Update: The importance of energy balance in improving photosynthetic productivity

Running Title: Balancing Photosynthesis

David M. Kramer¹ and John R. Evans²

1) Biochemistry and Molecular Biology and DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI USA

2) Plant Science Division, Research School of Biology, Australian National University, Canberra ACT 0200 Australia

Abstract

We review recent advances in understanding how chloroplasts balance their “energy budget,” producing the exact ratio of ATP to NADPH required for metabolism and maintenance. Adjusting this balance will be especially important for responding to proposed ‘improvements’ in photosynthesis.

Key Words: cyclic electron flow, Mehler peroxidase reaction, regulation, state transitions, water-water cycle

Current proposals to improve photosynthesis to meet our energy and food needs include: 1) improving the performance of Rubisco, 2) decreasing photorespiration by turning C₃ into C₄ plants, installing algal or cyanobacterial carbon-concentrating mechanisms into higher plant chloroplasts, or redesigning photorespiratory metabolism and 3) adding new biosynthetic pathways to increase the flow of carbon into useful products, like starch or oils, etc. While introducing or modifying pathways for these processes will be an important step forward, it is important to note that these approaches may also substantially alter the energetic demands placed on photosynthesis. To successfully translate these modifications into enhanced photosynthesis requires that chloroplasts can meet these altered...
demands. Chloroplasts have already evolved significant energy flexibility mechanisms, as discussed below, but these are activated under specific environmental and metabolic challenges. We need knowledge of the mechanisms regulation of these processes in order to modulate them for increased energy efficiency. Ultimately, we could adjust chloroplast performance to meet altered needs by altering gene regulation, or introducing new balancing systems. It is thus useful to review what is known about energy balance in the chloroplast and project how these might be adjusted.

The light reactions involve highly reactive species, and if not controlled properly, can produce deleterious reactive oxygen species. In addition, the synthesis of ATP and NADPH in linear electron flow (LEF) is tightly coupled, i.e. one cannot occur without the other. If, for example, the substrates for the ATP synthase (ADP, P_i) become limiting, then the proton motive force (pmf) builds up, inhibiting electron transfer to NADP^+. Likewise, if NADP^+ is limiting, photosynthetic electron carriers become reduced, slowing electron transfer and associated proton translocation, thus limiting ATP synthesis. Linear electron flow produces a fixed ratio of ATP/NADPH and each metabolic pathway directly powered by photosynthesis consumes different fixed ratios of ATP/NADPH. However, since fluxes through these pathways vary between species and under different physiological conditions, substantial mismatches in the production and demands for ATP/NADPH could arise. Chloroplasts have very limited pools of ATP and NADPH. Consequently, such mismatches will rapidly (within seconds) inhibit photosynthesis (Avenson et al., 2005b; Cruz et al., 2005; Amthor, 2010). The chloroplast must balance the production and consumption of both ATP and NADPH by augmenting production of the limiting intermediate, e.g. by cyclic electron flow (CEF), or dissipating the intermediate in excess.

Here we consider recent progress in understanding the mechanisms used by plants and algae to match ATP/NADPH supply with demands, with the aim to guide future efforts at optimizing these processes. Engineered plants may exacerbate the situation by creating demands for ATP/NADPH that differ from those to which the chloroplast has adapted. For example, adding a C_4 pathway to a C_3 plant would increase the ATP/NADPH demand, whereas increasing the storage of energy in saturated fats or oils would decrease it. Thus, we need to consider two distinct
situations: 1) when the ATP/NADPH production ratio is lower than that needed to support downstream metabolism; and 2) when ATP/NADPH production ratio exceeds demand. Both situations lead to metabolic congestion requiring different flexibility mechanisms. To make the situation more complex, the transthylakoid pmf which drives ATP synthesis is also the main ‘signal’ regulating the light reactions (Kramer et al., 2004). Acidification of the lumen associated with a build up of pmf activates the photoprotective energy dependent excitation quenching (qE) response (Müller et al., 2001). Down-regulating the conductance of ATP synthase alters electron flux relative to the pmf by reducing quantum efficiency and slowing electron transfer, but does not alter the ATP/NADPH output ratio (Kramer et al., 2004).

