Running Head: *S. reilianum*-induced maize developmental changes

Corresponding author:
Prof. Dr. Jan Schirawski
Department for Molecular Biology of Plant-Microbe Interactions
Albrecht-von-Haller Institute for Plant Sciences
Georg-August-Universität Göttingen
Untere Karspüle 2
37073 Göttingen
Germany.

Tel +49-551-39-10845
E-mail: jschira@uni-goettingen.de

Journal research area: Plants Interacting with Other Organisms
Sporisorium reilianum Infection Changes Inflorescence and Branching Architectures of Maize

Hassan Ghareeb, Annette Becker, Tim Iven, Ivo Feussner, Jan Schirawski

Department for Molecular Biology of Plant-Microbe Interactions, Albrecht-von-Haller Institute for Plant Sciences, Georg-August-Universität Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany (H.G., J.S.); Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany (H.G., J.S.); Evolutionary Developmental Genetics Group, Department of Biology and Chemistry, University of Bremen, Leobener Str., UFT, 28359 Bremen, Germany (A.B.); Department of Plant Biochemistry, Albrecht-von-Haller Institute for Plant Sciences, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany (T.I., I.F.)
*This work was supported by the International Max Planck Research School Marburg (H.G.), the Max Planck Society (J.S., H.G.), the Göttingen Graduate School for Neurosciences and Molecular Biosciences (GGNB; DFG grant GSC 226/1) (H.G.), FAZIT foundation (H.G.), the German Initiative of Excellence (DFG ZUK45/1) (J.S.), and the German Research Foundation (DFG 2547/6-2, 7-1, 8-1) (A.B.).

*Corresponding author e-mail: jschira@uni-goettingen.de
ABSTRACT

Sporisorium reilianum is a biotrophic maize pathogen of increasing economic importance. Symptoms become obvious at flowering time, when the fungus causes spore formation and phyllody in the inflorescences. To understand how *S. reilianum* changes the inflorescence and floral developmental program of its host plant, we investigated the induced morphological and transcriptional alterations. *S. reilianum* infection promoted outgrowth of subapical ears suggesting that fungal presence suppressed apical dominance. Female inflorescences showed two distinct morphologies, here termed “leafy ear” and “eary ear”. In leafy ears, all floral organs were replaced by vegetative organs. In eary ears, modified carpels enclosed a new female inflorescence harboring additional female inflorescences at every spikelet position. Similar changes in meristem fate and organ identity were observed in the tassel of infected plants, which formed male inflorescences at spikelet positions. Thus, *S. reilianum* triggered loss of organ and meristem identity, and loss of meristem determinacy in male and female inflorescences and flowers. Microarray analysis showed that these developmental changes were accompanied with transcriptional regulation of genes proposed to regulate floral organ and meristem identity, and meristem determinacy in maize. *S. reilianum* colonization also led to a 30% increase in the total auxin content of the inflorescence, as well as a dramatic accumulation of reactive oxygen species. We propose a model describing the architectural changes of infected inflorescence as a consequence of transcriptional, hormonal, and redox modulation, which will be a basis for further molecular investigation of the underlying mechanism of *S. reilianum*-induced alteration of floral development.
INTRODUCTION

Fungal plant pathogens can severely impact plant development. While necrotrophic fungal pathogens hinder plant development and seed set by killing the plant or parts of the plants, biotrophic fungal plant pathogens are more subtle since they depend on the living host for survival and reproduction. For example, the rust fungus *Puccinia monoica* induces pseudoflowers on host plants of the genus *Arabis*, which are made up of infected leaves but resemble flowers and attract pollinators helping fungal propagation (Roy, 1993). The hemibiotrophic fungus *Moniliophthora perniciosa* causes Witches broom disease on cacao, leading to hyperplasia, loss of apical dominance and proliferation of axillary shoots, which results in the formation of a broom-like structure on the host plant (Meinhardt et al., 2008).

