Running head
Proline dehydrogenase and defence to pathogens

Corresponding autor
María Elena Alvarez
CIQUIBIC-CONICET
Departamento de Química Biológica
Facultad de Ciencias Químicas
Universidad Nacional de Córdoba
Haya de la Torre s/n
5000 Córdoba, Argentina
Tel: (+54) 0351 4334171/68; 4334074 ext. 230
Fax: (+54) 0351 4334171/68; 4334074
E-mail: malena@mail.fcq.unc.edu.ar

Journal research area
Plants interacting with other organisms
Proline dehydrogenase contributes to pathogen defence in Arabidopsis

Nicolás Miguel Cecchini, Mariela Inés Monteoliva and María Elena Alvarez

CIQUIBIC-CONICET, Dpto. de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
Financial sources

Agencia Nacional de Promoción Científica y Tecnológica (BID 1728/OC-AR PICT 32637; PICT 2008 1542) and SECyT-Universidad Nacional de Córdoba to M.E.A.

Corresponding author

María Elena Alvarez
E-mail: malena@mail.fcq.unc.edu.ar
ABSTRACT

L-proline (Pro) catabolism is activated in plants recovering from abiotic stresses associated to water deprivation. In this catabolic pathway, Pro is converted to Glu by two reactions catalyzed by Pro dehydrogenase (ProDH) and P5C dehydrogenase (P5CDH), with Δ1-pyrroline-5-carboxylate (P5C) as the intermediate. Alternatively, under certain conditions, the P5C derived from Pro is converted back to Pro by P5C reductase (P5CR), thus stimulating the Pro-P5C cycle, which may generate reactive oxygen species (ROS) as a consequence of the ProDH activity. We previously observed that Pro biosynthesis is altered in Arabidopsis (Arabidopsis thaliana) tissues that induce the Hypersensitive Response (HR) in response to Pseudomonas syringae. In this work, we characterized the Pro catabolic pathway and ProDH activity in this model. Induction of ProDH expression was found to be dependent on salicylic acid (SA), and an increase in ProDH activity was detected in cells destined to die. To evaluate the role of ProDH in HR ProDH silenced plants were generated. These plants displayed reduced ROS and cell death levels, as well as enhanced susceptibility in response to avirulent pathogens. Interestingly, the early activation of ProDH was accompanied by an increase in P5CR, but not in P5CDH transcripts with few changes occurring in the Pro and P5C levels. Therefore, our results suggest that in wild-type plants, ProDH is a defence component contributing to HR and disease resistance, which apparently potentiates the accumulation of ROS. The participation of the Pro-P5C cycle in the latter response is discussed.
INTRODUCTION

Proline dehydrogenase (ProDH) (EC 1.5.99.8) is a flavoprotein that catalyzes the first and rate-limiting step of two reactions converting proline (Pro) into glutamic acid (Glu) at the mitochondria. This enzyme is located at the matrix side of the inner mitochondrial membrane, where it oxidizes Pro into Δ^1-pyrroline-5-carboxylate (P5C) and transfers electrons to the primary mitochondrial electron transport chain (mETC) (Boggess and Koeppe, 1978; Huang and Cavalieri, 1979; Elthon and Stewart, 1981). Subsequently, in the same compartment, P5C is transformed into Glu by P5C dehydrogenase (P5CDH) (Hare and Cress 1997).

ProDH activity and ProDH gene expression are modified during plant development, with this activity being usually enhanced in tissues supporting cell growth, such as meristems, pollen, pistils, flowers and siliques (Dashek and Harwood, 1974; Skubatz et al., 1989; Hare and Cress 1997; Nakashima et al., 1998; Verbruggen and Hermans, 2008). Then, the enzyme may supply reducing power to the mitochondria, thereby contributing to the generation of ATP, and may also provide nitrogen from Pro. Moreover, by working together with P5CDH and glutamate dehydrogenase, ProDH may contribute carbon to the TCA cycle (Hare and Cress 1997; Szabados and Savouré, 2010).

ProDH is also sensitive to environmental stresses. Dehydration, extreme temperatures, and other abiotic injuries repress ProDH and stimulate Pro synthesis, thus leading to net Pro accumulation. Once the stress is relieved, ProDH becomes activated to consume the stored Pro (Kiyosue et al., 1996; Peng et al., 1996; Verbruggen et al., 1996; Verbruggen and Hermans, 2008; Szabados and Savouré, 2010). Here again, the enzyme is suspected of supplying energy and nutrients for stress recovery.

Interestingly, under certain conditions, the catabolism of Pro may produce accumulation of ROS. This effect is specifically associated with the activation of the Pro-P5C cycle, which involves the action of ProDH and P5C reductase (P5CR), with the latter enzyme catalyzing the second step in the biosynthesis of Pro from glutamic acid taking place in the cytosol (Hare and Cress 1997). This cycle operates when the increase in ProDH activity does not correspond to a rise in P5CDH activity, resulting in an incomplete oxidation of Pro and accumulation of...
P5C at the mitochondria. In this case, P5C is exported to the cytosol to be converted into Pro by P5CR, with Pro then being incorporated into mitochondria to restart the cycle (Phang et al., 2008). The generation of ROS by the Pro-P5C cycle was initially demonstrated in animal cells (Hagedorn and Phang, 1983), where the over-expression of ProDH (proline oxidase, POX) generates both mitochondrial ROS accumulation (Donald et al., 2001; Liu et al., 2005) and apoptosis (Maxwell and Davis, 2000; Maxwell and Rivera, 2003; Hu et al., 2006; Phang et al., 2008) in a Pro-dependent manner. In plants, the export of P5C from mitochondria has also been suggested, and activation of the Pro-P5C cycle was described in ProDH over-expressing or p5cdh Arabidopsis mutant plants, with stimulation of the cycle leading to an increase of mitochondrial ROS, apparently by raising the electron flow to mETC (Miller et al., 2009).