1. The ATP/NADPH ratio

There have been long-standing arguments in the literature over whether the textbook linear electron flow pathway produces sufficient ATP/NADPH to support CO₂ fixation and other metabolic processes, and thus whether ancillary processes are needed. Attempts to infer ATP/NADPH production and consumption at low irradiance require assumptions about how light is distributed between the two photosystems, how many protons are translocated to the lumen per electron and how many protons are required to form ATP. Estimates of these requirements have changed over time and it is timely to revisit them again in light of recent results.

The absorption of four quanta by photosystem II, PSII, and four by photosystem I, PSI, extracts 4 electrons from 2 molecules of water, releasing four protons and O₂ into the thylakoid lumen. Linear transport of these 4 electrons from PSII to PSI can reduce 2 NADP⁺ and pumps 8 protons into the thylakoid lumen through the action of the Q cycle (Sacksteder et al., 2000). On the basis of the rotational catalysis model with the chloroplast integral membrane portion (CFₒ) of the ATP synthase having 14 c subunits, 14 protons are required to synthesize 3 ATP (4.67H⁺/ATP, Seelert et al., 2000; Vollmar et al., 2009). Consequently, 8 quanta absorbed for linear electron flow can generate 2 NADPH and 2.57 ATP (12 protons x 3 ATP/14 protons). This was observed experimentally with spinach thylakoids supplied with NADP (Furbank and Badger, 1983). However, other estimates of only 4H⁺/ATP (Steigmiller et al., 2008) have been observed, which would yield
3ATP/2NADPH. The discrepancy between theoretical and measured H+/ATP is important both for the mechanism of the ATP synthase and the energetics of photosynthesis, and obviously needs to be addressed in future work.

The production of 3 ATP/2 NADPH exactly matches consumption by the Calvin-Benson cycle, whereas that of 2.57 ATP/2 NADPH requires a mechanism to supply additional ATP (Allen, 2002; Kramer et al., 2004; Amthor, 2010). However, one also needs to consider photorespiration, N and S reduction and the synthesis of amino acids, proteins and other molecules. Considering just CO₂ assimilation and photorespiration, the demands for ATP and NADPH are given by $3+7\Gamma^*/C$ and $2+4\Gamma^*/C$, respectively (Farquhar et al., 1980). Γ^* is the CO₂ photocompensation point of Rubisco which characterises the relative rates of carboxylation and oxygenation by Rubisco and C is the partial pressure of CO₂ at Rubisco. Γ^* increases with temperature. To illustrate the impact of photorespiration, the ATP/NADPH ratio required is shown as a function of C for two values of Γ^* (Figure 1A). As C increases, the ratio decreases from 1.67 to 1.51 as the proportion of photorespiration decreases. Regardless of whether 4 or 4.67 H⁺ are required to synthesize each ATP, additional ATP is needed to meet the demands of CO₂ assimilation and photorespiration.

2. Mechanisms to supply extra ATP

Five mechanisms have been proposed to augment ATP production: cyclic electron flow around PSI (CEF), the water-water cycle (WWC), the Malate valve, and plastoquinol oxidase (PTOX) (Figure 2). These processes might all operate under different conditions or in parallel. A fifth mechanism would be to alter the H⁺/ATP ratio required by the ATP synthase, but this would require the modification of CF₀ subunits.

2.1. Cyclic electron flow, CEF

Cyclic electron flow around PSI produces ATP without net reduction of NADPH. Plastoquinone (PQ) is reduced by ferredoxin (Fd) or NADPH via one or more enzymes collectively called plastoquinone reductase, rather than by PSII as in linear
electron flow. From PQH$_2$, electrons return to PSI via the cytochrome b_6f complex. As this appears to be the major ATP/NADPH balancing pathway, we will return to it after briefly describing the other mechanisms.

