Running head: Interaction of the tobacco lectin with histone proteins

Corresponding author:
Prof. Dr. Els J.M. Van Damme,
Department of Molecular Biotechnology, Lab. Biochemistry and Glycobiology,
Ghent University,
Coupure links 653, B-9000 Gent, Belgium
E-mail: ElsJM.VanDamme@UGent.be
Fax +32 92646219;
Tel. +32 92646086

Research area: Biochemical Processes and Macromolecular Structures
Interaction of the tobacco lectin with histone proteins

Dieter Schouppea, Bart Ghesquièreb,c, Gerben Menschaertd, Winnok H. De Vose, Stéphane Bourquef, Geert Trooskensd, Paul Proostg, Kris Gevaertb,c, Els J.M. Van Dammea*

a Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium

b Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium

c Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium

d Laboratory for Bioinformatics and Computational Genomics, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium

e Bioimaging and Cytometry Unit, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium

f UMR INRA 1088 – CNRS 5184 – Université de Bourgogne Plant-Microbe-Environnement, 17 Rue Sully, BP 86510, 21065 Dijon cédex, France

g Rega Institute for Medical Research, Laboratory of Molecular Immunology, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium

Footnotes

The financial support of the Research Council of Ghent University (projects BOF2005/GOA/008 and BOF10/GOA/003), the Fund for Scientific Research-Flanders (FWO grant G.0022.08) and the Hercules Foundation to E.J.M. Van Damme is gratefully acknowledged. B.G. is a Postdoctoral Research Fellow of the Fund for Scientific Research – Flanders (Belgium). The UGent/VIB lab acknowledges support by research grants from the Fund for Scientific Research – Flanders (Belgium) (project G004207), the Concerted Research Actions from the Ghent University and the Inter University Attraction Poles (project BOF07/GOA/012 and IUAP06).

*Corresponding author: ElsJM.VanDamme@UGent.be; Fax : +32 92646219
Abstract

The *Nicotiana tabacum* agglutinin or Nictaba is a member of a novel class of plant lectins residing in the nucleus and the cytoplasm of tobacco cells. Since tobacco lectin expression is only observed after the plant has been subjected to stress situations such as jasmonate treatment or insect attack, Nictaba is believed to act as a signaling protein involved in the stress physiology of the plant. In this paper a nuclear proteomics approach was followed to identify the binding partners for Nictaba in the nucleus and the cytoplasm of *Nicotiana tabacum* cv Xanthi cells. Using lectin affinity chromatography and pull down assays it was shown that Nictaba interacts primarily with histone proteins. Binding of Nictaba with histone H2B was confirmed *in vitro* using affinity chromatography of purified calf thymus histone proteins on a Nictaba column. Elution of Nictaba-interacting histone proteins was achieved with 1 M GlcNAc. Moreover, mass spectrometry analyses indicated that the Nictaba-interacting histone proteins are modified by O-GlcNAc. Since the lectin-histone interaction was shown to be carbohydrate dependent it is proposed that Nictaba might fulfill a signaling role in response to stress, by interacting with O-GlcNAcylated proteins in the plant cell nucleus.
Introduction

For a long time it was believed that plant lectins were abundant proteins confined to the vacuolar and extracellular compartments of plant cells. Using transgenic lines overexpressing specific lectin genes or incorporation of the purified lectin into an artificial diet it was shown that an important group of these vacuolar lectins is involved in plant defense against pathogens or predators (Peumans and Van Damme, 1995; Van Damme et al. 1998). However, during the last decade evidence has been accumulating that plants also synthesize lectins in minute amounts in response to some specific stress factors and changing environmental conditions. Several plant lectins have been discovered that – unlike the previously characterized ‘vacuolar’ lectins - are not synthesized in the endoplasmic reticulum (ER) but on free ribosomes in the cytosol. Further localization studies have shown that this group of lectins locates to the nuclear and/or cytoplasmic compartment of the plant cell. According to their subcellular localization, these lectins were called nucleocytoplasmic plant lectins (Lannoo and Van Damme, 2010). Since the expression of several nucleocytoplasmic lectins was shown to be inducible by (a)biotic stress factors (Claes et al. 1990; Fouquaert et al. 2009; Van Damme et al. 2008; Vandenborre et al. 2009), these lectins are believed to be involved in stress signaling (Van Damme, 2004, 2008). However, until now, this hypothesis awaits confirmation since no putative receptors have been identified for nucleocytoplasmic plant lectins (Lannoo and Van Damme, 2010).

The Nicotiana tabacum agglutinin (Nictaba) was one of the first representatives of this novel group of nucleocytoplasmic plant lectins. In 2002 Nictaba was purified from tobacco leaves (Nicotiana tabacum cv Samsun NN) pretreated with jasmonic acid methyl ester (Chen et al. 2002). The lectin is not expressed under normal physiological conditions, but accumulates in leaf parenchyma cells after treatment with jasmonic acid methyl ester, jasmonic acid and its precursor 12-oxophytodienoic acid. It was shown that hydroxylation, sulfation or glucosylation of jasmonic acid results in compounds that are unable to trigger Nictaba synthesis. Since no other plant hormone tested was able to induce lectin accumulation, Nictaba can be considered a genuine jasmonate inducible protein (Lannoo et al. 2007; Vandenborre et al. 2009). Recently, it was also demonstrated that Nictaba synthesis is upregulated by insect herbivory, in particular caterpillar feeding. Interestingly, the
accumulation of Nictaba is not only confined to the leaf subjected to jasmonate treatment or insect herbivory, but can also be observed in other leaves of the tobacco plant, indicating a systemic response (Vandenborre et al. 2009). However, no accumulation of jasmonic acid or derivates was observed in systemic leaves, suggesting the involvement of an unknown signaling system that works downstream of the jasmonate pathway.

Although the tobacco lectin was originally reported in \textit{N. tabacum} cv Samsun NN, it was shown later that the lectin sequence is also present in other tobacco species and cultivars. Nictaba accumulated in nine out of 19 tobacco species tested, including all cultivars from the \textit{Nicotiana tabacum} species (Lannoo et al. 2006a).

Cloning of the Nictaba coding sequence from \textit{N. tabacum} cv Samsun NN revealed that it contains a basic tetra-lysine nuclear localization sequence (102-LysLysLysLys-105). Using immunohistochemistry and confocal microscopy with a GFP-Nictaba fusion protein it was confirmed that Nictaba resides in the nucleocytoplasmic compartment of the plant cell and is virtually absent from the nucleolus (Chen et al. 2002; Lannoo et al. 2006b; Vandenborre et al. 2009). Using hapten inhibition assays and glycan array technology it was demonstrated that Nictaba exhibits specificity for GlcNAc oligomers but also interacts with high-mannose and complex N-glycans (Lannoo et al. 2006b).

Hitherto the molecular function of Nictaba remains unknown. In this paper we used a proteomics approach to isolate and identify Nictaba-interacting proteins in the nucleus and the cytoplasm of \textit{Nicotiana tabacum} cv Xanthi cells using lectin affinity chromatography as well as pull down assays. Both approaches revealed that Nictaba primarily associates with core histone proteins. Binding of Nictaba to these nucleosomal proteins was confirmed in an affinity chromatography experiment with a calf thymus histone preparation. Proteins could be eluted from the lectin column with GlcNAc monomers. Moreover, western blot analysis using an anti-O-GlcNAc antibody and lectin blotting with the GlcNAc specific lectin WGA suggest that these histone proteins interact with Nictaba through GlcNAc modifications.
Results and discussion

Purification of nuclei from Nicotiana tabacum cv Xanthi cultured cells

Intact nuclei were isolated from cultured *Nicotiana tabacum* cv Xanthi cells (according to protocol 2). Differential interference phase contrast microscopy as well as fluorescence microscopy revealed that the structure of the isolated nuclei was intact and that the nuclear preparation was almost devoid of any cellular debris. The identity of the isolated nuclei was confirmed by staining with DAPI or propidium iodide (PI) (Figure 1). Fields of purified nuclei with corresponding PI staining are shown in Supplemental Figure 1.