Treatment with exogenous Pro activates the ProDH expression (Kiyosue et al., 1996, Verbruggen et al., 1996) and causes toxicity in plant and animal cells (Hellmann et al., 2000; Maxwell and Davis, 2000; Deuschle et al., 2001; Donald et al., 2001; Mani et al. 2002; Ayliffe et al. 2002). This adverse effect could be due to different causes. One possibility is that at high concentrations, Pro is toxic by itself producing an amino acid imbalance, an effect observed for most amino acids except glutamine at millimolar concentrations (Bonner et al., 1996). Consistent with this possibility, Arabidopsis ProDH deficient plants are hypersensitive to Pro, and ProDH over-expressors have enhanced tolerance to this treatment (Mani et al., 2002; Nanjo et al. 2003; Funck et al., 2010). On the other hand, Pro supply stimulates the catabolic pathway, and thus it may produce P5C accumulation (Hellmann et al., 2000; Deuschle et al. 2001; Deuschle et al. 2004). This derivative induces apoptosis in animal tumor cell lines (Maxwell and Davis, 2000) and may have similar effects on plants. In agreement with this, Arabidopsis p5cdh knockout plants are hypersensitive to exogenous Pro and carry enhanced P5C levels, while P5CDH over-expressing plants are tolerant to this treatment (Deuschle et al., 2004). Finally, Pro toxicity could also result from the accumulation of ROS at the mitochondria as a consequence of ProDH activation, an effect that may be potentiated by stimulation of the Pro-P5C cycle (Hare and Cress, 1997). Consistent with this latter possibility, exogenous Pro leads to ROS accumulation in p5cdh plants (Deuschle et al., 2004), with these ROS being apparently located at the mitochondria (Miller et al., 2009).
While the Pro metabolism has been widely studied in response to abiotic stresses (Hare and Cress, 1997, Verbruggen and Hermans, 2008; Szabados and Savouré, 2010), few investigations have characterized it under conditions of pathogen attack. At the molecular level, the flax fis1 gene homologue to P5CDH is locally induced by compatible, but not by incompatible, interactions with Melampsora lini (Ayliffe et al., 2002). However, as transgenic flax plants reducing P5CDH expression show normal responses to virulent and avirulent rust infections, the function of fis1 and Pro catabolism in rust disease remains unclear (Mitchell et al., 2006). At the biochemical level, several works have reported the accumulation of Pro in tissues infected with viral- (Mohanty and Sridhar, 1982; Radwan et al., 2007) and bacterial- (Meon et al., 1978; Fabro et al., 2004) pathogens. In tobacco, Pro accumulation is related with susceptibility to Agrobacterium tumefaciens, as Pro antagonizes plant defences by interfering with the GABA-mediated degradation of bacterial quorum-sensing signals that normally increase pathogen spread (Haudecoeur et al., 2009). Whether in this case, the accumulation of Pro occurring on tumors was stimulated by the pathogen is still not determined. In Arabidopsis, avirulent, but not virulent, races of Pseudomonas syringae pv. tomato (Pst) trigger Pro accumulation in close association with development of the Hypersensitive Response (HR) (Fabro et al., 2004). The HR is a local defence, triggered by recognition of pathogen effectors by plant disease resistance proteins (R), which ends with the generation of a dry and sharp-edged lesion at the infection site resulting from programmed cell death (Stakman, 1915; Greenberg, 1997), and confers race-specific resistance (Chisholm et al., 2006; Jones and Dangl, 2006; Bent and Mackey, 2007). ROS and salicylic acid (SA) are two positive regulators of the HR that concentrate in the center of the lesion and signal numerous defence responses (Alvarez, 2000; Chisholm et al., 2006; Jones and Dangl, 2006; Bent and Mackey, 2007; Vlot et al., 2009). Interestingly, at an advanced stage of HR (24 hpi), the infected tissues activate the expression of the Pro biosynthetic gene AtP5CS2, as well as the accumulation of Pro, with both being responses stimulated by ROS and salicylic acid (SA) (Fabro et al., 2004). By analyzing the Pro metabolism in the early stages of HR, we detected activation of the catabolic pathway at 6 hpi. In the present study, we describe the spatio-temporal expression pattern of Arabidopsis ProDH genes during HR development, and assess the requirement of SA for induction of these genes. We also demonstrate activation of the ProDH enzyme in HR developing cells, and position this response respect to early HR components. Furthermore, using ProDH
silenced plants, we provide evidence for a positive role of ProDH on the activation of both the HR and resistance to avirulent pathogens.
RESULTS

Topology of ProDH mRNA accumulation in the HR lesion

The observation that ProDH transcripts accumulate in leaves treated with avirulent bacteria (Fabro et al., 2004) prompted us to investigate whether this response was specific to cells destined to die. To address this question, we infiltrated Pst-AvrRpm1 in the top of the leaves and collected the inoculated and peripheral tissues (Fig. 1A) to quantify the abundance of ProDH1 (At3g30775) and ProDH2 (At5g38710) mRNAs. Samples were isolated at two stages, one preceding and the other succeeding cell death (6 and 24 hours post-infiltration - hpi-, respectively). These time points were selected by staining treated leaves with the vital dye Trypan blue (Fig. 1B). In these experiments, the Pst-vir pathogen was used as control as although it activates defence responses, it is unable to trigger hypersensitive cell death (Fig. 1B).

ProDH1 and ProDH2 mRNAs were only found to accumulate in the Pst-AvrRpm1-infiltrated tissues. This was visible at 6 hpi, and became more pronounced at 24 hpi (Fig. 1C). No significant increase was detected in the ProDH1/2 transcripts in the tissues surrounding the Pst-AvrRpm1-infiltration (peripheral) site, or in the infiltrated or peripheral tissues of Pst-vir-treated leaves (Fig. 1C).

We next examined if there was accumulation of the protein in the Pst-AvrRpm1-challenged tissues. Using Western blot assays, the abundance of ProDH in non-treated and Pst-AvrRpm1-treated tissues was compared, including Pst-vir-treated samples again as a control. At 6 and 24 hpi, the avirulent bacteria induced a 3.5-times increase in the ProDH basal content, whereas the virulent bacteria did not alter this value (Fig. 1D). Neither were the protein levels modified by the virulent pathogen after 24 hpi (not shown).

Therefore, the accumulation of ProDH induced by Pst was associated with activation of cell death, with the increase in protein content seeming to be caused by transcriptional activation of both ProDH1 and ProDH2 genes. Although these results suggested that HR developing tissues increased the ProDH activity, this could not be determined in extracts from leaf tissues. As described below, ProDH activity was later quantified using another system.

Other early alterations in Pro metabolism that take place in HR

To analyze other features of Pro metabolism in HR developing tissues, we quantified the abundance of P5CR and P5CDH transcripts during the initial 12 hpi with Pst-AvrRpm1. In
parallel, the expression of ProDH genes was evaluated. We noticed that at 6, 8 and 12 hpi, the infected tissues accumulated not only ProDH but also P5CR transcripts (Fig. 2A). In contrast, no increase or even slight reduction of P5CDH mRNAs was found in these tissues. We also determined the Pro and P5C levels in the same set of samples, and observed that Pro and P5C remained almost constant until 8 hpi (Fig. 2B). At 12 hpi, P5C still maintained its basal levels, whereas Pro displayed a slight increase.

These results are consistent with the possibility that at the early stages of HR the tissues activate not only ProDH, but also P5CR, without a corresponding rise in P5CDH activity.

Sensitivity of ProDH genes to SA

We examined if the expression of ProDH genes was modulated by SA, a main regulator of defences against biotrophic pathogens including the HR (Alvarez, 2000; Vlot et al., 2009). First, we investigated how exogenous SA affects transcript and protein levels in wild-type plants. To carry this out, leaves were infiltrated with SA solutions (0.05, 0.10, 0.25, 1.00, and 2.50 mM) and were collected at 3 hours post-treatment (hpt) to evaluate the abundance of both ProDH1/2 transcripts and protein. We found that SA stimulated ProDH1 mRNA accumulation at all tested doses (Fig. 3A). In sharp contrast, SA had no effect on the ProDH2 mRNA level, even at 2.50 mM. As SA increased by 4- to 5- or 8- times the basal protein content at 0.10 to 1.00 or 2.50 mM concentrations, respectively (Fig. 3B), the accumulation of ProDH generated by SA treatment seemed to result from transcriptional activation of ProDH1.