2.2. Water-water cycle, WWC

In the water-water cycle (WWC), also called the Mehler peroxidase reaction or pseudocyclic electron transfer, electrons from PSI are transferred from Fd and NADPH to reduce O$_2$. The superoxide formed in this reaction is detoxified by superoxide dismutase and ascorbate peroxidase, consuming NADPH (Asada, 1999). The consumption of NADPH by the WWC allows linear electron flow to continue, thereby producing a net gain in ATP. WWC is known to operate in isolated thylakoids (Asada, 1999), but its rate in vivo is less clear. Chloroplasts isolated from C$_3$ plants generally show higher capacity for the WWC than protoplasts or intact leaves (Backhausen et al., 2000; Badger et al., 2000). In C$_3$ leaves, the WWC contributed less than 5% of linear electron flow even when CO$_2$ fixation was inhibited (Ruuska et al., 2000; Clarke and Johnson, 2001). Both cyclic electron flow and WWC appear to operate in rice leaves during photosynthetic induction (Makino et al., 2002). For some C$_4$ plants under environmental stress, a substantial fraction of linear electron flow can be shunted away from CO$_2$ fixation and into alternative acceptors, most likely into WWC (Farage et al., 2006).

2.3. Malate valve

In the ‘malate valve’ (Scheibe, 2004), NADPH is consumed by the reduction of oxaloacetate (OAA) to malate, which is exported from the chloroplast. Some of this malate is oxidized in the mitochondrion to synthesize ATP. It can also be oxidized back to OAA in the cytosol generating NADH. The malate valve appears to have limited capacity to balance the ATP/NADPH budget (Scheibe et al., 2005) and cannot compensate for loss of NDH in high cyclic electron flow mutants (Livingston et al., 2010a). However, malate valve components may also be up-regulated in response to environmental stresses (Scheibe, 2004). Although relatively little work has been done on this pathway in recent years, it appears to be a viable option for increasing ATP production in modified plants.

2.4. Plastoquinol oxidase, PTOX
Chloroplasts contain an enzyme that can oxidize PQH$_2$ and reduce O$_2$ to H$_2$O (Cournac et al., 2000; Joet et al., 2002). High levels of plastoquinol oxidase have been found in the alpine plant species *Ranunculus glacialis*, where it is proposed to act as an effective alternate acceptor for photosynthetic electron transfer (Streb et al., 2005). However, in ‘typical’ C$_3$ plants (e.g. *Arabidopsis* or tomato), plastoquinol oxidase is expressed at very low levels and appears to play roles in biosynthetic pathways (Josse et al., 2000). In principle, plastoquinol oxidase could contribute to ATP production, albeit with lower yield than other processes, because only one proton should be deposited in the lumen for each electron transferred through PSII.

2.5 ATP synthase composition

The number of protons required to synthesize an ATP by the ATP synthase is thought to be determined by the number of c-subunits in the ATP synthase complex (Stock et al., 2000). Since the c-subunit stoichiometry varies between species, changing the ATP synthase “gear ratio” (which determined the H$^+$/ATP ratio) by substituting a foreign ATP synthase could possibly be used to alter ATP/NADPH output. In an extreme case, substituting the mammalian ATP synthase, with 8 c-subunits per CF$_0$ (Watt et al., 2010) could increase ATP production by $14/8 = 1.75$. However, to maintain a given free energy storage in ATP would require ~75% greater pmf, either from a much lower steady-state lumen pH, or increased electric field. This would necessitate other regulatory changes in the chloroplast since lumen pH is central to the control of energy dissipation (Kramer et al., 1999).

3. Cyclic electron flow around PSI.

The major role proposed for cyclic electron flow is to increase ATP supply (see Kramer et al., 2004). Cyclic electron flow appears to be minimally engaged (<14% of linear electron flow) under non-stressed conditions in C$_3$ plants (Cruz et al., 2005; Fan et al., 2007; Laisk et al., 2007; Livingston et al., 2010a; Livingston et al., 2010b), either because linear electron flow nearly meets the ATP required for chloroplast metabolism, or because other processes (WWC, Malate valve) are sufficient to balance the ATP/NADPH budget. However, cyclic electron flow appears to be important for C$_4$ photosynthesis, carbon concentrating mechanisms in green algae and coping with environmental stress (Rumeau et al., 2007; Jia et al., 2008; Kohzuma et al., 2009) where additional ATP may be required.
3.1. Cyclic electron flow may trigger, but is not essential for, photoprotection

Another proposed role of cyclic electron flow is to acidify the thylakoid lumen to initiate the photoprotective qE response and regulate electron transfer at the cytochrome b6f complex (Golding et al., 2004; Kramer et al., 2004). These two roles for cyclic electron flow are not independent, since a balanced ATP/NADPH budget is critical for maintaining proper levels of pmf, and thus regulating qE.