Since addition of Triton X-100 to the nuclear isolation buffer was shown to be sufficient for lysis of ER structures and removal of ER remnants associated with the outer nuclear envelope (Watson and Thompson, 1986), a comparative analysis was conducted in which nuclei were purified in the presence or absence of 0.5 % Triton X-100. Using the ER-specific stain ER-tracker, it was observed that nuclei extracted in the absence of Triton X-100 were to a greater extent associated with ER remnants, compared to nuclei purified in the presence of 0.5 % Triton X-100 (Figure 2).

The contamination rate of nuclear-enriched fractions was estimated by measuring the activity of marker enzymes. Enzymatic assays revealed that the nuclear protein extracted from *Nicotiana tabacum* cells was largely depleted from proteins residing in other subcellular compartments. The activity of the ER localized cytochrome c reductase in the nuclear protein extract was only 0.37 % compared to the total amount of unfractionated protein that was extracted from an equal amount of cells. No activity was detected in the nuclear protein fraction for the cytosolic glucose-6-phosphate dehydrogenase, the Golgi localized IDPase and the plasma membrane ATPase. Moreover, the ER localized chaperone protein BiP, which was clearly observed in the unfractionated protein fraction from tobacco cells, was absent in the nuclear protein extract (Figure 2B).
Nictaba interacts with a variety of nucleocytoplasmic proteins from Nicotiana tabacum

Lectin blotting of nuclear proteins revealed interaction of Nictaba with several proteins, the most abundant ones having molecular masses ranging between 10-15 kDa, 35-40 kDa and 70-100 kDa (Figure 3). In this experiment carboypeptidase Y and peanut lectin (PNA) were used as positive (glycosylated) and negative (non-glycosylated) controls for lectin binding, respectively. Pre-incubation of Nictaba with a mixture of GlcNAc oligomers clearly inhibited the binding of this lectin to the nuclear proteins.

Identification of Nictaba-interacting proteins from N. tabacum cv Xanthi nuclei using lectin affinity chromatography

To specifically look for interacting partners for the tobacco lectin in the nuclear compartment of the plant cell, tobacco nuclei were purified and nuclear protein was extracted using a method that allowed the purification of milligram amounts of nuclear protein (protocol 1). However, the pitfall of this method is the contamination of the nuclear extract with small amounts of cell wall proteins. Interacting partners for Nictaba in the nuclear protein fraction were identified using affinity chromatography on a column with covalently coupled Nictaba. Only a small fraction of the nuclear protein (purified according to protocol 1) was retained on the column, representing 1.2 % of the total protein loaded on the column. Analysis of the eluted protein by SDS-PAGE revealed polypeptides with molecular masses ranging from 10 to 100 kDa (Supplemental Figure 2).

Proteins eluted from the Nictaba column were identified by LC-MS/MS (Table 1, Supplemental Table 1). Quantification of eluted proteins was performed by calculating the exponentially modified protein abundancy index (emPAI). This label free protein quantification method has previously been shown to correctly estimate the abundance of proteins identified by MS (Ishihama et al. 2005). The most abundant proteins eluting from the Nictaba column were the histone proteins. In particular core histone proteins H2A, H2B, H3 and H4 (for formation of the octameric nucleosome core particle) are highly represented in the eluted fractions and are more abundant than the linker histones (H1). EmPAI values for all proteins in the Nictaba-eluted fraction were compared to those of proteins identified in the total nuclear extract that was applied on the column and allowed to conclude that histone
proteins are clearly enriched in the protein fraction bound by Nictaba (Supplemental Tables 1-2).

Next to these nucleosomal proteins, a stress inducible protein (elicitor inducible protein), a chaperone protein (NTFP1) and some proteins involved in translation and ribosome biogenesis (elongation factor 1α, fibrillarin homolog and ribosomal protein L11-like) were identified as Nictaba-binding proteins, albeit at a much lower abundance. In addition, a few proteins that presumably locate to the extracellular compartment (ex. phi-1, α-expansin precursor, endoxyloglucan transferase related protein, PS60, peroxidase, …) were identified by mass spectrometry (Supplemental Table 1).

Amino acid sequences of the identified proteins were also analyzed using the InterProScan tool (Zdobnov and Apweiler, 2001) to functionally annotate Nictaba interacting proteins. Afterwards, the WEGO (Web Gene Ontology Annotation Plotting) tool (Ye et al. 2006) was used to identify the cellular localization and the biological processes of eluted proteins that were enriched when compared to a total *N. tabacum* cv Xanthi nuclear extract (further designated as ‘background’). It is clear from Figure 4A that biological processes such as DNA packaging and nucleosome assembly – both processes obviously associated with histone proteins- are highly represented amongst the Nictaba interacting proteins when compared to the background.

Identification of Nictaba-interacting proteins from N. tabacum cv Xanthi nuclei using pull-down assays

Since MS analysis and identification of Nictaba-binding proteins retained on the tobacco lectin column revealed small amounts of proteins that locate to the plant cell wall, a more rigid fractionation was done to obtain highly pure tobacco nuclei (according to protocol 2). After enzymatic removal of the cell wall of tobacco cells nuclei were fractionated from the protoplasts using a 25-36% iodixanol gradient. As a consequence the yield of protein was much lower (125 mg vs. 25 mg from 100 g cell weight for protocols 1 and 2, respectively). This nuclear protein fraction was used in pull-down assays with a recombinant His-tagged Nictaba. The nuclear protein extract from *Nicotiana tabacum* cv Xanthi cells was used as the prey protein source to pull down Nictaba-interacting partners. Table 2 gives an overview of the released proteins identified by LC-MS/MS analysis (using an LTQ OrbiTRAP XL mass
spectrometer) together with their emPAI value. Analyses with this protein preparation retrieved only very few extracellular proteins, confirming the superior purity of this nuclear preparation from tobacco cells (Supplemental Table 3).

The MS results from the pull-down assay are in line with those obtained by lectin affinity chromatography in that the most abundant Nictaba-interacting proteins are core histone proteins. No linker histone protein was identified. Comparison with a background list containing all proteins in the nuclear protein fraction (Supplemental Table 2) revealed that these nucleosomal proteins are specifically enriched in the pull down assay. InterPro scanning of identified protein sequences and WEGO plotting again revealed that biological processes typically associated with histone proteins were highly enriched among the Nictaba-interacting proteins when compared to a background extract (Figure 4B).

Proteins identified in the elution fraction at a lower abundance (emPAI < 0.3) include a rubber elongation factor, a protein involved in post-transcriptional processing (maturase K), a protein involved in ribosome biogenesis (unnamed protein product) and an F-box protein with unknown function.

Identification of Nictaba-interacting proteins from N. tabacum cv Xanthi in an unfractionated protoplast extract using pull-down assays

To provide additional proof that Nictaba interacts with histone proteins in Nicotiana tabacum cells, a similar pull-down experiment was performed using an unfractionated protoplast extract as the source of prey protein. From the results shown in Table 3 it is clear that histone proteins H2A.F/Z, H4 and H2B are present at relatively high abundance in the protein fraction interacting with Nictaba (Table 3, Supplemental Table 4), demonstrating that Nictaba interacts with histone proteins, even in a protein extract not specifically enriched for nuclear proteins. In addition, this experiment also allowed to identify putative cytoplasmic proteins that can interact with Nictaba. The most abundant protein pulled down from this extract corresponds to the putative heat-shock protein PS1, a chaperone protein involved in stress response. Furthermore two hypothetical proteins with an unknown function (28927693, 12323759), a protein with transcription factor activity (147785120) and the rubber elongation factor were detected among the Nictaba interacting proteins at a relatively high abundance (emPAI > 0.25). The specificity of the interaction with Nictaba was verified by comparison
with a background list of proteins identified in an unfractionated protoplast extract (Supplemental Table 5). Analysis of the list of identified Nictaba-binding proteins using the InterPro scan tool, revealed that Nictaba binding proteins in protoplast extracts are involved in histone-associated processes (Figure 4C), though to a lower extent compared to the experiments performed with nuclear proteins.