While the fungi of the latter examples affect only vegetative plant development, other fungi interfere also with floral development of the host. The smut fungus *Ustilago maydis* affects vegetative and reproductive development of maize by inducing tumors on leaves, stems, and in inflorescences (Schirawski et al., 2006; Brefort et al., 2009). An interesting case is the biotrophic pistil smut fungus (*Salmacisia buchloëana*) that induces hermaphroditism (i.e. development of pistils) in florets of male buffalograss (Chandra and Huff, 2010). Some fungi can completely revert the floral program leading instead to development of vegetative organs (Meyer, 1966; Raghavendra and Safeeulla, 1979; Semisi and Ball, 1989). Floral reversion leading to phyllody formation is induced by the downy mildew fungus *Sclerospora graminicola* on its host plant pearl millet (Meyer, 1966; Raghavendra and Safeeulla, 1979; Semisi and Ball, 1989). Phyllody in inflorescences is also induced by the smut fungus *Sporisorium reilianum* on its host plants maize and sorghum (Reed et al., 1927; Matheussen et al., 1991).

For phyllody formation to occur, the fungus must alter the floral developmental program. In maize, the male inflorescence (tassel) develops at the apex of the plant, whereas the female inflorescences (ears) develop on the main shoot from axillary meristems (Veit et al., 1993). During inflorescence development of tassel and ear several types of meristems develop that follow a very similar order. A first step towards development of the male inflorescence is the conversion of the shoot apical...
meristem into tassel inflorescence meristem. In the developing tassel, the inflorescence meristem develops branch meristems, which leads to formation of branches. At the side of each branch, spikelet pair meristems develop that differentiate into spikelet meristems, which develop to a spikelet. Eventually, each spikelet develops to two floral meristems (Veit et al., 1993). The floral meristems differentiate into upper and lower florets. The two florets are surrounded with the spikelet remnants called outer and inner glumes. Together the axillary meristems (branch meristems, spikelet pair meristems, spikelet meristems and floral meristems) give the maize inflorescence its architecture. Similar meristem differentiations take place in the developing ear, except that there is no formation of branch meristems (Bennetzen and Hake, 2009). The maize floret initially develops five floral whorls that form lemma, palea, two lodicules, three stamens, and a pistil. The pistil in the most inner whorl is formed from three carpels; one remains rudimentary and two are fused to form the silk that surround a single ovule (Nickerson, 1954). The upper floret matures in advance of the lower floret, which aborts in the ear. Another difference between tassel and ear is obvious after initiating floral organ primordia where stamens are aborted in ear florets and pistils are aborted in tassel florets giving rise to monoecious flowers (Veit et al., 1993; Bennetzen and Hake, 2009).

The mechanistic causes of the change in developmental program have only in the rarest cases been elucidated. In the case of the hermaphroditism occurring in S. buchloëana-infected male buffalograss, down-regulation of a putative female-suppressor gene homologous to the maize TASSELSEED2 has been identified as a potential cause (Chandra and Huff, 2010). The ability of U. maydis to induce tumors on different floral organs in the maize tassel is dependent on the developmental stage of the floret at the time of infection (Skibbe et al., 2010; Walbot and Skibbe, 2010). Tassel infection has been suggested to be dependent on gibberellin signaling, since the dwarf8 mutant failed to induce tumors (Walbot and Skibbe, 2010). Gibberellin has been proposed to play an important role for symptom formation of S. reilianum on sorghum. Presence of the fungus has been shown to lead to a decreased gibberellin concentration, which was suggested to be the reason for increased tillering of infected plants (Matheussen et al., 1991). However, addition of gibberellin to in vitro-grown sorghum inflorescences has been used to mimic the phyllody caused by S. reilianum infection (Bhaskaran et al., 1990). While these
reports imply a (albeit contrasting) role of gibberellin in symptom formation of *S. reilianum*, gibberellin addition did not lead to phyllody formation when applied to *in vitro*-grown maize inflorescences (Touraud et al., 1997), throwing doubt on gibberellin concentration as sole explanation for floral changes caused by *S. reilianum*. Thus, the question of how *S. reilianum* redirects development of its hosts remains elusive.

S. reilianum is currently being established as a model organism to investigate fungus-host interaction on a molecular level. The genome sequence has recently been published and targeted gene deletion strains can readily be generated (Schirawski et al., 2010). Since also the genomes of its host plants maize and sorghum are available (Paterson et al., 2009; Schnable et al., 2009) the *S. reilianum*-host interaction offers the unique opportunity to study the molecular basis of symptom formation on both the fungus and the plant side.

In this work, we provide a detailed morphologic analysis of the effects of *S. reilianum* on maize inflorescence and flower development. In addition, we describe the transcriptional changes induced in infected inflorescences at an early stage of symptom development, and propose a mechanistic model of how *S. reilianum* might impact floral development.