However, qE is clearly activated in the absence of high cyclic electron flow and in plants lacking complexes thought to catalyze cyclic electron flow (Avenson et al., 2005a; Ishikawa et al., 2008). We thus conclude that cyclic electron flow is not ‘essential’ for photoprotection, but its absence may hinder the formation of pmf (and qE) under certain conditions. Other mechanisms that can control pmf and regulate qE include altering the conductivity of the ATP synthase to protons, or the proportion that Δψ and ΔpH contribute to pmf.

3.2. Progress identifying pathways for cyclic electron flow

The literature supports at least four distinct pathways for cyclic electron flow, diverging at the key plastoquinone reductase step, where electrons from PSI are transferred into the PQ pool (Figure 3). This lack of consensus, or perhaps diversity of biochemical solutions, has been a major source of confusion. Much recent progress has been made identifying and characterizing these pathways. Unfortunately, the results lead to a more complex rather than a simpler picture.

3.2.1. Pathway 1: Thylakoid type I NADPH dehydrogenase complex (NDH).

Thylakoids from cyanobacteria and higher plant chloroplasts contain a type 1 NADPH dehydrogenase, termed the NDH complex, which is partially homologous to bacterial and mitochondrial complex I and is thought to participate in cyclic electron flow. Complex I is found in mitochondria and bacteria and serves to oxidize NADH for complex I and the reduce ubiquinone. The redox reactions are coupled to proton translocation in two ways. Firstly, protons are taken up on the negatively-charged side of the membrane during quinone reduction, and released on the positive side of the membrane during quinol oxidation, i.e. by the first step in the Q-cycle catalysed by the cytochrome bc1 or b6f complex. Secondly, four additional protons are directly pumped by mechanical action for each pair of electrons transferred to the
quinone. If the same proton pumping action occurs in NDH, 4 protons should be
translocated for each electron transferred through the cycle, 2 via the reduction and
oxidation of plastoquinone and the Q-cycle and 2 more via the NDH proton pump.
This proton/electron stoichiometry is twice that expected for a PQ reductase without
a proton pump, and halves the rate of cyclic electron flow needed to balance the
ATP/NADPH budget, i.e. a large amount of balancing can be achieved with very little
cyclic electron flow. Comparison of NDH genes with the recent crystal structure of
bacterial complex I and the accompanying mechanistic model (Efremov et al., 2010)
suggests that the proton pumping reactions are conserved in the thylakoid.

Key advances in the biochemistry of NDH include the discovery of new subunits
or proteins involved in the synthesis and stability of the complex (Nixon and Rich,
2007; Suorsa et al., 2009). Expression of NDH is low under non-stressed conditions,
and mutants deficient in NDH complex only show strong effects on photosynthesis
when under environmental stress. High NDH expression is also seen in the hcef1
mutant, which shows continuous high cyclic electron flow (Livingston et al., 2010a).

3.2.2. Pathway 2: The ferredoxin-PQ oxidoreductase (FQR)

The FQR pathway has been proposed to catalyze the Antimycin A-sensitive
reduction of the PQ pool by Fd, though no actual FQR protein complex has yet been
isolated. Munekage et al. (2002) isolated a mutant, pgr5, lacking a strong qE
response, suggesting a deficiency in the establishment of the proton gradient,
consistent with a deficiency in cyclic electron flow. This suggestion was supported
by assays in isolated thylakoids of chlorophyll fluorescence changes upon addition of
NADPH and ferredoxin, which should reflect the reduction of the plastoquinone
pool. Based on these results Munekage et al. (2002) concluded that PGR5
catalyzes the “major route” for cyclic electron flow. PGR5 does not appear to house
redox cofactors or substrate binding sites, and thus have been proposed to regulate
cyclic electron flow, perhaps by mediating the formation of supercomplexes
containing PSI and other proteins (Shikanai, 2007). DalCorso et al. (2008) showed
that PGR5 forms a complex with the related PGRL1 protein and suggested they
work together to catalyse cyclic electron flow. It has also been proposed that PGR5
is involved in redox ‘poising’ of the electron transfer chain (Breyton et al., 2006) or in
the formation of supercomplexes (Laisk, 1993; Joliot and Joliot, 2002) that promote cyclic electron flow.