GlcNAc-dependent interaction of calf histone proteins with Nictaba and WGA

Since histone proteins are known to be the most conserved proteins in eukaryotes, the interaction of histone proteins from calf thymus with Nictaba was investigated. A total non-fractionated preparation of purified histone proteins was analyzed on the Nictaba-Sepharose 4B column. Proteins bound to the lectin column were eluted and analyzed by SDS-PAGE (Figure 5). Protein elution could be established by adding a buffer with high pH. Alternatively histone proteins were eluted from the Nictaba column with 1 M GlcNAc (Figure 5). Lower concentrations of GlcNAc (0.1 – 0.5 M) did not result in desorption of bound histone proteins. Similarly 1 M glucose did not allow to destroy the interaction of the bound histone proteins to Nictaba (Supplemental Figure 3A).

As shown in Figure 5 only a small fraction of the total histone preparation was retained on the lectin column, representing approximately 16% of the total protein loaded on the column. N-terminal sequencing of the polypeptide with a molecular mass of approximately 12 kDa yielded a 12 amino acid sequence (PEPAKSAPAPKK) which allowed to unambiguously identify this polypeptide as histone H2B (100% sequence identity).

To exclude the possibility that histone proteins interact aspecifically with the Sepharose 4B matrix, the calf histone extract was also analyzed on a Sepharose 4B matrix (without any lectin coupled to it). It was observed that virtually no histone proteins were retained on the Sepharose 4B matrix (Supplemental Figure 3B).

To investigate if histone proteins also interact with the wheat germ agglutinin (WGA), a lectin known to specifically recognize GlcNAc and O-GlcNAc, a similar affinity chromatography experiment with calf histone proteins was also performed on a WGA column. Analysis of the histone proteins eluted from this column revealed that histone 2B as well as histone 3 interact with WGA (Supplemental Figure 3C).
Lectin-interacting histone proteins are recognized by CTD110.6 antibody

Histone proteins bound to the Nictaba or WGA column were analyzed by SDS-PAGE and reacted on blot with FITC labeled WGA and Nictaba as well as with the CTD110.6 antibody, known to specifically detect the O-GlcNAc modification on Ser/Thr residues of some nucleocytoplasmic animal proteins (Figure 6). Nuclear proteins extracted from human ECV cells, as well as 5 ng BSA chemically coupled to a GlcNAc residue (BSA-aminophenyl-GlcNAc) were used as positive controls. In addition, 100 ng carboxypeptidase Y, a protein known to be glycosylated by high-mannose glycans was used as a positive control for the Nictaba-FITC blot, whereas 5 µg of PNA (an unglycosylated lectin) and 5 ng of BSA-aminophenyl were used as negative controls. The anti-O-GlcNAc antibody showed good interaction with BSA-GlcNAc and both calf thymus histone preparations retained on the Nictaba and WGA columns. Whereas the interaction of CTD110.6 with ECV proteins was very weak, these nuclear proteins reacted with Nictaba-FITC, but especially with WGA-FITC. Both lectins also showed good reactivity towards the histone fraction retained on both lectin columns. As expected, only Nictaba-FICT reacted with carboxypeptidase Y since the lectin is known to recognize the GlcNAc₂ core of high-mannose N-glycans.

Mass spectrometric analysis of Nictaba- and WGA interacting calf histone proteins indicates potential O-GlcNAcylation and similarity in substrate binding

Calf histone proteins eluted from Nictaba and WGA-Sepharose 4B columns were analyzed by mass spectrometry following digestion and RP-HPLC separation. A detailed comparison of targets bound by both WGA and Nictaba revealed that over 75% of all identified proteins were bound to both lectin columns. Next we performed a mild β-elimination using butylamine onto the eluted proteins. This step converts all O-GlcNAc carrying serines and threonines, and adds a mass marker of 55 Da onto the modified amino acids. Following β-elimination, proteins were digested and separated onto RP-HPLC and the samples were analyzed on a LTQ Orbitrap XL mass spectrometer. Here we could identify several peptide sequences that hinted towards O-GlcNAc modification. Notably Ser65 from sequences H₂N-AMGIMNSFVNDIFER-COOH and H₂N-AMGNMNSFVNDIFER-COOH from histone H2B were prominent in both analyses. In addition, also the Thr80 from NH₂-EIAQDFNTRLR-COOH and Thr101 in NH₂-ALVQNDTLLQVK-COOH that could be mapped to histone
H3.3 and H1, respectively, were identified as O-GlcNAc modified peptides among the WGA-interacting proteins.

Our results suggest O-GlcNAcylation of histone H2B on Ser65. This result complements the observations of Sakabe et al. (2010) who also mapped an O-GlcNAc site on histone H2B at position Ser36. These authors suggested that probably other unidentified O-GlcNAc sites were present on this protein. The O-GlcNAc modification of histone H3.3 and H1 on Thr80 and Thr101, respectively, is yet undescribed. Since β-elimination does not only remove the O-GlcNAc modification from serine and threonine amino acids but also phosphate, the possibility that the detected O-GlcNAc sites are in fact phosphorylation sites had to be excluded. Therefore we analyzed Nictaba and WGA interacting histone proteins that were not subjected to β-elimination on a LTQ OrbiTRAP XL mass spectrometer. No phosphorylated peptides were identified, suggesting that the modified serine and threonine residues are genuine O-GlcNAcylation sites.

A peptide list of purified proteins and potential O-GlcNAc modified sites are presented in Supplemental Table 6. Our results show that both Nictaba and WGA bind similar histone targets and that several of the potential O-GlcNAc modified amino acids are present in both histone preparations retained on the lectin column.
Conclusions

In the past decade several plant lectins were discovered that reside in the nucleus and the cytoplasm of plant cells. Since the expression of most of these lectins is upregulated by various (a)biotic stress factors it was hypothesized that these lectins fulfill a role in cellular signaling events in response to stress conditions (Lannoo and Van Damme, 2010). Hitherto, the physiological role of none of these proteins was investigated. This study describes for the first time the identification of binding partners for a nucleocytoplasmic lectin from tobacco.

Using a combination of enzyme assays, western blot analyses and microscopical studies it was shown that the preparation of tobacco nuclei was essentially pure. Nevertheless the results from the MS analysis revealed small amounts of proteins that presumably locate to the plant cell wall. It is known that purification of nuclei is very cumbersome and contamination of tobacco nuclei with debris corresponding to cell wall fragments has been reported before (Dahan et al. 2009). The extracellular compartment of plant cells contains many heavily glycosylated proteins (Knox, 1995; Jose-Estanyol and Puigdomenech, 2000; Leonard et al. 2002). Taking into account the carbohydrate-binding properties of Nictaba as determined by glycan array analyses (Lannoo et al. 2006b), it is not surprising that these proteins are retained on the lectin column. Therefore, a more rigid purification and fractionation of tobacco cells was performed. Our results show that enzymatic removal of the cell wall prior to purification of nuclei results in nuclear protein fractions with high purity.

Two independent approaches (lectin affinity chromatography and pull down assays) identified histone proteins as the most abundant nuclear Nictaba-interacting proteins. Moreover, Nictaba also pulled down histone proteins from an unfractionated protoplast extract, strongly emphasizing the specificity of the interaction.

The affinity of Nictaba for histone H2B was confirmed by lectin affinity chromatography with a non-fractionated histone preparation from calf thymus. In addition, the interaction between Nictaba and histone H2B was proven to be GlcNAc dependent since histone H2B was eluted with GlcNAc but not with other sugars. Furthermore, all these results were confirmed by a parallel experiment where histone proteins were chromatographed on a WGA column. Blotting experiments confirmed that lectin-bound histone proteins clearly interacted with the FITC-labeled lectins WGA and Nictaba, but also with an anti-O-GlcNAc antibody. All these data suggest the presence of O-GlcNAc modified proteins among the lectin binding partners,
as confirmed by mass spectrometry analyses after mild β-elimination on lectin-bound histone proteins. Furthermore, it should also be noted that the binding of Nictaba to blotted plant nuclear proteins such as e.g. histone H2B was strongly inhibited by pre-incubating the lectin with GlcNAc oligomers.