RESULTS

S. reilianum Infection of Maize

To understand the symptoms caused by *S. reilianum* on maize, we inoculated a mixture of compatible sporidia of *S. reilianum* strains (Figure 1A) into the leaf whorl of 7-day old maize seedlings. At 16-18 hours post inoculation, calcofluor white stained leaf surfaces revealed the presence of appressoria that had developed at the tip of fungal hyphae (Figure 1B). Appressoria marked the entry point of fungal hyphae into the leaf epidermal cells (Figure 1C). Hyphae traversed epidermal cells and colonized bundle sheath cells (Figure 1D, E). From there, *S. reilianum* progressed towards the leaf sheath and could be detected in the nodes at 15 days post inoculation. In the node, the fungus mainly proliferated around the vascular...
bundles (Figure 1F). Although hyphae of *S. reilianum* could be observed in all these tissues, sporulation occurred only in the male (tassel) or female (ears) inflorescences (Figure 1G). In addition to spore formation, we observed morphological changes in the inflorescences that are described in detail below.

S. reilianum Alters Ear Branching Architecture

We noticed that *S. reilianum*-infected plants showed more ear branches per plant than mock-infected ones (Figure 2A). Ear branches developed from axillary meristems born at the axils of husk leaves (Figure 2B), indicating that *S. reilianum* infection resulted in a loss of apical dominance in ear-bearing branches. To quantify the formation of female inflorescences, we removed the husk leaves around the primary ear and counted all visible inflorescences. At eight weeks post infection, *S. reilianum*-infected plants showed on average 7.6 ears per plant, whereas mock-infected plants had only 4.3 ears per plant (Figure 2C). To find out whether the increase in the number of ears is restricted to a branch appearing at a specific node, we determined the ear number per branch at each node. For this purpose, the 2nd node was defined as the upmost node with brace roots, and counting was towards the top. Secondary ear branches appearing from axils of husk leaves of the primary ear could be observed on any ear branches. In infected plants, subapical ears appeared at a significantly higher frequency at the 2nd to 4th nodes (Figure 2D). However, the relative increase in average ear number per branch was highest at the lowest node considered and ranged from 2.8-fold at the 2nd node to 1.1-fold at the 6th node (Figure 2D). This indicates that the increase in the total number of ears is derived from a loss of apical dominance at ear branches appearing at lower nodes.

S. reilianum Changes Morphology of Maize Flowers

An inoculation of maize seedlings with *S. reilianum* did not lead to any plant developmental defects until flowering time. When inflorescences appeared, a range of morphological changes in both male and female inflorescences could be observed in infected plants. In addition to the formation of white sori harboring dark brown fungal spores (Figure 1G), we observed the formation of phyllody in tassels and ears.
of infected plants (Figure 3A and B). Phyllody occurred to different extents affecting a range of spikelet numbers, from one individual spikelet to all spikelets of an inflorescence. In female inflorescences, we could distinguish two morphologic forms of phyllody, which we named “leafy” and “eary”, because they either seemed to be replaced by leaf-like structures or by ear-like structures, respectively (Figure 3A). Interestingly, while leafy spikelets could cover different portions of the inflorescence, eary spikelets mostly covered the whole inflorescence (Figure 3C). Ears carrying both leafy and eary spikelets were only rarely observed. In male inflorescences, we observed only one morphologic form, which we called “phyllodied tassel”. In phyllodied tassels the morphologic change could affect one or more spikelets, and spikelets seemed to be replaced by ear-like structures (Figure 3B). *S. reilianum* infection of Gaspe Flint led to phyllody at a higher frequency (91%; 114 of 126 plants) in female inflorescences emerging at basal nodes, than in male inflorescences (5%; 6 of 126 plants) that form at the apex.

S. reilianum Transforms Reproductive into Vegetative Organs

To understand the floral modifications caused by *S. reilianum* infection of maize, we analyzed different spikelet developmental stages. Spikelets of female maize inflorescences (Figure 4A) are enclosed by two glumes that surround two florets, a lower one that aborts and an upper one that develops floral organs. The flower primordium produces floral organs in whorls, firstly forming the palea/lemma, then lodicules, and finally carpels that enclose the ovule, while stamen development is arrested at an early stage (Figure 4B). Fused carpels generate the silk that is required for pollen tube guidance to assure fertilization. In male flowers, stamens develop, while female reproductive organs (carpels and ovule) are aborted (Veit et al., 1993).