However, the story is more complex. While PGR5 clearly plays a role in coping with fluctuating light (Tikkanen et al., 2010), there is conflicting data on what role PGR5 plays in cyclic electron flow. In the assays of Munekage et al (2002), only a small (~5-10%) fraction of the plastoquinone pool is reduced by NADPH and ferredoxin (T. Shikanai, personal communication, D. Strand and D. M. Kramer, unpublished) suggesting that in the majority of plastoquinone reductase is deactivated in isolated thylakoids. Avenson et al (2005a) showed that the loss of qE in pgr5 is not related to changes in cyclic electron flow, but to a change in the rate of proton efflux from the lumen through the thylakoid ATP synthase. In addition, cyclic electron flow has been shown to operate quite rapidly in the complete absence of PGR5, both during induction from a dark adapted state (Nandha et al., 2007) and in steady-state in mutants with elevated cyclic electron flow (Livingston et al., 2010a). This indicates that PGR5 is not needed for cyclic electron flow. While it is certainly possible that multiple cyclic electron flow pathways operate under different conditions, one cannot say that PGR5 pathway constitutes the major pathway for cyclic electron flow.

3.2.3. Pathway 3: Nda2

Some green algae including Chlamydomonas reinhardtii (Maul et al., 2002), and conifers, such as Pinus thunbergii (Wakasugi et al., 1994), lack the chloroplast NDH complex. In Chlamydomonas, PQ reduction in cyclic electron flow has been proposed to occur via a type 2 NADH:plastoquinone oxidoreductase (Nda2) (Desplats et al., 2009). It is related to those found in bacteria and mitochondria and does not pump protons. It would catalyse a cyclic electron flow pathway with 2H⁺/e⁻ and would have to run twice as fast as a cycle with a proton-pumping NDH (section 3.2.1). However, type 2 complexes are structurally much simpler than complex I (1 subunit with a single flavin cofactor compared to at least 11 protein subunits, 9 FeS clusters and a flavin). Nda2 may therefore be a more tractable (albeit less efficient) system to introduce into plants for energy balancing.

3.2.4. Pathway 4: The cytochrome b₆f complex and FNR

A pathway that uses the Q₁ (PQ reductase) site of the cytochrome b₆f complex to reduce PQ has been proposed (Zhang et al., 2004; Iwai et al., 2010) . Electron
transfer to Q, probably involves the newly-discovered heme c, which is located in a seemingly ideal position for this reaction (Kurisu et al., 2003; Stroebel et al., 2003). It also seems well placed to allow electrons to flow from ferredoxin or ferredoxin NADP reductase (FNR) to the bound plastoquinone (Zhang et al., 2004). This pathway probably involves the formation of a special cyclic electron flow supercomplex (Iwai et al., 2010), as discussed in Section 4.

4. State transitions

Reduction of the plastoquinone pool activates a kinase which phosphorylates thylakoid proteins resulting in dissociation of antenna complexes from PSII. In Chlamydomonas, state transitions also affect the rate of cyclic electron flow (Finazzi et al., 2002) and the formation of the cyclic electron flow supercomplex described by Iwai et al. (2010). This regulation makes physiological sense because, under ATP deficit conditions, NADPH should build up, slowing PSI electron transfer and allowing PQ to go reduced. Activating state 2 transition decreases PSII excitation while increased cyclic electron flow should alleviate the ATP deficit and increase \(\text{pmf} \), thus down-regulating PSII antenna via the qE mechanism (Figure 2).