We then evaluated if endogenous SA was required for ProDH1 transcript accumulation in response to Pst-AvrRpm1 by quantifying the abundance of the transcript in pathogen-treated plants deficient in the SA pathway. We used the sid2-2 (SA INDUCTION-DEFICIENT 2) mutant, unable to generate SA by isochorismate synthase in response to pathogens (Wildermuth et al., 2001), and the npr1-1 (NONEXPRESSOR OF PR GENES 1) mutant, deficient in the activation of SA-sensitive defence genes (Cao et al., 1997; Ryals et al., 1997; Shah et al., 1997). As shown in Figure 3C, sid2-2 plants failed to accumulate ProDH1 transcripts at 6 hpi, and could only do so weakly at 24 hpi. In turn, npr1-1 contained lower ProDH1 mRNA levels than wild-type plants at 6 and 24 hpi. Therefore, the early accumulation of ProDH1 transcripts detected in HR developing tissues (6 hpi) in wild-type tissues seemed to be signalled, at least partially, through the SA pathway, with SID2 and
NPR1 being positive regulators of this response. In contrast, at later time points (24 hpi), ProDH1 activation appeared to be signalled by SID2- and/or NPR1-independent pathways.

Activation of ProDH in the HR context

We investigated how activation of the ProDH1 gene was temporarily placed in the HR network and how the ProDH activity was modified in cells triggering HR, by using a cell culture system allowing characterization of HR components. This system included photosynthetic Arabidopsis cells, which elicit basal and race-specific defences, and trigger responses remarkably similarly to that of green plant tissues in response to Pst-AvrRpm1 (Cecchini et al., 2009). The expression of ProDH1 was evaluated in non-treated cultured cells and cells treated with Pst-AvrRpm1, Pst-vir, or exogenous SA, collected at 3 and 6 hpt. As in the case of plant tissues, the cultured cells activated the expression of ProDH1 in response to Pst-AvrRpm1 at 6 hpt, but did not respond to Pst-vir at this (Fig. 4A) or later time points (not shown). Cells also induced ProDH1 in response to SA (Fig. 4B), requiring longer times than leaf tissues (Fig. 4A) to activate transcript accumulation by low hormone doses.

It was possible to quantify the ProDH activity in extracts obtained from cultured cells. This was monitored in samples from naïve and pathogen-treated cells, determining in parallel ROS and cell death levels in these samples. An increase in ProDH activity was found in Pst-AvrRpm1-treated cells at 6 and 8 hpt (Fig. 4C), corresponding to 25 to 30% of the basal activity. This response was consistently detected in many different experiments, and was always specifically induced by the avirulent bacteria. Interestingly, at 6 hpi with Pst-AvrRpm1, the ProDH activity was enhanced, whereas ROS and cell death levels remained unaltered (Fig. 4D). At 8 hpt with Pst-AvrRpm1, cultures began to accumulate ROS and generate cell death in response to the avirulent pathogen. In turn, cultures treated with Pst-vir neither modified the ROS or cell death levels, nor the ProDH activity. Thus, the in vitro system, which reproduced the ProDH1 gene expression activation detected in planta, revealed that ProDH activity was specifically enhanced by avirulent pathogen before the onset of the oxidative burst and cell death.

Generation of Arabidopsis ProDH silenced plants

In order to analyze whether ProDH has functional implications in HR development, we generated Arabidopsis Col-0 transgenic plants by silencing the expression of the ProDH1 and ProDH2 genes (see Materials and Methods). Twenty-nine primary transformed (T0) plants
were obtained and propagated. The abundance of ProDH transcripts was evaluated in the transgenic plants by using leaf tissues isolated at 6 and 24 hpi with Pst-AvrRpm1, including an identical set of samples obtained from wild-type plants as controls. Plants silencing ProDH expression were selected from the T1 and T2 populations. Unfortunately, some of the plants having the strongest silencing levels had a reduced or null seed production and could not be maintained (not shown). Two T3 plant lines derived from the transformation experiments were characterized in detail. These were siPD B8, carrying a single insertion of the transgene in homozygosis, and siPD U9, containing multiple insertions of the construct. Besides the sterility found in the strongly silenced plants, we did not observe any other phenotypes in untreated ProDH silenced plants.

We explored if siPD B8 and siPD U9 plants had lower ProDH activity than wild-type plants. As this activity could not be determined on leaf extracts (see before), a functional assay was applied. During seedling development, treatment with exogenous Pro is toxic for wild-type plants, and is even more harmful for ProDH deficient plants, with this effect being apparently due to exacerbated free Pro accumulation (Mani et al. 2002; Nanjo et al., 2003; Funck et al., 2008; Funck et al., 2010). Then, we compared the sensitivity of transgenic and wild-type plants to Pro supply. Seeds were sown on synthetic medium either lacking exogenous Pro or supplemented with different concentrations of the amino acid (2.5, 5.0, 10.0 and 20.0 mM). At the age of 3 weeks, plantlet growth and free Pro content in aerial tissues were assessed. In the absence of Pro, all three genotypes grew to a similar extent. In contrast, in Pro supplemented media (≥5 mM), the transgenic plants showed a reduced growth and chlorosis compared to wild-type plants (Fig. 5A). Differences in growth were detected after cotyledon emergence whereas chlorosis was seen after true leaf appearance (not shown). At high Pro concentrations (≥10 mM), siPD B8 showed a greater sensitivity to Pro than siPD U9 plants. In addition, both transgenic plants accumulated more Pro than wild-type plants, with siPD B8 again harbouring the highest amino acid levels (Fig. 5B). These results suggest that both transgenic plants contained lower ProDH activity than wild-type plants. In agreement, the accumulation of ProDH transcripts in Pro supplemented medium (5mM) was reduced in these transgenic plants (Fig. 5C). These results also point to a stronger ProDH deficiency in siPD B8 than in siPD U9 plants.

HR development in the ProDH silenced plants
Having determined that siPD B8 and siPD U9 behave as ProDH deficient plants, we then evaluated how these plants activate HR. In contrast with wild-type tissues, siPD B8 and siPD U9 tissues were unable to accumulate ProDH1 and ProDH2 transcripts in response to Pst-AvrRpm1 at 6 and 24 hpi (Fig. 6A). Furthermore, none of these tissues increased the ProDH content in response to the pathogen (Fig. 6B). Therefore, siPD B8 and siPD U9 plants were analyzed for activation of hypersensitive cell death by Pst-AvrRpm1. At 24 hpi, cell death was detected by SYTOX green staining and confocal microscopy. This dye enters the cells having the membrane integrity affected and fluoresces upon binding to the nuclear DNA (Truernit et al., 2008) (Fig. 6C). Thus, cell death can be quantified in vivo based on the number of fluorescent nuclei per leaf area. In mock-treated tissues, negligible cell death levels were found (Fig. 6C,D), while as expected, cell death was notably increased in wild-type tissues treated with Pst-AvrRpm1 (27-fold compared to mock control). Remarkably, under this condition, the siPD B8 and siPD U9 tissues showed a 7- and 10-fold increase in cell death levels respect to mock controls, respectively. These results indicated a 32% (siPD B8) or 50% (siPD U9) reduction in the cell death levels existing in wild-type tissues (Fig. 6D). To verify if these differences were maintained over time, cell death was analyzed at 48 hpi. At this stage, SYTOX green was detected outside the nuclei (not shown), thus impairing cell death quantification. Therefore, Trypan blue staining was used. We found that at 48 hpi with Pst-AvrRpm1, cell death was still reduced in the transgenic tissues, indicating that the differences observed earlier were not kinetic (Fig. 6E). As expected, Trypan blue also detected a reduction of cell death at 24 hpi with Pst-AvrRpm1 in the transgenic plants (not shown). Moreover, we also observed attenuated HR symptoms in transgenic tissues treated with Pst-AvrRpm1 (Fig. 6E).