Because histone proteins are one of the most abundant proteins in the cell, the possibility remains that the Nictaba-interacting histone proteins are the result of aspecific protein binding to the affinity matrix. However, this seems unlikely for several reasons. First, many other proteins that are abundantly present in a background extract are not found among the Nictaba-interacting proteins. When one compares the lists of Nictaba-interacting proteins and the proteins identified in the background extracts, the protein composition has clearly been changed, suggesting a specific enrichment of certain proteins by interaction with Nictaba. InterPro scanning of Nictaba-interacting and background protein sequences also suggests the enrichment of nucleosomal proteins. Second, emPAI calculation demonstrates that histone proteins are by far the most abundant proteins among the Nictaba-interacting proteins, while they are not in the background extract. Third, calf histone proteins are specifically removed from a Nictaba-Sepharose 4B column by GlcNAc but not by other sugars. This latter observation suggests that bound proteins are removed from the column by competition with GlcNAc for the sugar-binding site. Finally, when a histone extract was chromatographed on the Sepharose 4B matrix, no proteins were bound. In the future, the interaction of Nictaba with histone proteins will have to be confirmed by other biochemical, genetic and microscopical techniques. Negative control experiments with a Nictaba mutant protein affected in its carbohydrate binding activity (Schouppe et al. 2010) could also be useful to prove the interaction with histone proteins.

Recently, it has been reported that O-GlcNAc can dynamically cycle on core histone proteins (H2A, H2B, H4) and can therefore be considered a part of the ‘histone code’ (Sakabe et al. 2010). The O-GlcNAc modification is an abundant carbohydrate modification on many animal proteins involved in important cellular processes. Moreover, O-GlcNAc modification is dynamic and can change upon an induction stimulus like stress (Butkinaree et al. 2010). Furthermore extensive crosstalk between O-GlcNAcylation and phosphorylation has been reported and plays an important role in multiple signaling pathways for cellular regulation (Hu et al. 2010; Zeidan and Hart, 2010).
O-GlcNAc modification of plant proteins was reported by Heese-Peck et al. (1995). These authors also suggested that in contrast to animal proteins that carry a single O-GlcNAc nuclear plant proteins carry oligosaccharides with more than five GlcNAc residues. Unfortunately until now the latter observation was not confirmed by other research groups. Although the presence of O-GlcNAc on plant proteins is evident, the function and importance of O-GlcNAc signaling in plants is largely undefined. At present two different O-GlcNAc transferases, one of presumed prokaryotic origin and another from eukaryotic origin with changing expression levels in response to different conditions have been identified unambiguously indicating the presence of this modification on nucleocytoplasmic plant proteins (Olszewski et al. 2010). Recently (Xing et al. 2009) reported a jacalin-related lectin called VER2 in wheat. VER2 exhibits specificity towards N-acetylglucosamine and galactose and its expression is induced predominantly at potential nuclear structures in shoot tips and young leaves and weakly in cytoplasm in response to vernalization. It was shown that an O-GlcNAc-modified protein co-immunoprecipitated with VER2 in vernalized wheat plants but not in devernalized materials. Furthermore evidence was provided to show that O-GlcNAc signaling and phosphorylation are involved in the vernalization response in wheat, indicating the involvement of O-GlcNAc protein modification in response to environmental stresses in plants.

At present the tobacco lectin is one of the few nucleocytoplasmic plant lectins that has been studied in detail. It should be mentioned however, that proteins homologous to the tobacco lectin can be retrieved from sequence databases of most higher plants (Lannoo et al. 2008), indicating that Nictaba homologues are widespread in Viridaeplantae. In addition, the Nictaba domain was also identified as part of different types of chimeric proteins, suggesting that this domain served different purposes during evolution.

Our results suggest that Nictaba binds to several O-GlcNAcylated plant proteins in the nuclear compartment, in particular histone proteins. These results are in agreement with previous observations that showed the specific interaction of Nictaba with GlcNAc oligomers (Lannoo et al. 2006b). Future studies will concentrate on the ultrastructural co-localization of Nictaba and histone proteins in the plant cell, and the functional implications resulting from this interaction. In particular the interaction between Nictaba and histone proteins in relation to different plant stresses will be investigated. It is known that plants respond and adapt to both biotic and abiotic stresses in order to survive. Molecular and genomic studies have revealed the coordination of the gene expression and chromatin regulation in response to the
environmental stresses. Furthermore it was shown that several histone modifications are dramatically altered under stress conditions. In addition, chromatin-related proteins such as histone modification enzymes, histone proteins and components of chromatin remodeling complex influence the gene regulation as a result of stress responses (Chinnusamy and Zhu, 2009; Kim et al. 2010). In light of these findings it is tempting to speculate that the interaction of Nictaba with histones reflects the ability of the lectin to alter chromatin conformation and folding and as such alters gene expression.

Acknowledgements

We are grateful to Natasha Zachara (Dept Biological Chemistry, The John Hopkins University School of Medicine, Baltimore MD) for providing BSA-aminophenyl and BSA-aminophenyl-GlcNAc. We are indebted to Romina Termote-Verhalle and Kirsten Plas for excellent technical assistance.
Materials and methods

Cell cultures

Nicotiana tabacum cv. Xanthi cells were grown on a rotary shaker (150 rev./min at 25°C) in 250 mL erlenmeyers in the dark. Cell suspensions were maintained in 100 mL medium containing 3% saccharose, 0.44% Linsmaier & Skoog salts (Duchefa, Haarlem, The Netherlands), 0.02% glutamine, 0.165 mg/L 2,4 D, 0.5 mg/L folic acid, 0.1 mg/L kinetin, 2 mg/L glycine, 2 mg/L biotin, 0.1 mg/L thiamine, 0.5 mg/L pyridoxin, 5 mg/L nicotinic acid, 3 mg/L Ca$^{2+}$ panthotenic acid, pH 5.5. Cells were subcultured weekly by transferring 10 mL cell suspension into 90 mL fresh medium.

Preparation of nuclear extract for affinity chromatography (protocol 1)

A rather crude nuclear extract adapted from Dahan *et al.* (2009) was used for lectin affinity chromatography. The extract was prepared from *Nicotiana tabacum* cv Xanthi cells diluted with an equal volume of fresh medium on the 7th day of culture. On day 8 cells were harvested by filtration and frozen in liquid nitrogen. Frozen cells were ground with mortar and pestle to obtain a fine powder, which was solubilized in NB buffer (50 mM Tris-MES pH 7.5, 2 mM orthovanadate, 20 mM, sodium fluoride, 100 mM β-glycerophosphate, 20 mM DTT, 10 mM EDTA, 10 mM EGTA, 0.5% Triton X-100). Nuclei were filtered through a 31 µm mesh and collected by centrifugation (500 g, 10 min) before loading on a 25% iodixanol layer (Sigma-Aldrich, St. Louis MO, USA). After centrifugation for 30 min at 3,000 g nuclei were collected below the iodixanol layer and washed with NB buffer. Nuclei were stored at -80°C until use.

Preparation of nuclei for pull down assay (protocol 2)

Highly pure nuclei were prepared from protoplasts using a protocol adapted from Calikowski and Meier (2006) and Xiong *et al.* (2004). Protoplasts were prepared from 2-5 day-old *Nicotiana tabacum* cv Xanthi cells. Therefore cells were collected by centrifugation (5 min,
500 g) and plasmolysed for 1 min in 0.4 M mannitol. Subsequently plasmolysed cells were incubated with enzyme buffer (42.5 mM MES, 10 mM CaCl₂, 0.3 M mannitol, 2 % cellulase RS (Duchefa), 0.2 % Pectolyase Y (Duchefa), pH 5.5, 100 mL buffer for a 100 mL cell culture) for 2 h with gentle swirling. The protoplast suspension was filtered through a 100 µm cloth and 5 mL was loaded on a 6 % Ficoll-400 layer (Sigma-Aldrich) in a 15 mL glass tube. After centrifugation for 30 min at 3,000 g, purified protoplasts were recovered from the interface between the water and the ficoll layer. Afterwards, protoplasts were washed twice with protoplast buffer (25 mM Tris, 25 mM MES, 0.3 M mannitol, 25 mM CaCl₂, pH 5.6).

Nicotiana tabacum cv Xanthi protoplasts were suspended in NIB buffer (0.5 M hexylene glycol, 20 mM KCl, 20 mM HEPES, 5 mM EDTA, 0.5 % Triton X-100, pH 7.4) and passed 6 times through a 0.45 x 12 mm needle (Terumo, Somerset, USA) to completely lyse the cells. This solution was then filtered through a 31 µm mesh to remove unlysed protoplasts. To further purify the nuclei, 2 mL of lysed protoplast solution was loaded on a 25%/36% iodixanol gradient (2 mL of each concentration, diluted in NIB buffer without Triton X-100, OptiPrep® Density Gradient Medium, Sigma-Aldrich) in a 15 mL glass tube. Gradients were centrifuged for 30 min at 3,000 g and colorless nuclei were isolated from the 25%/36% interface. Purified nuclei were washed twice with NIB buffer without Triton X-100 to remove iodixanol and solvent remnants.