There are a growing number of mutants in Arabidopsis associated with state transitions. Orthologues to thylakoid associated kinases in Chlamydomonas, have been identified in Arabidopsis, such as STN7 (Bellafiore et al., 2005). STN7 is related to a kinase that phosphorylates light harvesting complexes in the light or when PSII is preferentially excited, causing it to dissociate from PSII and migrate (Tikkanen et al., 2010). An increase in the mobile fraction of pigment protein complexes is seen following photoinhibitory treatments (Goral et al., 2010). The fact that stn7 mutants were less fit in a fluctuating light environment (Wagner et al., 2008), suggests STN7 might help coping with changing ATP/NADPH demands or light balancing.

5. Cyclic electron flow in C\(_4\) plants.

There is also confusion over which plastoquinone reductase catalyzes cyclic electron flow required to power C\(_4\) photosynthesis in bundle sheath chloroplasts. Maize shows strong bundle sheath expression of NDH genes (Majeran et al., 2008). Takabayashi et al. (2005) reported that expression of NDH, but not PGR5 (see 3.2.2), correlated with the expected requirement for cyclic electron flow in different
C₄ species, suggesting that NDH was the major plastoquinone reductase for cyclic electron flow in C₄ plants. In contrast, Munekage et al. (2007) found that both NDH-H and PGR5 were expressed at higher levels in NAD-malic enzyme C₄ compared to C₃ and C₃-C₄ intermediate species of *Flaveria*. This suggests a role for both NDH and FQR in C₄ photosynthesis.

6. Dealing with excess ATP

The case of insufficient ATP per NADPH has received the most attention in the literature, but the opposite case—too much ATP per NADPH—can also become a major problem. Any process that consumes less than the produced ratio of ATP/NADPH, e.g. nitrite reduction, can lead to this situation. This has already become an issue with the introduction of H₂ production in algae (Ghirardi and Mohanty, 2010). Here, the depletion of ADP can lead to slowing of the ATP synthase, resulting in high pmf, lumen acidification and subsequent slowing of electron transfer at the b₆f complex. Excessive acidification of the lumen can also lead to catastrophic ‘acid photodamage’ of PSII (Krieger and Rutherford, 1997). This area has not been well studied and it is unclear how chloroplasts deal with this situation. It is possible that excess ATP can be remedied by introducing dissipative mechanisms. A controlled proton leak, perhaps induced by expression of mitochondrial uncoupler (UCP) proteins (Hourton-Cabassa et al., 2009) in the chloroplast or ‘slip’ of the ATP synthase itself (Evron et al., 2000), could be activated. Futile metabolic cycles, such as that recently proposed by Livingston (2010a) to cycle around chloroplast glyceraldehyde 1,3-bisphosphate could hydrolyse excess ATP. A variety of other enzymes that hydrolyse ATP could be introduced to the chloroplast. Although these approached appear to be energetically wasteful, one must keep in mind that chloroplasts perform analogous processes, for example dissipating ‘excess’ light energy to avoid deleterious effects of over-excitation.

7. Implications for photon requirements and distribution between photosystems

The photon requirements for the various electron transport paths producing NADPH and ATP are listed in Table 1. In the absence of photorespiration, 1.5 ATP are required per NADPH, but linear electron flow only supplies 1.285 ATP assuming 4.67 H⁺ are required to synthesize each ATP. This deficit in ATP could be met in
several ways. The photon requirement for CO₂ assimilation in the absence of
photorespiration would be 8.2 to 8.7 photons. This is slightly less than experimental
observations (10.4 Skillman, 2008; but see Amthor, 2010). Under normal CO₂
conditions, additional ATP is required to meet the demand from photorespiration.