Reduced hypersensitive cell death was also detected in transgenic tissues exposed to the avirulent pathogen Pst-AvrRps4. This pathogen stimulates HR through an EDS1-dependent circuit in contrast to Pst-AvrRpm1 which signals cell death through NDR1 (Aarts et al., 1998). In response to Pst-AvrRps4, both siPD B8 and siPD U9 plants showed 37% of the cell death levels found in wild-type plants (Fig. 6C). However, none of the infection experiments with these avirulent pathogens showed a complete elimination of hypersensitive cell death in the ProDH silenced plants (not shown). Therefore, ProDH deficiency reduced the hypersensitive cell death triggered by Pst-AvrRpm1 and Pst-AvrRps4.

Sensitivity to avirulent bacteria of ProDH silenced plants
A reduction in hypersensitive cell death may support the proliferation of biotrophic pathogens in planta. To investigate whether this could occur in the ProDH deficient plants, we compared Pst-AvrRpm1 growth in transgenic and wild-type tissues. At day 2 post-inoculation, transgenic and wild-type tissues contained similar bacterial contents. As expected, wild-type leaves were able to maintain and even reduce the bacterial content over the following 3 days, as a consequence of defence activation. In contrast, in siPD B8 and siPD U9 leaves, pathogen proliferation occurred during this period. The bacterial content increased 9- and 4-fold in siPD B8 and siPD U9 leaves, respectively, revealing a low capacity of these tissues to restrict the spread of the pathogen (Fig. 7).

Oxidative burst in the ProDH silenced plants

In animals, the activation of ProDH supports ROS accumulation (Donald et al., 2001). Due to the fact that ProDH activation precedes the oxidative burst during HR development (Fig. 4), we examined whether this enzyme affected ROS accumulation under this condition. This aspect was investigated by comparing the ROS content in wild-type and transgenic leaf tissues treated with Pst-AvrRpm1 and excised at 6 and 24 hpi, using untreated leaves as controls. Leaves were stained with 2’,7’- dichlorodihydrofluorescein diacetate (H$_2$DCFDA) and analyzed by confocal microscopy. A similar ROS content was detected in the non-infiltrated tissues of the three plants (Fig. 8A). In contrast, a reduced ROS accumulation was found in the pathogen-challenged tissues of the silenced plants. At 6 hpi, the siPD B8 and siPD U9 tissues achieved only 63% or 68%, respectively, of the fluorescence levels found in wild-type plants (Fig. 8A bottom). Moreover, reduced ROS levels were observed in these plants at 24 hpi. Consistently, the transgenic plants displayed a lower activation of GST1 (At1g02930; also named GSTF6) compared to wild-type plants (Fig. 8C), with this gene being a sensitive marker of ROS accumulation (Alvarez et al., 1998). Therefore, these results support the idea that ProDH contributed to the generation of the oxidative burst in wild-type HR developing tissues.
DISCUSSION

In many different plants, including Arabidopsis, the ProDH activity is sensitive to transcriptional regulation (Kiyosue et al., 1996; Peng et al., 1996; Verbruggen et al., 1996), with post-transcriptional control of this activity not having been reported (Verbruggen and Hermans, 2008; Szabados and Savouré, 2010). Therefore, the accumulation of ProDH transcripts occurring in *Pst-AvrRpm1*-treated tissues may be indicative of an increased enzyme activity in these tissues, with the protein accumulating under such conditions (Fig. 1). Unfortunately, our attempts to quantify ProDH activity in leaf tissues have been unsuccessful, apparently due to both the low enzyme activity, and the high abundance of components interfering with NADH quantification in these tissues. Nevertheless, we determined ProDH activity in photosynthetic *Arabidopsis* cultured cells which trigger race-specific defences through the RPM1 pathway (Cecchini et al., 2009) and reproduce the induction of *ProDH1* by SA and the avirulent pathogen that was originally detected *in planta* (Fig. 4A,B) (see below). The finding that ProDH activity was specifically increased by avirulent bacteria was consistent with the *ProDH* gene expression patterns observed *in vitro* and *in planta* under infection conditions.

The activation of ProDH by *Pst-AvrRpm1* is detected from 6 hpi (Fig. 1C; 2A, 4C). At this initial stage, the enzyme is expected to oxidize the free Pro contained in the challenged tissues. Interestingly, at least during the initial 12 hpi, the induction of *ProDH* was accompanied by the accumulation of *P5CR* but not the *P5CDH* transcripts (Fig. 2A). In Arabidopsis, ProDH, P5CR and P5CDH are regulated at the transcriptional level, whereas P5CR and P5CDH are also under post-transcriptional control (Verbruggen and Hermans, 2008; Szabados and Savouré, 2010). Therefore, the gene expression patterns described above may suggest stimulation of the Pro-P5C cycle in HR developing tissues, where ProDH may contribute to generate ROS at the mitochondria (Miller et al., 2009), with the finding of constant Pro and P5C levels until 8 hpi (Fig. 2B) supporting this possibility. Furthermore, the increase in Pro occurring at 12 hpi (Fig. 2B, Fig. 1A from Fabro et al., 2004), whose source is unknown, is consistent with hyper-activation of the cycle and consequent enhancement of ROS. However, formal studies will be required to determine whether the Pro-P5C cycle contributes to generate mitochondrial ROS in HR.
We previously observed that in Arabidopsis Pro synthesis is positively regulated by SA (Fabro et al., 2004). In the present work, we report that the Arabidopsis Pro catabolic gene ProDH1 was also induced by this hormone. There, ProDH1 is considered to encode the isoform that contributes most to Pro degradation (Kiyosue et al., 1996; Mani et al., 2002; Nanjo et al., 2003), while the product encoded by ProDH2 has also been recognized as a functional enzyme by recent studies (Funck et al., 2010). Interestingly, ProDH1 and ProDH2 are differentially regulated and encode isoforms suspected to display non-redundant functions (Ribarits et al., 2007; Funck et al., 2010). Consistent with these observations, exogenous SA activated ProDH1 at low concentrations (50 µM), but had no effect on ProDH2 expression even at high doses (2.5 mM) (Fig. 3A). Although both ProDH1 and ProDH2 genes responded with similar kinetics to treatment with the pathogen, preliminary results suggest that both isoforms may differentially contribute to defences (Cecchini et al., unpublished results). It is likely that activation of ProDH1 by Pst-AvrRpm1 occurring at 6 hpi (Fig. 1C) is mediated by SA, as the hormone levels began to increase at this time in Pst-AvrRpm1-treated tissues (Blanco et al., 2009). Moreover, this early activation of ProDH1 appeared to be signalled by both SID2 and NPR1, as infected sid2-2 and npr1-1 plants were impaired in this response (Fig. 3C). Transcription factors belonging to the basic leucine zipper protein (bZIP) family, such as bZIP-10, -11, -53, -44 and -2, mediate the transcriptional regulation of ProDH genes in Arabidopsis (Satoh et al., 2004; Weltmeier et al. 2006; Hanson et al., 2008) and may eventually activate the genes in HR. In addition, AtbZIP10 acts as a positive regulator of the HR antagonized by the negative cell death regulator LSD1 (Kaminaka et al, 2006). At later stages of HR development (24 hpi), a mild activation of ProDH1 was detected in sid2-2 and npr1-1 plants, suggesting that at this time NPR1- and/or SID2-independent pathways may regulate the expression of the gene. To our knowledge, this data provides the first information on the signalling pathway activating the Pro catabolism in infected plants.