Extraction of nuclear proteins

For each mL of nuclear suspension obtained from *Nicotiana tabacum* cv Xanthi cells 1 mL of NLB1 buffer (20 mM KCl, 20 mM HEPES, 5 mM EDTA, 1 M NaCl, 1 M Mg₂Cl₂, pH 7.4) was added. This solution was mixed gently at 4°C and 20 rpm for 30 min using a Stuart rotator type SB3. After centrifugation for 30 min at 13,000 g and 4°C the supernatant containing the soluble nuclear proteins was concentrated using an Amicon Ultracel PL-10 centrifugal device (MWCO 10,000 Da) (Millipore, Billerica, USA).

Microscopy

Nucleus integrity was checked by means of differential interference phase contrast
microscopy and fluorescence microscopy. For fluorescent detection of nuclei, dilutions of purified nuclei were stained with 10 ng/mL 4′,6-diamidino-2-phenylindole (DAPI, Invitrogen, Carlsbad, USA), 10 ng/mL propidium iodide (Invitrogen) and/or 100 nM ER-Tracker™ Blue-White DPX (Invitrogen) and pipetted onto glass bottom dishes. Images were acquired through the appropriate filters with an automated Nikon TE2000E epifluorescence microscope (Nikon, Kingston, Surrey UK) equipped with a 40x Plan Fluor oil objective (NA1.3) and Nikon RG camera.

Enzyme assays

Cytochrome c reductase activity was assessed using the Cytochrome C Reductase Assay Kit (Sigma-Aldrich) according to the manufacturer’s instructions. Glucose-6-phosphate dehydrogenase activity was analyzed by mixing the nuclear protein with 650 μL 100 mM triethanolamine/100 mM NaOH, 50 μL 100 mM MgCl₂, 50 μL 35 mM glucose-6-phosphate and 25 μL 11 mM NADP⁺ in a 1 mL cuvet and measuring the increase in absorbance at 340 nm at room temperature. IDPase activity was assayed by mixing 90 μL of enzyme buffer (10 mM Mo₇O₂₄(NH₄)₆.4H₂O, 0.1 M MgCl₂, 2.5 % Triton X-100, Na₂IDP 25 mM, 50 mM Tris-HCl) with 10 μL nuclear protein at 37°C for several time intervals. The reaction was stopped and the increase of phosphate was visualized by adding Ames reagent containing 1.8 % SDS and measuring the absorbance at 820 nm. ATPase activity was measured by mixing nuclear protein with 100 mM Tris-MES (pH 6.5) buffer containing 150 mM ATP, 1 M KCl, 100 mM MgSO₄ and incubation at 37°C for different time intervals. To inhibit the vacuolar and mitochondrial ATPases, 100 mM KNO₃ and 10 mM NaN₃ were added, respectively. The acid phosphatase was inhibited by addition of 100 mM Na₂MoO₄ in the buffer. The enzyme reaction was stopped by the addition of Ames reagent (containing 1.8 % SDS) and the increase of phosphate was monitored by measuring the absorbance at 820 nm.

Affinity chromatography

Nictaba and WGA were coupled to Sepharose 4B using the divinylsulfone method (Pepper D.S., 1994). Approximately 30 mg of a crude nuclear extract from *Nicotiana tabacum* cv Xanthi cells (obtained using Protocol 1) was dialyzed against 50 mM Tris-MES (pH 7.5)
containing 10 mM EDTA, 10 mM EGTA and 200 mM NaCl, and loaded on the Nictaba-Sepharose column (Ø 1 cm, height 2 cm) equilibrated with 50 mM Tris-MES, pH 7.5. The column was washed with 3 column volumes of the same buffer and bound proteins were eluted with 20 mM 1,3 di-aminopropane. Fractions were collected and analyzed by SDS-PAGE and mass spectrometry.

A total histone Type II preparation from calf thymus (Sigma-Aldrich) dissolved in phosphate buffered saline (PBS, 50 mM potassium phosphate, 150 mM NaCl, pH 7.2) was chromatographed on Nictaba- or WGA-Sepharose 4B. After washing with PBS, the column was eluted with 20 mM 1,3 diaminopropane. Alternatively, 1 M GlcNAc was used to elute the column. Fractions were collected and analyzed by SDS-PAGE. Eluted polypeptides were subjected to N-terminal amino acid sequencing.

Pull down assays

Pull down assays were carried out with the His Protein Interaction Pull-Down Kit (Thermo Fisher Scientific, Rockford, USA) according to the manufacturer's instructions. Approximately 50 µg of recombinant His-tagged Nictaba protein (produced as described previously (Vandenborre et al. 2008) was used as bait protein while 150 µg and 300 µg protein extracted from *Nicotiana tabacum* nuclei or protoplasts (obtained using Protocol 2), respectively, were used as prey proteins.

β-elimination of O-GlcNAc modified proteins

Purified proteins (150µg) were completely dried and re-dissolved in 500 µL of a 10% butylamine (Sigma-Aldrich) (v/v) solution in H₂O. Next, beta-elimination was carried out for 2 hours at 50 °C. Excess reagent was removed using a NAP-5 desalting column (Amersham Biosciences, Uppsala, Sweden), whereby 500 µL was desalted in 1 mL of a 50 mM triethylbicarbonate solution (TEAB) (Sigma-Aldrich). Digestion of proteins and subsequent RP-HPLC separation of peptides are described below.
Purified proteins were completely dried and re-dissolved in freshly prepared 50 mM ammonium bicarbonate buffer (pH 7.8). Prior to digestion, protein mixtures were boiled for 10 min at 95°C followed by cooling down on ice for 15 min. Sequencing-grade trypsin (Promega, Benelux, Leiden, the Netherlands) was added in a 1:100 (trypsin:substrate) ratio (w/w) and digestion was allowed overnight at 37°C. The sample was acidified with 10% acetic acid and loaded for RP-HPLC separation on a 2.1 mm internal diameter x 150 mm 300SB-C18 column (Zorbax®, Agilent technologies, Waldbronn, Germany) using an Agilent 1100 Series HPLC system. Following a 10 min wash with 10 mM ammonium acetate (pH 5.5) in water/acetonitrile (98/2 (v/v), both Baker HPLC analyzed (Mallinckrodt Baker B.V., Deventer, the Netherlands), a linear gradient to 10 mM ammonium acetate (pH 5.5) in water/acetonitrile (30/70, v/v) was applied over 100 min at a constant flow rate of 80 μL/min. Eluting peptides were collected in 48 fractions between 20 and 80 min, and fractions separated by 15 min were pooled and vacuum dried until further analysis.

Mass spectrometric analysis

A. Sample analysis on the Esquire HCT mass spectrometer

The dried fractions were re-dissolved in 100 μL 2.5 % acetonitrile. Eight μL of this peptide mixture was applied for nanoLC-MS/MS analysis on an Ultimate (Dionex, Amsterdam, The Netherlands) in-line connected to an Esquire HCT mass spectrometer (Bruker, Bremen, Germany). The sample was first trapped on a trapping column (PepMap™ C18 column, 0.3 mm I.D. x 5mm, Dionex (Amsterdam, The Netherlands)). After back-flushing from the trapping column, the sample was loaded on a 75 μm I.D. x 150 mm reverse-phase column (PepMap™ C18, Dionex (Amsterdam, The Netherlands)). The peptides were eluted with a linear gradient of 3% solvent B (0.1% FA in water/acetonitrile (3/7, v/v)) increase per minute at a constant flow rate of 0.2 μL/min. Using data dependent acquisition multiple charged ions with intensities above threshold (adjusted for each sequence according to the noise level) were selected for fragmentation. During MS/MS analysis, an MS/MS fragmentation amplitude of 0.7V and a scan time of 40 ms was used.
B. Sample analysis on the LTQ OrbiTRAP XL mass spectrometer

Dried fractions were re-dissolved in 100 µL of 2% acetonitrile and 8 µL was used for LC-MS/MS analysis using an Ultimate 3000 HPLC system (Dionex, Amsterdam, The Netherlands) in-line connected to a LTQ Orbitrap XL mass spectrometer (Thermo Electron, Bremen, Germany). Peptides were first trapped on a trapping column (PepMap™ C18 column, 0.3 mm I.D. x 5 mm (Dionex)) and following back-flushing from the trapping column, the sample was loaded on a 75 µm I.D. x 150 mm reverse-phase column (PepMap™ C18, Dionex). Peptides were eluted with a linear gradient of 1.8% solvent B (0.05% formic acid in water/acetonitrile (2/8, v/v)) increase per minute at a constant flow rate of 300 nL/min.