The pathway used to supply the additional ATP has implications on the
photon requirement for CO₂ assimilation and the proportion of light required by each
photosystem at low irradiance. The distribution of light depends on the composition
of the antenna complexes associated with each photosystem which depends on
growth irradiance and state transitions. At higher irradiance, the effectiveness of
those excitations will be influenced by photoprotective exciton quenching processes
(such as the qE response which decreases the quantum efficiency of the antenna)
and the relative fractions of each photosystem in photochemically-active or “open”
states (which is influenced by downstream processes that consume their
photoexcited products). If cyclic electron flow with a proton pumping NDH (section
3.2.1) is used, then the fraction of light that PSII should process is about 0.44, which
is consistent with the fraction of chlorophyll associated with PSII (Albertsson, 2001).
As photorespiration increases, either due to lower CO₂ or higher temperature raising
Γ*, the fraction of light that PSII should process need only decline by a few percent
(Fig. 1B). However, if linear electron flow-WWC is used, or if only 4 H⁺ are required
to synthesize each ATP, then light needs to be distributed almost equally between
both photosystems to achieve the observed photon yields. This distribution factor is
used when converting photochemical efficiency measured by chlorophyll
fluorescence into a rate of electron transport. Laisk & Loreto (1996) provide one
method of estimating this and their estimates ranged from 0.42 - 0.6. It has also
been used to calculate PSI electron transport rate from the reduction state of P700
multiplied by the fraction of light absorbed by PSI and irradiance. Values are
assumed for these fractions and they are assumed to be constant. These
assumptions are difficult to verify and may result in incorrect estimates of electron
transport rates.

C₄ photosynthesis adds further levels of complexity. Firstly, 2 ATP are
required by the C₄ cycle pump for each CO₂ fixed by PEP carboxylase and a variable
proportion of the CO₂ pumped into the bundle sheath leaks back out (Cousins et al.,
2006; Tazoe et al., 2008; Pengelly et al., 2010). Secondly, electron transport is
distributed between the mesophyll and bundle sheath chloroplasts and the
distribution of chlorophyll and thylakoid protein complexes differs between these two
cell types depending on the decarboxylation type (Ghannoum et al., 2005). Reducing
equivalents can also be supplied to the bundle sheath via the phosphoglycerate/
glyceraldehyde shuttle and NADP malic enzyme. If cyclic electron flow were the
main pathway producing the extra ATP in C_4 leaves, the proportion of light captured
by PSII would only need to be 0.27 rather than 0.44. As no methods currently exist
that allow us to measure the proportion of light captured by PSII in C_4 leaves, we can
only speculate on the exact paths for electron flow.

8. Conclusion

Unlike a power station, which supplies only one form of energy, electricity, the
chloroplast must supply both ATP and NADPH in precisely the right proportion to
match consumption. There are clear indications that “improving” the photosynthetic
properties of organisms may affect energy budgets, requiring us to extend the
flexibility of the energy producing systems. The apparent complexity of pathways
utilised by photosynthesis to balance energy supply to meet demand continues to
grow. This provides us with new opportunities to meet demands that may be placed
by metabolic engineering of photosynthesis and may enable novel regulation of the
system.
Table 1. NADPH and ATP yields depending on where photons are absorbed and which pathway is used. Due to the uncertainty in the H+/ATP required in chloroplasts, two alternative options are given. Both photosystems are assumed to operate with 100% efficiency.

<table>
<thead>
<tr>
<th>Path</th>
<th>PSII photons</th>
<th>PSI photons</th>
<th>NADPH</th>
<th>H^+</th>
<th>$c\text{ATP}^3$ 4H+/ATP</th>
<th>$c\text{ATP}^3$ 4.67H+/ATP</th>
<th>mATP^4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear electron flow, LEF</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>1.5</td>
<td>1.28</td>
<td></td>
</tr>
<tr>
<td>Cyclic electron flow, CEF</td>
<td></td>
<td>2</td>
<td></td>
<td>8</td>
<td>2</td>
<td>1.71</td>
<td></td>
</tr>
<tr>
<td>NADPH dehydrogenase complex, NDH1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclic Electron Flow (CEF) pathways 2 - 42</td>
<td>2</td>
<td></td>
<td></td>
<td>4</td>
<td>1</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>(see 3.2.2, 3.2.3, 3.2.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water water cycle, WWC</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>1.5</td>
<td>1.28</td>
<td>1.28</td>
<td>2.5</td>
</tr>
<tr>
<td>Malate valve</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>1.5</td>
<td>1.28</td>
<td>1.28</td>
<td>2.5</td>
</tr>
<tr>
<td>Plastoquinol oxidase, PTOX</td>
<td>2</td>
<td></td>
<td>2</td>
<td>1</td>
<td>0.86</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1) assuming a proton pumping NDH

2) Ferredoxin plastoquinone oxidoreductase, type 2 NADH plastoquinone oxidoreductase, cytochrome b_{6f} and ferredoxin NADP reductase (see paths 2, 3 and 4 in Figure 3).