In comparison to healthy spikelets, leafy spikelets started to elongate before a silk-like protrusion emerged from the tip (Figure 4C). This protrusion grew longitudinally and radially and gave rise to a green tubular structure (Figure 4C, right). None of the floral whorls developed reproductive organs, which are readily formed in the healthy spikelet (Figure 4B, D). Instead, leaf-like organs formed in all floral whorls. In the upper floret, glume, lemma, lodicules, and palea appeared as thin, elongated, and
translucent organ. In the innermost whorl, an elongated green tubular structure replaced the carpel. Within this tube-like organ, a smaller leaf-like structure was present infrequently that was folded in half to cover a transparent needle-like protrusion emerging from the center of the floret (Figure 4D). The needle-like protrusion and the folded leaf-like structure might correspond to the ovule and the rudimentary carpel, respectively, or be the result of the formation of indeterminate organs at the central whorl.

Interestingly, leaf-like organs with a yellowish to green color could be found only in upper florets of infected inflorescences at the place where stamens normally abort (Figure 4D). In the lower floret, thin elongated translucent membranous organs corresponding to glume, lemma, lodicule, and palea were formed. In the center of the lower floret, a small closed tubular structure appeared in place of the carpel (Figure 4D). In summary, vegetative structures replaced all reproductive organs indicating that S. reilianum infection of maize led to floral reversion. In addition, meristem termination is disturbed, leading to the formation of leaf-like organs instead of aborted stamens.

S. reilianum Modifies Floral Meristem Fate

In early ears, spikelet development also started with spikelet elongation but, unlike in leafy ears, there was no development of a silk-like protrusion. Spikelets eventually developed two ear-like structures that contained new developing inflorescences (Figure 5A). Like in leafy spikelets, the floral whorls of early spikelets formed vegetative structures at almost every floral whorl. While glume, lemma, lodicule and palea appeared as thin elongated translucent membranous organs, stamens appeared as thicker, leaf-like organs of yellowish to green color that resemble husk-like leaves (Figure 5B). In the center of the floret, we found a husk-like leaf that covered a newly formed inflorescence replacing the carpels (Figure 5B, inset).

Similar morphological changes to those observed in the eary ear, could also be observed in the phyllodied tassel. Spikelets of phyllodied tassels had glumes that were elongated compared to healthy spikelets (Figure 5C, D) and developed into husk-like leaves (Figure 5C). Manual dissection of the floral whorls of the tassel...
spikelet revealed that most of the whorls developed husk-like leaves (Figure 5E). However, while in spikelets of healthy tassels carpel and ovule development is aborted at an early time point, the innermost whorl in spikelets of the phyllodied tassel was altered to a husk-like leaf that covered a newly developed inflorescence (Figure 5E, 6E). This suggests that in spikelets of both eary ears and phyllodied tasses most of the floral whorls developed into vegetative organs, with the exception of the most inner whorl, which developed a new inflorescence instead of ceasing meristematic activity for carpel abortion. Thus, the remnant of the floral meristem in the inner whorl has changed identity into an inflorescence meristem.

Sections of eary spikelets showed development of two inflorescences at the lower and the upper floret, respectively (Figure 6A). In contrast to spikelets of healthy inflorescences that developed floral organs (Figure 4B), spikelets of the newly developed inflorescence in eary spikelets developed new inflorescence meristems (Figure 6B). The newly formed inflorescences were heavily colonized by hyphae of *S. reilianum* (Figure 6C, star) whereas the floral organ-derived vegetative tissues were not (Figure 6C, arrows). Phyllodied tassels also showed development of new inflorescences, which appeared to be more highly branched than those of eary inflorescences (Figure 6D, E). The branches of the tassel-like inflorescence had spikelet pairs similar to those of the healthy tassel but were enclosed by leafy structures (Figure 6F, G). In contrast to spikelets of healthy tassels that developed floral organs (Figure 6H), spikelets of the newly developed inflorescence in phyllodied tassel spikelets developed new inflorescence meristems (Figure 6I). Thus, the meristem remnants at the inner whorl have not only changed identity from floral to inflorescence meristem, but the newly formed inflorescence meristems have in addition lost their determinacy: instead of terminating in floral meristems, they continue to form new inflorescence meristems.