The mass spectrometer was operated in data-dependent mode, automatically switching between MS and MS/MS acquisition for the six most abundant ion peaks per MS spectrum. Full scan MS spectra were acquired at a target value of 1E6 with a resolution of 30,000. The six most intense ions were then isolated for fragmentation in the linear ion trap. In the LTQ, MS/MS scans were recorded in profile mode at a target value of 5,000. Peptides were fragmented after filling the ion trap with a maximum ion time of 10 ms and a maximum of 1E4 ion counts.

Protein identification and bioinformatics

A. Data analysis (Esquire HCT mass spectrometer)

The fragmentation spectra were converted to mgf files using the Automation Engine software (version 3.2, Bruker) and were searched using the MASCOT database search engine (version 2.2.0, Matrix Science, http://www.matrixscience.com) against Swissprot filtered for sequences from Viridiplantae. Peptide mass tolerance was set at 0.5 Da and peptide fragment mass tolerance at 0.5 Da, with the ESI-IT as selected instrument for peptide fragmentation rules. Peptide charge is set to 1+, 2+, 3+. Variable modifications were set to methionine oxidation, pyro-glutamate formation of amino terminal glutamine, acetylation of the N-terminus, deamidation of glutamine or asparagines. The enzyme is set on trypsin. Only peptides that were ranked one and scored above the threshold score set at 95% confidence were withheld.
B. Data analysis (LTQ OrbiTRAP XL)

1. Data analysis of plant proteins

MS/MS peak lists were searched with Mascot using the Mascot Daemon interface (version 2.2.0, Matrix Science). Spectra were searched against the Swiss-Prot database and taxonomy was set to Viridiplantae. Variable modifications were set to methionine oxidation, pyro-glutamate formation of N-terminal glutamine and acetylation of the protein’s N-terminus and deamidation of glutamine and asparagine. Mass tolerance of the precursor ions was set to ±10 ppm and of fragment ions to ±0.5 Da. The peptide charge was set to 1+, 2+ or 3+ and one missed tryptic cleavage site was allowed. Also, Mascot’s C13 setting was to 1. Only peptides that were ranked one and scored above the identity threshold score set at 99% confidence were withheld.

2. Data analysis of histone proteins

For the analysis of affinity purified histone proteins, MS/MS peak lists were searched with Mascot using the Mascot Daemon interface (version 2.2.0, Matrix Science). Spectra were searched against the Swiss-Prot database and taxonomy was set to Mammalia, enzyme was set to trypsin. Variable modifications were set to methionine oxidation, pyro-glutamate formation of N-terminal glutamine and acetylation of the protein’s N-terminus and deamidation of glutamine and asparagine. For the non beta-eliminated samples we added phosphorylation of serine and threonine as well as O-GlcNAc modified serine and threonine to the list of variable modifications. For the beta-eliminated samples we added butylamine modified (+55Da) serine and threonine to the list of variable modifications. No fixed parameters were used.

Mass tolerance of the precursor ions was set to ±10 ppm and of fragment ions to ±0.5 Da. The peptide charge was set to 1+, 2+ or 3+ and one missed tryptic cleavage site was allowed. Also, Mascot’s C13 setting was to 1. Only peptides that were ranked one and scored above the identity threshold score set at 99% confidence were withheld.
C. EmPAI analysis

The EmPAI index was calculated to estimate the abundance of the glycoproteins based on the number of identified tryptic peptides (Nevsizhskii et al. 2007; Vaudel et al. 2010). Protein sequences were searched for conserved functional profiles using InterProScan (Ye et al. 2006; Zdobnov and Apweiler, 2001) and plotted with the WEGO tool (Ye et al. 2006).

Analytical methods

The total protein content was estimated using the Coomassie (Bradford) Protein Assay Kit (Thermo Fisher Scientific), based on the Bradford dye-binding procedure (Bradford, 1976) or using the BCA Protein Assay Kit (Thermo Fisher Scientific). Proteins were analyzed by SDS-PAGE using 15 % polyacrylamide gels under reducing conditions as described by Laemmli (Laemmli, 1970). Proteins were visualized after staining with Coomassie Brilliant Blue R-250 or using the PageSilver™ Silver Staining Kit (Fermentas, St. Leon-Rot, Germany).

For Western blot analysis, samples separated by SDS-PAGE were electrotransferred to 0.45 µm polyvinylidene fluoride membranes (Biotrace™ PVDF, PALL, Gelman Laboratory, Ann Arbor, MI USA). After blocking the membranes in Tris-Buffered Saline (TBS, 10 mM Tris, 150 mM NaCl and 0.1 % (v/v) Triton X-100, pH 7.6) containing 5 % (w/v) BSA for 1 h at room temperature, blots were incubated for 1 h with the mouse CTD110.6 monoclonal antibody (Covance, Richmond, CA) directed against O-GlcNAc (diluted 1:1000 in TBS buffer). The secondary antibody was a rabbit anti-mouse IgG labeled with horse radish peroxidase (Dako, Glostrup, Denmark). This incubation was followed by a 1 h incubation with the peroxidase-anti-peroxidase complex (Sigma-Aldrich). After several washings in TBS buffer immunodetection was performed using a colorimetric assay with 3,3’-diaminobenzidine tetrahydrochloride (Sigma-Aldrich) as a substrate (Graham and Karnovsk, 1966).

For lectin blots, membranes were incubated for 1 h with 1 µg/mL of Nictaba, washed three times with TBS and incubated for 1 h with a rabbit polyclonal antibody directed against Nictaba (diluted 1:80). The secondary antibody was a goat anti-rabbit IgG labelled with horse radish peroxidase (Sigma-Aldrich, Bornem, Belgium). This incubation was followed by three times with TBS and a 1 h incubation with the peroxidase-anti-peroxidase complex (Sigma-Aldrich). Immunodetection was achieved by a colorimetric assay using 3,3’-diaminobenzidine
tetrahydrochloride (DAB) (Sigma-Aldrich) as a substrate (Lannoo et al., 2006b). Inhibition of Nictaba binding was achieved by a 1 h pre-incubation of Nictaba with a mixture of GlcNAc-oligomers (at a final concentration 10-fold higher than that required to completely inhibit the agglutination activity of a 100 µg/mL solution of Nictaba) (Lannoo et al., 2006b). Alternatively, WGA and Nictaba were labeled with FITC using the EZ-Label™ FITC Protein Labeling Kit (Thermo Fisher Scientific). Blots were incubated with 1 µg/mL FITC labeled lectin in the dark with for 1 h and bound proteins were visualized using the FLA-5100 imaging system (GE Healthcare, Uppsala, Sweden). BSA-aminophenyl and BSA-aminophenyl-GlcNAc were a gift from Prof. N. Zachara.

N-terminal sequencing was carried out on affinity purified protein fractions separated by SDS-PAGE and electroblotted on a ProBlot™ polyvinylidene difluoride membrane (Applied Biosystems, Foster City CA, USA). The membrane was stained with a 1:1 mix of Coomassie brilliant blue and ethanol, and the proteins of interest were excised from the blot. The N-terminal sequence was determined by Edman degradation performed on a model Procise 491cLC protein sequencer without alkylation of cysteines (Applied Biosystems).
Literature Cited

Figures legends

Figure 1: Microscopical analysis of tobacco cells and nuclei enriched fractions. A, Light microscopy of *Nicotiana tabacum* cv Xanthi cultured cells; B, Nuclei extracted from *Nicotiana tabacum* cv Xanthi cells visualized under transmission light and stained with propidium iodide (C). Scale bars respresent 10 µm.