3) Chloroplast production of ATP. Structural evidence favours $4.67\text{H}^+/\text{ATP}$.

4) Mitochondrial production of ATP or one cytosolic NADH per NADPH equivalent exported from the chloroplast via malate and returned as OAA.
Figures

Figure 1. A. The ATP/NADPH ratio required to satisfy CO₂ assimilation and photorespiration as a function of CO₂ partial pressure at Rubisco. The ratio depends on the value assumed for Γ* (μbar), the CO₂ photocompensation point, which increases with temperature. The ratios produced by linear electron flow are shown assuming 3, 4 and 4.67 H⁺/ATP. B. The proportion of light absorbed by PSI and PSII necessary to satisfy linear electron flow (LEF) and Cyclic Electron Flow (CEF) required to provide the ATP/NADPH for different values of Γ* and likely H⁺/ATP ratios. A constant value is frequently used to calculate LEF from chlorophyll fluorescence.

Figure 2. The coupling between light capture, electron flow and photophosphorylation which produce NADPH and ATP with their consumption by CO₂ assimilation and photorespiration in a cell. Three of the cells organelles are shown: C chloroplast, P peroxisome, M mitochondrion. The photosynthetic electron transport chain is represented in a thylakoid membrane, with electron flow from water through photosystem II (PSII), the cytochrome b/f complex (f) and photosystem I (PSI) to NADPH and proton flow into the lumen and out through the ATPase (CF) to generate ATP. The dominant path for electron flow is linear electron flow (LEF) while two alternative paths are shown: 1) cyclic electron flow around PSI (CEF), 2) electrons can leave from PQH₂ via the plastoquinol oxidase (PTOX) which oxidizes plastoquinol and reduces O₂ to water. Some electrons from LEF can return to O₂ via the water-water cycle (WWC) or can be exported from the chloroplast via the malate valve to generate ATP in mitochondria (Mal malate, OAA oxaloacetate). Equal photon capture by PSII and PSI are required for LEF and additional photon absorption by PSI is required for cyclic electron flow. The proportion of photons delivered to PSII reflects the relative amounts of chlorophyll associated with the two photosystems. State transitions can dissociate chlorophyll protein complexes from...
PSII which may contribute to PSI thereby enabling greater cyclic electron flow. q_E quenching in the light harvesting chlorophyll protein complexes associated with the xanthophyll cycle, which is activated by low pH in the lumen, reduces the effective efficiency of the antenna. The conductivity of the ATPase can be varied to alter the luminal pH relative to the rate of ATP synthesis, thus providing feedback via the q_E mechanism.
Figure 3. Detail of the linear (orange arrows) and cyclic (black arrows) electron flow pathways which produce NADPH and ATP. Proton movement is denoted by blue arrows. Four different cyclic pathways have been proposed and may operate in parallel. 1. NDH, PQ is reduced by NAD(P)H-PQ oxidoreductase. 2. FQR / PGR5, electrons are transferred from Fd to PQ via the Fd-PQ oxidoreductase (FQR). 3. Nda2, a type-2 NAD(P)H:PQ oxidoreductase. 4. uses the Qi (PQ reductase) site of the cytochrome b_{6f} complex to reduce PQ and may involve the ferredoxin:NADP+ oxidoreductase, FNR. Other thylakoid components in the diagram include the ATP synthase, Photosystem I (PSI), photosystem II (PSII), plastoquinone (yellow hexagon), plastocyanin (PC) and light harvesting complexes associated with photosystem II (LHCII).

Acknowledgements

Work from the Kramer laboratory was supported from the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, Photosynthetic Systems through Grant DE-FG02-04ERI5559.
References

