Arabidopsis chloroplastic stroma data were extracted from Supplemental Table 4. * represents a p-value < 0.01 compared with Arabidopsis mitochondrial set derived by z-value statistics of proportions in paired samples.

Figure 3. Consensus sequences of the sites of mitochondrial presequence cleavage and comparison to plastid stroma transit peptide cleavage. Sequence logo analysis of the presequence cleavage site, constructed for Arabidopsis (62) and rice (52) proteins with semi-tryptic peptides derived from MS data analysis and sequence logo of presequence cleavage sites of 92 yeast mitochondrial presequences and 47 Arabidopsis plastid stroma transit peptides (from Zybailov et al., 2008). Sequences used for sequence logo analysis are given in Supplemental Tables 2, 3 and 4. Thirteen yeast mitochondrial
proteins with presequences less than 15 amino acids (Supplemental Table 3) were not included in the sequence logo analysis.

Figure 4. Consensus sequences of the sites of rice, Arabidopsis and yeast mitochondrial presequence cleavage in the different groups (Class II, -3R; Class I, -2R; Class III, non conserved R, Class IV, -10R). The number of presequences used for sequence logo analysis is presented on the left side of each figure. Sequences used for sequence logo analysis were given in Supplemental Tables 2 and 3.
Supplemental Tables and Figures

Supplemental Table 1. Comparison of the MS identified semi-tryptic peptides with reported N-terminal sequences deduced from Edman degradation (Kruft et al. 2001).

Supplemental Table 2 (Excel file). Sixty-two Arabidopsis and 52 rice mitochondrial presequences derived from MS evidence.

Supplemental Table 3 (Excel file). One hundred and five yeast mitochondrial proteins with experimentally proved presequences listed in SWISS-Prot database.

Supplemental Table 4 (Excel file). Forty-seven Arabidopsis stroma presequences derived from MS evidence of N-terminal acetylated semi-tryptic peptides from Zybailov et al. (2008).

Supplemental Table 5 (Excel file). (A) Fifty-seven experimentally proved plant mitochondrial presequences from Swiss-Prot database and (B) other experimentally proved plant mitochondrial presequences that are not classified in Swiss-Prot database.

Supplemental Table 6 (Excel file). Nineteen ortholog sets of presequences with rice and Arabidopsis members derived from data in Supplemental Table 2.

Supplemental Figure 1. Mass spectra evidence for N-terminal acetylation of Arabidopsis mitochondrial glutamate dehydrogenase (GDH).

Supplemental Figure 2. Frequency distribution of the predicted secondary structure of the 15 amino acid residues before and after cleavage sites of the observed 62 Arabidopsis and 52 rice mitochondrial proteins.
References

Braun HP, Emmermann M, Kruft V, Schmitz UK (1992) The general mitochondrial processing peptidase from potato is an integral part of cytochrome c reductase of the respiratory chain. EMBO J 11: 3219-3227

Julliard JH, Smith EL (1979) Partial amino acid sequence of the glutamate dehydrogenase of human liver and a revision of the sequence of the bovine enzyme. J Biol Chem 254: 3427-3438

Meyer EH, Heazlewood JH, Millar AH (2007) Mitochondrial acyl carrier proteins in Arabidopsis thaliana are predominantly soluble matrix proteins and none can be confirmed as subunits of respiratory Complex I. Plant Mol Biol 64: 319-327

Moon K, Smith EL (1973) Sequence of bovine liver glutamate dehydrogenase. 8. Peptides produced by specific chemical cleavages; the complete sequence of the protein. J Biol Chem 248: 3082-3088

Roise D, Horvath SJ, Tomich JM, Richards JH, Schatz G (1986) A chemically synthesized pre-sequence of an imported mitochondrial protein can form an amphiphilic helix and perturb natural and artificial phospholipid bilayers. EMBO J 5: 1327-1334

Figure 1
Figure 2