Figure 2: Removal of ER remnants associated with the outer nuclear envelope by addition of 0.5 % Triton X-100 in the extraction buffer. A, ER of *Nicotiana tabacum* cv Xanthi cells is stained with ER-TrackerTM Blue-White DPX; B, the ER associated chaperone BiP is detected in an unfractionated protein extract but not in a nuclear protein extract: lane 1, 30 µg nuclear protein; lanes 2-3, 50 and 30 µg unfractionated protein, respectively. C-D, *Nicotiana tabacum* cv Xanthi nuclei extracted in the presence of Triton X-100 (D) are not stained for ER in comparison with nuclei extracted without Triton X-100 (C). Scale bars respresent 10 µm.

Figure 3: Interaction of Nictaba with nuclear proteins from *Nicotiana tabacum* in the absence (A, left panel) or presence of GlcNAc oligomers (A, right panel). Lane 1, 30 µg nuclear protein; lane 2, 0.1 µg carboxypeptidase Y; lane 3: 1 µg Nictaba; lane 4, 0.5 µg PNA. B. SDS-PAGE and silver staining of 30 µg total nuclear protein. The position and size (kDa) of the marker proteins is indicated on the left.

Figure 4: InterPro scanning and WEGO plotting of Nictaba-interacting proteins identified by affinity chromatography (A) and pull down assay (B) in a nuclear protein extract or identified by pull down assay in an unfractionated protoplast extract (C). Proteins interacting with the lectin were compared to a total *Nicotiana tabacum* background containing all nuclear or protoplast proteins.
Figure 5: Interaction of histone proteins with Nictaba-Sepharose 4B. Left panel: Affinity chromatography of histone proteins from calf thymus on Nictaba-Sepharose 4B. Lane 1, MW marker (Fermentas); lane 2, 50 µg whole non-fractionated histone proteins from calf thymus; lane 3, flow through of Nictaba column; lane 4, histone proteins eluted from the Nictaba column. Right panel: Absorbance profile of a Nictaba-Sepharose 4B column loaded with 10 mg calf thymus histone proteins and eluted with 1M GlcNAc and 20 mM 1,3 di-aminopropane.

Figure 6: Interaction of calf thymus histone proteins eluted from a Nictaba and WGA column with CTD110.6 antibody (A), Nictaba-FITC (B) and WGA-FITC (C). Lane 1: 5 ng BSA-aminophenyl; lane 2: 5 µg PNA; lane 3: 5 ng BSA-aminophenyl-GlcNAc; lane 4: 10 µg nuclear fractionated protein from the human transformed endothelial cell line (ECV 304), lane 5: 100 ng carboxypeptidase Y; lane 6: 3 µg histone protein eluted from a Nictaba-Sepharose column; lane 7: 3 µg histone protein eluted from a WGA-Sepharose column.

Supplemental data

The following materials are available in the online version of this article:

Supplemental Figure 1. Fields of tobacco nuclei (purified according to protocol 2) stained with propidium iodide (A) and visualized with differential interference contrast (B). Panel C shows an overlay of the two channels. The inset in D shows a detailed view of the rectangular selection in C.

Supplemental Figure 2. SDS-PAGE analysis of nuclear proteins purified from Nicotiana tabacum cv Xanthi cells according to protocol 1, and retained on a Nictaba-Sepharose affinity column. A molecular mass marker (kDa) is shown on the left.

Supplemental Figure 3. Interaction of histone proteins with Nictaba-Sepharose 4B, WGA-Sepharose 4B and Sepharose 4B. Panel A: Histone proteins interact with a Sepharose 4B-Nictaba matrix and can be eluted with 1M GlcNAc, but not with 1M glucose. Panel B: Histone proteins interact with a Sepharose 4B-WGA matrix. Panel C: Histone proteins do not
interact with the empty Sepharose 4B matrix. Approximately 10 mg of calf histone protein was chromatographed in panel B, whereas 5 mg of calf histone protein was analyzed in the chromatography shown panels A and C.

Supplemental Table 1: Nictaba-interacting proteins identified in a *N. tabacum* cv Xanthi nuclear extract using lectin affinity chromatography.

Supplemental Table 2: Proteins identified in a *N. tabacum* cv Xanthi total nuclear extract.

Supplemental Table 3: Nictaba-interacting proteins identified in a *N. tabacum* nuclear extract using a pull-down assay.

Supplemental Table 4: Nictaba-interacting proteins identified in a *N. tabacum* protoplast extract using a pull-down assay.

Supplemental Table 5: Proteins identified in a *N. tabacum* cv Xanthi protoplast extract.

Supplemental Table 6: Nictaba- and WGA interacting calf histone proteins and potential O-GlcNAc modified sites.
Tables

Table 1: Nictaba-interacting proteins identified in a *N. tabacum* cv Xanthi nuclear extract using lectin affinity chromatography.

<table>
<thead>
<tr>
<th>NCBI GI</th>
<th>Protein Description</th>
<th>emPAI</th>
</tr>
</thead>
<tbody>
<tr>
<td>117307343</td>
<td>histone H4</td>
<td>9</td>
</tr>
<tr>
<td>156770295</td>
<td>histone H3.1</td>
<td>5.8124</td>
</tr>
<tr>
<td>27529852</td>
<td>H2A histone</td>
<td>3.6419</td>
</tr>
<tr>
<td>158053020</td>
<td>histone H2B</td>
<td>2.5942</td>
</tr>
<tr>
<td>10241929</td>
<td>elicitor inducible protein</td>
<td>1.1543</td>
</tr>
<tr>
<td>4097575</td>
<td>NTFP1</td>
<td>1.1543</td>
</tr>
<tr>
<td>1369476</td>
<td>elongation factor 1-alpha (EF-1-alpha) (Vitronectin-like adhesion protein 1) (PVN1)</td>
<td>0.8168</td>
</tr>
<tr>
<td>3759184</td>
<td>phi-1</td>
<td>0.7191</td>
</tr>
<tr>
<td>90265703</td>
<td>tobacco fibrillarin homolog</td>
<td>0.5399</td>
</tr>
<tr>
<td>4027901</td>
<td>alpha-expansin precursor</td>
<td>0.3896</td>
</tr>
<tr>
<td>14591868</td>
<td>endoxyloglucan transferase related protein</td>
<td>0.311</td>
</tr>
<tr>
<td>4027891</td>
<td>alpha-expansin precursor</td>
<td>0.2915</td>
</tr>
<tr>
<td>1255951</td>
<td>PS60</td>
<td>0.2915</td>
</tr>
<tr>
<td>1079832</td>
<td>ribosomal protein L11-like</td>
<td>0.2328</td>
</tr>
<tr>
<td>27597229</td>
<td>purple acid phosphatase</td>
<td>0.1787</td>
</tr>
<tr>
<td>14031051</td>
<td>peroxidase</td>
<td>0.166</td>
</tr>
<tr>
<td>2493321</td>
<td>L-ascorbate oxidase precursor (Ascorbase) (ASO)</td>
<td>0.1601</td>
</tr>
<tr>
<td>6048277</td>
<td>pectin methylesterase</td>
<td>0.1548</td>
</tr>
<tr>
<td>5381253</td>
<td>peroxidase</td>
<td>0.145</td>
</tr>
<tr>
<td>2541876</td>
<td>CND41, chloroplast nucleoid DNA binding protein</td>
<td>0.1054</td>
</tr>
<tr>
<td>16903349</td>
<td>endo-beta-1,4-glucanase precursor</td>
<td>0.0857</td>
</tr>
</tbody>
</table>
Table 2: Nictaba-interacting proteins identified in a *N. tabacum* nuclear extract using a pull-down assay.