In the present study, transgenic plants silencing the ProDH1/2 expression were constructed to evaluate the role of ProDH in HR development, with plants having the highest silencing responses displaying the lowest fertility. This phenotype may be due to ProDH deficiency since the enzyme displays a vital role in reproductive organs (Dashek and Harwood, 1974; Zhang et al., 1982; Hare and Cress 1997). The siPD B8 and siPD U9 plants selected for our studies were silenced in both ProDH1 and ProDH2 genes, as demonstrated by the response of
these plants to Pro or *Pst-AvrRpm1* treatments (Fig. 5C and 6A). However, these plants still contained traces of the ProDH transcripts and protein under all analyzed conditions, indicating that silencing was not complete. When exposed to external Pro, both transgenics (Fig. 5) behaved as ProDH deficient plants (Mani et al., 2002; Nanjo et al., 2003; Funck et al., 2010). In addition, they developed reduced cell death in response to *Pst-AvrRpm1* and *Pst-AvrRps4* (Fig. 6C,D), implying that the decrease of ProDH occurring in *siPD B8* and *siPD U9* plants sufficiently affected the death pathways. However, it is not known whether the residual ProDH activity of these plants was responsible for the remaining cell death levels.

We detected up to a 30% increase in ProDH activity in cultured cells triggering HR (Fig. 4C), a response that was eliminated by incubation with the ProDH inhibitor L-4-thiazolidine carboxylic acid (L4T) (see Materials and Methods). Nevertheless, as mentioned above, the extent of ProDH activation in leaf tissues that develop HR remains to be determined. Although these tissues showed a large increase in the total protein content (Fig. 1D), the ProDH fraction that catalyzes mitochondrial Pro oxidation under these circumstances is not known. It is also unclear whether or not the *in vitro* assays used here underestimated the changes in the ProDH activity occurring *in vivo*, as this catalytic capacity may be modulated by association to the mitochondrial inner membrane or by different electron acceptors under physiological conditions (Elthon and Stewart, 1981). Although our results suggest that reduction, and not necessarily elimination, of ProDH activity is sufficient to alter the normal development of HR, additional studies will be required to determine the activation level required to modulate this defence response.

Our results also suggest that ProDH signals hypersensitive cell death by acting downstream of the HR cascade stimulated by RPM1 or RPS4, in a step common to both pathways. As *ProDH1* expression is modulated by SID2 and NPR1 (Fig. 3C), the enzyme may work downstream of NPR1. However, it is not known how the enzyme contributes to cell death. Although activation of ProDH without proper stimulation of P5CDH was able to produce P5C accumulation, which might be toxic for plants (Deuschle et al., 2001, 2004), our experiments did not reveal P5C accumulation during the initial 12 hpi (Fig. 2B). Another possibility is that ProDH generates or signals the oxidative stress and thereby stimulates the death process. In agreement with this, ProDH activation paralleled the onset of the oxidative burst in cells developing HR (Fig. 4C,D), with ProDH silenced plants reducing the ROS accumulation in response to pathogen (Fig. 8). The homeostasis of mitochondria is strongly modified in
infected tissues (Krause and Durner, 2004; Yao and Greenberg, 2006; Mur et al., 2008), and the SA accumulated in these tissues may alter the flux of electrons in the mETC generating conditions that promote ROS accumulation (Xie and Chen, 2000; Norman et al., 2004). As flavoprotein, ProDH may charge electrons at different levels of the mETC (Hare and Cress, 1997; Phang, 2008) contributing to overload the system thus promoting an abnormal flow of electrons to the O$_2$ and the generation of superoxide. Related to this, ProDH supports mitochondrial ROS accumulation in Arabidopsis cells, thereby activating the P5C-Pro cycle (Miller et al. 2009). Remarkably, ProDH seems to promote mitochondrial oxidative burst in animal cells, where the POX gene is target of p53 (Polyak et al., 1997), with POX over-expression triggering apoptosis by the accumulation of ROS at the mitochondria (Donald et al., 2001; Maxwell and Rivera, 2003). It is interesting to note that in *Thermus thermophilus* ProDH autogenously catalyzes the generation of superoxide *in vitro*, thus demonstrating its structural flexibility in controlling the exposure of FAD to the solvent (White et al., 2007). However, it is not known whether any of these features are conserved in plant ProDHs. Moreover, it is also unclear how ProDH contributes to the oxidative stress and cell death in HR, and whether the enzyme has a conserved role in the defense systems of plants and animals.

The ProDH silenced plants showed an enhanced susceptibility to *Pst-AvrRpm1* (Fig. 7), suggesting that the enzyme stimulates defences against avirulent pathogens. Such an effect may be directly associated to the generation of ROS and cell death by the enzyme, as these responses help to restrict pathogen proliferation (Greenberg, 1997; Bent and Mackey, 2007). Alternatively, ProDH may have other metabolic implications in infected tissues. Firstly, as photosynthesis is inhibited under this condition, thereby reducing the available energy sources for defence, the activation of ProDH may provide energy at the expense of Pro (Bolton, 2009). In addition, as part of the P5C-Pro cycle, ProDH may shuttle reducing equivalents to mitochondria, thus lowering the cytosolic NADPH levels required for stimulation of the oxidative pentose phosphate pathway (OPPP) (Hare and Cress, 1997; Nemoto and Sasakuma, 2000), a central route for activation of disease resistance and generation of secondary defence metabolites (Scharte et al., 2009).