<table>
<thead>
<tr>
<th>NCBI GI</th>
<th>Protein Description</th>
<th>emPAI</th>
</tr>
</thead>
<tbody>
<tr>
<td>110738359</td>
<td>histone H4-like protein</td>
<td>2.162</td>
</tr>
<tr>
<td>110736078</td>
<td>histone H2A.F/Z</td>
<td>1.1543</td>
</tr>
<tr>
<td>10177235</td>
<td>histone H2B like protein</td>
<td>0.9953</td>
</tr>
<tr>
<td>117168143</td>
<td>At5g55350 (putative histone H3-like 5)</td>
<td>0.4679</td>
</tr>
<tr>
<td>132270</td>
<td>rubber elongation factor protein (REF) (Allergen Hev b 1)</td>
<td>0.2589</td>
</tr>
<tr>
<td>33333422</td>
<td>maturase K</td>
<td>0.1787</td>
</tr>
<tr>
<td>115446065</td>
<td>Os02g0466400</td>
<td>0.1105</td>
</tr>
<tr>
<td>10177535</td>
<td>unnamed protein product</td>
<td>0.0927</td>
</tr>
<tr>
<td>62701659</td>
<td>F-box domain, putative</td>
<td>0.0827</td>
</tr>
<tr>
<td>115459208</td>
<td>endoglucanase 12</td>
<td>0.0772</td>
</tr>
<tr>
<td>15226197</td>
<td>leucine-rich repeat transmembrane protein kinase, putative</td>
<td>0.0624</td>
</tr>
<tr>
<td>3687301</td>
<td>subtilisin-like protease</td>
<td>0.0607</td>
</tr>
<tr>
<td>115461811</td>
<td>Os05g0122600</td>
<td>0.0563</td>
</tr>
<tr>
<td>3970757</td>
<td>SBT4E protein</td>
<td>0.0563</td>
</tr>
</tbody>
</table>
Table 3: Nictaba-interacting proteins identified in a *N. tabacum* cv Xanthi unfractionated protoplast extract using a pull-down assay.

<table>
<thead>
<tr>
<th>NCBI Gi</th>
<th>Protein Description</th>
<th>emPAI</th>
</tr>
</thead>
<tbody>
<tr>
<td>109892469</td>
<td>putative heat-shock protein PS1</td>
<td>9</td>
</tr>
<tr>
<td>28927693</td>
<td>hypothetical protein</td>
<td>1.1543</td>
</tr>
<tr>
<td>110736078</td>
<td>histone H2A.F/Z</td>
<td>0.4679</td>
</tr>
<tr>
<td>110738359</td>
<td>histone H4</td>
<td>0.4679</td>
</tr>
<tr>
<td>12323759</td>
<td>hypothetical protein</td>
<td>0.2915</td>
</tr>
<tr>
<td>132270</td>
<td>rubber elongation factor protein (REF) (Allergen Hev b 1)</td>
<td>0.2589</td>
</tr>
<tr>
<td>10177235</td>
<td>histone H2B like protein</td>
<td>0.2589</td>
</tr>
<tr>
<td>147785120</td>
<td>hypothetical protein</td>
<td>0.2589</td>
</tr>
<tr>
<td>14423552</td>
<td>unknown protein</td>
<td>0.238</td>
</tr>
<tr>
<td>124301100</td>
<td>At2g01610</td>
<td>0.238</td>
</tr>
<tr>
<td>9279614</td>
<td>unnamed protein product</td>
<td>0.166</td>
</tr>
<tr>
<td>115485275</td>
<td>xanthine/uracil/vitamin C permease family protein, putative, expressed</td>
<td>0.166</td>
</tr>
<tr>
<td>469457</td>
<td>polygalacturonase inhibitor protein</td>
<td>0.1548</td>
</tr>
<tr>
<td>14009657</td>
<td>secreted acid phosphatase</td>
<td>0.1366</td>
</tr>
<tr>
<td>119004</td>
<td>gluconendo-1,3-beta-glucosidase, basic vacuolar isoform</td>
<td>0.1288</td>
</tr>
<tr>
<td>11133446</td>
<td>malate dehydrogenase, cytoplasmic 2</td>
<td>0.122</td>
</tr>
<tr>
<td>1002531</td>
<td>actin-4</td>
<td>0.1105</td>
</tr>
<tr>
<td>110741992</td>
<td>putative fructose bisphosphate aldolase</td>
<td>0.1105</td>
</tr>
<tr>
<td>1009712</td>
<td>calreticulin</td>
<td>0.0889</td>
</tr>
<tr>
<td>117165712</td>
<td>calreticulin-1</td>
<td>0.0889</td>
</tr>
<tr>
<td>11762222</td>
<td>adenosylhomocysteinase 1</td>
<td>0.0857</td>
</tr>
<tr>
<td>115449495</td>
<td>Os02g0812600</td>
<td>0.0827</td>
</tr>
<tr>
<td>13644189</td>
<td>chaperonin CPN60, mitochondrial</td>
<td>0.07</td>
</tr>
<tr>
<td>115481628</td>
<td>putative ribosomal protein S23 (S12)</td>
<td>0.07</td>
</tr>
<tr>
<td>15226197</td>
<td>leucine-rich repeat transmembrane protein kinase, putative</td>
<td>0.0624</td>
</tr>
<tr>
<td>108862990</td>
<td>S-methyltetrahydrofolate/glutamate-homocysteine methyltransferase, putative, expressed</td>
<td>0.0578</td>
</tr>
<tr>
<td>33235471</td>
<td>lipoxigenase</td>
<td>0.0428</td>
</tr>
<tr>
<td>62733821</td>
<td>retrotransposon protein, putative</td>
<td>0.0366</td>
</tr>
<tr>
<td>116057152</td>
<td>TNF receptor-associated factor (ISS)</td>
<td>0.0266</td>
</tr>
</tbody>
</table>
Figure 1: Microscopical analysis of tobacco cells and nuclei enriched fractions. A, Light microscopy of *Nicotiana tabacum* cv Xanthi cultured cells; B, Nuclei extracted from *Nicotiana tabacum* cv Xanthi cells visualized under transmission light and stained with propidium iodide (C). Scale bars represent 10 µm.
Figure 2: Removal of ER remnants associated with the outer nuclear envelope by addition of 0.5% Triton X-100 in the extraction buffer. A, ER of *Nicotiana tabacum* cv Xanthi cells is stained with ER-Tracker™ Blue-White DPX; B, the ER associated chaperone BiP is detected in an unfractionated protein extract but not in a nuclear protein extract: lane 1, 30 µg nuclear protein; lanes 2-3, 50 and 30 µg unfractionated protein, respectively. C-D, *Nicotiana tabacum* cv Xanthi nuclei extracted in the presence of Triton X-100 (D) are not stained for ER in comparison with nuclei extracted without Triton X-100 (C). Scale bars represent 10 µm.
Figure 3: Interaction of Nictaba with nuclear proteins from *Nicotiana tabacum*. Lectin blotting (left panel): Lane 1, 30 µg nuclear protein; lane 2, 30 µg whole-cell protein; lane 3, 0.1 µg carboxypeptidase Y; lane 4, 0.5 µg PNA. SDS-PAGE and silver staining of 30 µg total nuclear protein (right panel). The position and size (kDa) of the marker proteins is indicated on the left.
Figure 4: InterPro scanning and WEGO plotting of Nictaba-interacting proteins identified by affinity chromatography (A) and pull down assay (B) in a nuclear protein extract or identified by pull down assay in an unfractionated protoplast extract (C). Proteins interacting with the lectin were compared to a total *Nicotiana tabacum* background containing all nuclear or protoplast proteins.
Figure 5: Interaction of histone proteins with Nictaba-Sepharose 4B. Left panel: Affinity chromatography of histone proteins from calf thymus on Nictaba-Sepharose 4B. Lane 1, MW marker (Fermentas); lane 2, 50 µg whole non-fractionated histone proteins from calf thymus; lane 3, flow through of Nictaba column; lane 4, histone proteins eluted from the Nictaba column. Right panel: Absorbance profile of a Nictaba-Sepharose 4B column loaded with 10 mg calf thymus histone proteins and eluted with 1M GlcNAc and 20 mM 1,3 di-aminopropane.
Figure 6: Interaction of Nictaba interacting proteins from calf thymus with WGA-FITC (left panel) and the CTD110.6 antibody (right panel). Lane 1: 5 µg PNA; lane 2: 5 µg unfractionated histone protein; lane 3: 3 µg histone protein eluted from a Nictaba-Sepharose column. Lane 4-6: 1.5, 3 and 10 µg nuclear fractionated protein from the human transformed endothelial cell line (ECV 304), respectively.