In summary, the functional implication of ProDH in HR opens a new scenario for the study of the enzyme under biotic stress conditions. The degradation of Pro by ProDH may affect cell
death and disease resistance through different mechanisms, including alterations in the
cellular redox state and the provision of carbon, energy and secondary metabolites to infected
tissues. Additional studies should help to clarify the mechanisms by which ProDH stimulates
defences.
MATERIALS AND METHODS

Plant material, bacterial strains and infections

Arabidopsis thaliana wild-type, *sid2-2* (Wildermuth et al., 2001) and *npr1-1* (Cao et al., 1994) plants from the Columbia (Col-0) ecotype were used. Plants were grown in soil under 8 hr light/16 hr dark at 22°C. The *Arabidopsis thaliana* (Col-0) photosynthetic cell suspension cultures were grown and maintained as previously described (Cecchini et al., 2009). The *Pseudomonas syringae* pv. *tomato* DC3000 virulent strain (*Pst-vir*) and its isogenic avirulent strains carrying the *Rpm1* (*Pst-AvrRpm1*) (Ritter and Dangl, 1995) or *Rps4* (*Pst-AvrRps4*) (Aarts et al., 1998) genes were grown on King’s B medium supplemented with kanamycin (50 μg mL⁻¹) and rifampicin (100 μg mL⁻¹). Pathogens were inoculated into leaf tissues (Pavet et al., 2005) at 5x10⁵ or 5x10⁶ cfu mL⁻¹, for bacterial growth curves and all other studies, respectively. The bacterial growth curves were determined as reported by Pavet et al. (2005). Inoculation of pathogens on cultured cells (10⁶ cfu mL⁻¹) was performed according to Cecchini et al. (2009).

Gene expression

Semi-quantitative reverse-transcription polymerase chain reactions were performed using 1 μg of total RNA (Pavet et al., 2005), random hexamer primers and M-MLV reverse transcriptase (Invitrogen) to synthesize cDNA, with the following primers and number of cycles for the PCR reactions. *ProDH1* (*At3g30775*): forward 5´-TGATGGAGAAAGCATCAAACGG-3´, reverse 5´-TCTCCTCTTTAAGTTCCATCCTCT-3´, 31 cycles; *ProDH2* (*At5g38710*): forward 5´-CGTCAAGGCTGCTAAAACCCT-3´, reverse 5´-CGTTCAGATTCTTGACATCTAAG-3´, 30 cycles; *P5CR* (*At5g14800*): forward 5´-GCTCACCCGTCCGAAGTAT-3´, reverse 5´-AGCTGCAACAGAAACCAGAAT-3´, 30 cycles; *P5CDH* (*At5g62530*): forward 5´-ATGTTGGAGACATGG-3´, reverse 5´-GTGACGAGATCGTAGTGG-3´, 30 cycles; *GapC* (*At3g04120*): forward 5´-ATGTTGGAGACATGG-3´, reverse 5´-CAGTGAAGGTGGTGCCAAG-3´, reverse 5´-CCTGTTGTCGCGGCAACGAAGTC-3´, 25 cycles. The constitutively expressed *GapC* gene (Kato et al., 2003) was used to control that equal amount of cDNA was used in each reaction.

ProDH analysis

For Western blot assays, total proteins were extracted from 50 mg of leaf tissue. Samples were ground in liquid nitrogen, resuspended in 1 mL of ice-cold extraction buffer (50 mM
Tris-HCl pH=6.8, 3% SDS, 30% glycerol, 2% β-mercaptoethanol, 1 mM PMSF, and protease inhibitor cocktail from Sigma-Aldrich), and heated for 5 min at 85°C before being cooled on ice, and centrifuged for 10 min at 12,000 rpm at 4 °C. Samples (50 µg protein) were separated on 8% SDS-PAGE gels and transferred to a nitrocellulose membrane. Equal protein loading was confirmed by detection of the Rubisco small subunit in Ponceau S-stained membranes. Membranes were blocked (5% [w/v] nonfat milk in PBS, 25°C, 1 hr) and incubated with anti-ProDH rabbit polyclonal antibodies (1:2000, 4°C, 16 hr). Goat anti-rabbit IgG IRDye 800CW (LI-COR Bioscience, USA) was used as the secondary antibody and its emission was detected using Odyssey® Infrared Imaging System (LI-COR Bioscience). The ProDH rabbit polyclonal antibodies were prepared according to Harlow and Lane (1988), using the 11-amino acid N-terminal peptide FLMEKASNGSG conserved in ProDH1 and ProDH2 for immunization. These antibodies detected a band of 55 kD in the A. thaliana total protein extracts (Supplemental Fig. 1). The PDH activity was determined according to Kant et al. (2006). Aliquots (1 mL) of suspension cultures were collected by centrifugation, frozen on liquid nitrogen and homogenized with a pestle in 4 vol. of extraction buffer [50 mM Tris-HCl pH=7.4, 7 mM MgCl₂, 0.6 M KCl, 3 mM EDTA, 1 mM DTT, 1 mM PMSF, 5% (w/v) PVP]. Extracts were centrifuged at 16000 g for 10 min and supernatants were used to determine ProDH activity in vitro by incubation in 0.15 M Na₂CO₃-HCl buffer (pH =10.3) with 1 mM NAD⁺ and 20 mM L-proline to monitor the NAD⁺ reduction at 340 nm. The specificity of the enzymatic reaction was evaluated by incubation of samples with the ProDH inhibitor L-4-thiazolidine carboxylic acid (L4T) (Elton and Stewart, 1984). The ProDH activity was expressed as nmol NADH min⁻¹ mg protein⁻¹, with the protein content being measured by the Bradford assay.

Pro and P5C quantification

Pro and P5C were quantified by using the ninhydrin and O-AB assays (Bates et al., 1973; Miller et al., 2009). Samples were homogenized in 3% (w/v) sulfosalicylic acid and centrifuged for 10 min. The supernatant was divided into two identical aliquots, which were used for Pro and P5C determination. The Pro and P5C values were related to the L-proline and DL-P5C (Sigma) calibration curves.

ROS analysis
ROS levels were determined by 2',7'-dichlorodihydrofluorescein diacetate (H$_2$DCFDA) (Molecular Probes, Invitrogen) staining. Cell culture aliquots (1 mL) were incubated with the probe (10 μM, pH=7) in multi-well plates to measure fluorescence (520 nm), exactly 5 min after probe addition, using a Fujifilm (Japan) FLA-3000 Fluorescence and Storage PhosphorImager, as described previously (Cecchini et al., 2009). Leaf samples submerged in H$_2$DCFDA (20 μM, pH=7) were vacuum infiltrated to introduce the dye, and then maintained in the dark for 10 min as described by Lorrein et al. (2004). Samples were analyzed in a Olympus FV1000 laser-scanning confocal microscope for parallel detection of the probe (excitation: 488 nm; emission: 505 to 530 nm) and chlorophyll autofluorescence (excitation: 633, emission: 650 nm). Images were taken using a 10X 0.3 numerical aperture (UPlanFLN, Olympus) objective and a confocal aperture of 200 μm. Both images for dye and plant autofluorescence were acquired for the same field using a sequential acquisition mode. To quantify ROS, we measured the integrated fluorescence density of the dye from representative images using ImageJ software (Wayne Rasband National Institutes of Health, USA).

Cell death analysis
In the cell culture system, cell death was analyzed by Evans blue staining, by determining a cell death value of 100% with heat-killed cells (65 °C, 15 min) from 6-day-old untreated cultures (Cecchini et al., 2009). In leaf tissues, dying cells were visualized by lactophenol trypan blue (Pavet et al., 2005) or SYTOX Green (Molecular Probe, Invitrogen) (Truernit et al., 2008) staining. The second assay analyzed cell death in vivo. Leaves were vacuum infiltrated with SYTOX Green (0.2 μM, pH=7) and maintained in the dark for 20 min, before being washed with distilled water and observed with a Olympus FV1000 laser-scanning confocal microscope. Images were taken using a 10X 0.3 numerical aperture (UPlanFLN, Olympus) objective and a confocal aperture of 200 μm. Both images for dye (excitation: 488 nm; emission: 505 to 530 nm) and plant autofluorescence (excitation: 633, emission: 650 nm) were acquired for the same field using a sequential acquisition mode. The number of nuclei per leaf area (mm2) was quantified using ImageJ software (Wayne Rasband National Institutes of Health, USA).

ProDH silenced plants
The pENTR/D-TOPO (Gateway system, Invitrogen) vector was used to clone a 192 bp cDNA from the ProDH1 gene, having a 76% identity of ProDH2, which was synthesized by PCR
(Forward primer: 5’-CACCATTTTTGCAGCCGTGAAGAT-3’, reverse primer 5’-CTGAGCTAAAGTGAGATGTTGGTA-3’). This silencing cassette was transferred to the binary vector pK7GWIWG2D(II) (Karimi et al., 2002) and then the construct integrity was confirmed by sequencing. Binary vectors were electroporated to *Agrobacterium tumefaciens* strain GV3101 pMP90 and used for transformation of *Arabidopsis* (Col-0) plants by the floral dip technique (Clough and Bent, 1998). Primary transformed (T0) seedlings were selected on Murashige and Skoog (MS) agar plates supplemented with kanamycin 50 µg mL⁻¹ and evaluated for segregation of the silencing cassette. Two representative T3 plants, named *siPD B8* and *siPD U9*, carrying either a single copy of the cassette in homozygosis or multiple copies of this construct, respectively, were characterized in detail. The phenotypes of both plants in response to pathogens or exogenous Pro were also present in their parental lines, as well as in other T3 plants obtained in these transformation experiments (not shown).

Responses of plants to exogenous Pro

Seeds were germinated on GM synthetic media (0.5 x Murashige and Skoog salts, 1x Gamborg vitamins, 1% sucrose, 1.6% agar) supplemented with different Pro concentrations, which were then used in the studies. Plant growth on supplemented media was evaluated at the age of 3 weeks, and then Pro and ProDH protein levels were determined at the age of 2 weeks, using aerial tissues from 6 to 8 plantlets for each measurement. Tissues were washed with distilled water prior to being used for Pro quantification or Western blot assays.
ACKNOWLEDGEMENTS

We thank Dr. László Szabados for critical reading of the manuscript. N. Cecchini and M. Monteoliva are CONICET fellows. M.E. Alvarez is a senior Career Investigator of CONICET.
LITERATURE CITED

Kant S, Kant P, Raveh E, Barak S (2006) Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophila. Plant Cell Environ 29: 1220-1234

regulator of cell death and defense responses in vascular tissues. Plant Cell 16: 2217-2232

Mohanty SK, Sridhar R (1982) Physiology of rice tungro virus disease: Proline accumulation due to infection. Physiol Plant 56: 89-93

Stakman EC (1915) Relation between Puccina graminis and plants highly resistant to its attack. J Agric Res 4: 193-199

FIGURE LEGENDS

Figure 1. Early accumulation of ProDH at the centre of the HR lesion.
A, Sampling scheme. Suspensions of *Pseudomonas syringae* pv. *tomato* DC3000 (*Pst*) virulent (*Pst-vir*) or avirulent (*Pst-AvrRpm1*) isolates, were locally inoculated (5x10⁶ cfu mL⁻¹) at the ends of Arabidopsis leaves to then identify infiltrated and non-infiltrated peripheral tissues. B, Trypan blue staining of leaves excised at 6 or 24 hours post-infiltration (hpi) with pathogens. C, Quantification of *ProDH1* and *ProDH2* transcripts in pairs of samples (infiltrated, peripheral) isolated from pathogen-treated leaves as described in A. The assays involve semi-quantitative, two-step, reverse transcriptase-polymerase chain reaction (RT-PCR). The constitutively expressed *GapC* gene (*At3g04120*) is used as control of cDNA content in the reactions. D, Western blot analysis comparing the ProDH content in naive tissues and *Pst-vir-* or *Pst-AvrRpm1-* infiltrated tissues. The ProDH content is indicated at the bottom after normalization to Rubisco S signal quantified by Ponceau staining. The antibodies were generated against a peptide conserved between both ProDH isoforms, so that they may detect both proteins with similar sensitivity in these assays. One representative of 3 independent infection experiments is shown for each assay. Each experiment includes 6 (B) or 4 leaves (C,D) isolated from 3 different plants per time point.

Figure 2. Pro metabolic changes associated to ProDH induction in HR.
A, Quantification of *ProDH1*, *ProDH2*, *P5CDH* and *P5CR* transcripts levels in leaves isolated at 0, 6, 8, 12 hpi with the avirulent bacteria *Pst-AvrRpm1*. Pathogen infiltration and transcript quantification were performed as described in Figure 1. One representative of 3 independent infection experiments (each one including at least 3 plants and 4 leaves per time point) is shown. B, Free Pro and P5C content (µg.g⁻¹fresh weight) was determined in aliquots of the leaf samples described in A. Data represent the mean ± SD of Pro values in 5 independent experiments (3 leaves from 3 plants each). Statistically significant differences (P < 0.01, ANOVA) are shown using different lower case letters.

Figure 3. Salicylic acid (SA) stimulates the expression of *ProDH1* in HR.
A,B, Effects of exogenous SA on ProDH mRNA and protein levels in wild-type plants. Leaves infiltrated with the indicated SA concentrations were excised at 3 hours post-treatment to monitor the abundance of *ProDH1* and *ProDH2* transcripts (A), as well as ProDH protein
Requirement of SID2 and NPR1 for ProDH1 activation by Pst-AvrRpm1. Wild-type (wt), sid2-2 and npr1-1 leaves were infiltrated with Pst-AvrRpm1 and excised at 6 and 24 hpi to determine the abundance of ProDH1 transcript in all three plants. Pathogen infiltration, and transcript and protein quantification were performed as described in Figure 1. One representative from 3 (C) or 4 (A,B) independent experiments is shown for each assay. Each experiment includes at least 3 plants and at least 3 leaves isolated from different plants per time point.

Figure 4. Activation of ProDH in the HR context.
Arabidopsis cultured cells were treated with virulent or avirulent races of Pseudomonas syringae pv. tomato (Pst-vir and Pst-AvrRpm1, respectively) as described by Cecchini et al., (2009). In parallel, cultures were treated with the indicated final concentrations of SA. Samples collected from these cultures at the different times post-treatment (hpt) were used for the following studies. A, B, ProDH1 expression evaluated as in Figures 1C and 2A. C, ProDH activity in protein extracts from naïve and pathogen-treated cultured cells quantified according to Lutts et al., (1999) and Kant et al., (2006). D, Reactive oxygen species (ROS) and cell death levels, determined by 2′,7′-dichlorodihydrofluorescein diacetate (lines) and Evans blue staining (bars), respectively, respect to untreated cells as described by Cecchini et al., (2009).
One representative from 3 independent experiments is shown for each assay. Each experiment includes 3 technical replicates (1 ml aliquot) isolated from treated cultures at each indicated time point. In C and D data represent the mean ± SD of 3 replicates. In C, statistically significant differences (P < 0.01, ANOVA) are shown using different lower-case letters.

Figure 5. Phenotypes of siPD B8 y siPD U9 transgenic plants.
A, Sensitivity of siPD B8 y siPD U9 plants to exogenous Pro. Seeds were sown on synthetic medium supplemented with Pro (2.5, 5.0, 10.0 and 20.0 mM). Images were taken at 3 weeks after sowing. The experiment was repeated three times with similar results. B, Free Pro content (µg g⁻¹fresh weight) in the aerial tissues of the plantlets shown in A. Samples corresponding to 20 mM Pro-treatment were not analyzed for Pro content due to reduced plant viability. Values represent the mean ± SD of 3 independent experiments, each one containing at least 6-8 plants per time point. C, Abundance of ProDH1 and ProDH2 transcripts in aerial tissues from 2-weeks old plants grown as in B. One representative from 3
independent experiments is shown. Each experiment involves at least 3 plants, and 3 leaves from different plants per time point.

Figure 6. *siPD B8* y *siPD U9* plants have reduced cell death in response to avirulent bacteria. Comparative analysis of responses triggered by avirulent pathogens (5x10⁶ cfu mL⁻¹) in wild-type (wt) and *ProDH* silenced (*siPD B8* and *siPD U9*) plants. *ProDH1* and *ProDH2* transcripts abundance (A) and ProDH levels (B) are quantified in untreated and *Pst-AvrRpm1*-treated leaves at 6 and 24 hpi, as described in Figure 1C,D. In A and B one representative from 3 independent experiments is shown, each experiment includes 3 plants, and 4 leaves from different plants per time point. C, Identification of non-viable cells in *Pst-AvrRpm1-* or *Pst-AvrRps4-* challenged leaves isolated at 24 hpi by SYTOX green staining and laser-scanning confocal microscopy (Truenrit et al., 2008). Green signals indicate probe fluorescence and red signals indicate chlorophyll autofluorescence. Pictures are representative of a total of the 18 images. Bar = 400 µm. D, Quantification of stained nucleus per leaf area from the images described in C using ImageJ software (Wayne Rasband National Institutes of Health, USA). Values represent means ± SE of quantification of 18 images from 3 biological independent infection experiments, each one containing 3 plants per genotype. Significant differences between wild-type and the transgenic plants are indicated (*p< 0.01, using *t* test).

Figure 7. *siPD B8* y *siPD U9* plants have enhanced susceptibility to avirulent bacteria. *Pst-AvrRpm1* growth in planta. Bacterium was inoculated at 5 x 10⁵ cfu mL⁻¹ to quantify bacterial content at the indicated times. Significant differences between wild-type and the transgenic plants are indicated (*p< 0.01 using *t* test). Data represent the mean ± SE of 3 independent infection experiments (2 sets of 6 discs isolated from at least 3 plants per experiment; total: 36 discs per time point).

Figure 8. Reduction of the oxidative burst in *ProDH* silenced plants.
Quantification of ROS in untreated and *Pst-AvrRpm1*-infiltrated (5 x10⁶ cfu mL⁻¹) leaf tissues from wild-type (wt) and *ProDH* silenced plants (*siPD B8* and *siPD U9*) at 6 and 24 hpi. A, Leaves were stained with 2′,7′-dichlorodihydrofluorescein diacetate (H₂DCFDA) to detect
H$_2$O$_2$ by laser-scanning confocal microscopy. Images were taken with a 10X objective. Green signals indicate probe fluorescence and red signals indicate chlorophyll autofluorescence. Bar = 400 µm. Pictures are representative of a total of the 16 images. Green fluorescence values indicated at the bottom were obtained from images analyzed with ImageJ software (Wayne Rasband National Institutes of Health, USA). Values represent means ± SE of samples from 2 independent infection experiments, each one containing 8 infected leaves isolated from 4 different plants. Significant differences between wild-type and the transgenic plants are indicated (* p< 0.05, using t test). B, Abundance of GST1 (also named GSTF6) transcripts of samples from leaves obtained as described in (A). One representative of 2 independent infection experiments (each one including at least 3 plants and 4 leaves per time point) is shown. hpi, hours post-infection.

Supplemental Figure 1. Anti-ProDH antibody validation. A, Titles of pre-immune, second- and fifth-immune sera. Serum dilutions were assayed by ELISA against the ProDH peptide conjugated to BSA. B-E, Specificity of fifth-immune antibody (anti-ProDH). B, Western blot for *A. thaliana* total proteins in naïve tissues. Incubations include immune (1/1000 dilution), pre-immune or no sera (upper panel). Lower panel shows total proteins by Ponceau staining. C, Western blot for *A. thaliana* total proteins in *P. syringae pv. tomato* DC3000 AvrRpm1-treated tissues. hpi, hours post-infection. RSL: Rubisco large subunit. D, Detection of ProDH peptide (25, 12, 6, 3 ng) conjugated to BSA by immune serum was blocked by pre-incubation with 10 µg of ProDH peptide in dot blot assays. E, Detection of ProDH in *A. thaliana* total protein extracts (20, 2, 0.2 µg) was blocked as in (D). Lower panels show protein amounts by Ponceau staining. The assays were developed with horseradish peroxidase (B, D, E), or Odyssey® Infrared Imaging (LI-COR Bioscience) systems.
A

infiltrated

tissues

peripheral

tissues

B

0 6 24 hpi

Pst-vir

Pst-AvrRpm1

C

\begin{tabular}{cccccc}
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>6</th>
<th>24</th>
<th>0</th>
<th>6</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pst-vir infiltrated & & & & & &</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>peripheral & & & & & &</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pst-AvrRpm1 infiltrated & & & & & &</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>infiltrated & & & & & &</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>peripheral & & & & & &</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\end{tabular}

ProDH1

ProDH2

GapC

D

\begin{tabular}{cccccc}
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>6</th>
<th>24</th>
<th>0</th>
<th>6</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pst-vir infiltrated & & & & & &</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ProDH & & & & & &</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rubisco & & & & & &</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pst-AvrRpm1 infiltrated

ProDH

Rubisco
A

<table>
<thead>
<tr>
<th>hpi</th>
<th>0</th>
<th>6</th>
<th>8</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>ProDH1</td>
<td></td>
</tr>
<tr>
<td>ProDH2</td>
<td></td>
</tr>
<tr>
<td>P5CDH</td>
<td></td>
</tr>
<tr>
<td>P5CR</td>
<td></td>
</tr>
<tr>
<td>GapC</td>
<td></td>
</tr>
</tbody>
</table>

B

![Pro and P5C graph](image)