S. reilianum Modulates the Floral Transcriptome

To understand the basic molecular mechanisms of *S. reilianum*-induced changes in the floral architecture of maize, we performed comparative RNA microarray analysis of healthy and *S. reilianum*-infected ears. Small ears (< 2 cm) from 20 plants each were collected at 4 weeks post inoculation, when infected ears displayed elongation
of at least one spikelet (Supplemental Figure S1). Expression patterns using Affymetrix GeneChip Maize Genome Arrays were compiled after statistical analysis of three biological replicates. Significance analysis revealed 169 differentially regulated genes, 76 down-regulated and 93 up-regulated genes (Supplemental Table S1). To validate the data obtained by microarray analysis, gene expression of five randomly chosen differentially regulated genes was also analyzed by quantitative Real-Time PCR (qRT-PCR). qRT-PCR analysis supported expression level changes observed by microarray analysis in all five cases (Supplemental Figure S2).

Differentially regulated genes were manually annotated by comparison to sequence data bases available at the National Center for Biotechnology Information (NCBI) using BLAST analysis (Altschul et al., 1990), and classified according to predicted biological functions. Of the 108 genes that could be classified, most showed involvement in biotic stress (27%) and transcriptional regulation (16%). Fewer genes were predicted to have a function in development (12%), metabolism (11%), hormone biosynthesis and response (9%), or signaling (6%). A small fraction of the genes was predicted to be involved in transport (3%), nuclear processes (3%), abiotic stress (3%) or energy (2%), or grouped to several biological functions (8%). In every group, both up and down-regulated genes were represented in approximately equal parts. However, in the transcription factor group, members of the same family were regulated in the same manner. While MADS and NAC transcription factors were all down-regulated, the members of the AP2, MYB, C2H2 zinc finger, and bHLH transcription factor families were up-regulated (Table 1).

To learn whether the members of transcription factor families were expressed in a tissue-specific manner, we compiled data on tissue-specific expression from the UniGene EST data base at NCBI for the differentially regulated genes. In this data base, EST counts from different cDNA libraries were used to calculate approximate gene expression patterns (number of gene ESTs per total number of ESTs in the pool) (Wheeler et al., 2006). Interestingly, all down-regulated MADS box transcription factors were estimated to be specifically expressed in reproductive organs of uninfected plants according to the calculated EST profile (Table 1). Floral organ-specific expression was also shown experimentally by in-situ hybridization for the Zea AGAMOUS (ZAG)-homologs ZAG1 and ZAG2, the AGL6-like gene ZAG3
(BEARDED EAR), and the GLOBOSA homolog ZMM29 (Schmidt et al., 1993; Münster et al., 2001; Thompson et al., 2009). In Arabidopsis and maize, AGAMOUS (AG) and APETALA2 (AP2) mutually repress each other (Weigel and Meyerowitz, 1994; Chuck et al., 2008). Interestingly, the two AP2-domain containing transcription factors with unknown function identified in this study are up-regulated (Table 1). However, whether they are regulated by AG is unclear.

The group of regulated genes belonging to hormone biosynthesis and response included genes potentially involved in auxin and gibberellin biosynthesis as well as auxin and cytokinin-mobilization. Two gibberellin biosynthesis genes were up-regulated, kaurene synthase 2 and gibberellin 20 oxidase 2, estimated to be expressed in the leaf according to the calculated EST profile of the UniGene data base (Table 1). In contrast, one gibberellin 20 oxidase gene that was meristem and floral organ-specifically expressed, was down-regulated in S. reilianum-infected relative to mock-infected ears. The up-regulation of leaf-specific and down-regulation of meristem and floral organ-specific gibberellin biosynthesis genes could either reflect the reversion of floral organs into leaf-tissue or could be the cause for the floral reversion process. Therefore, it is difficult to assess whether gibberellin concentration actively influences the observed floral reversion process. In our experiments, concentrations of gibberellins (GA1, 3, 4, 5, 8, 9, 20, 34) in collected tissues were below detection limit (see Materials and Methods).

Three genes involved in auxin biosynthesis as well as two auxin-responsive genes were up-regulated in infected ears (Table 1). To know whether gene regulation resulted in increased auxin levels, we measured auxin concentration of mock-infected and S. reilianum-infected ears. Mock-infected ears had an auxin concentration of 20 ± 0.5 pmol/g fresh weight, while that of S. reilianum-infected ears showed an increase of 30% (26 ± 0.7 pmol/g fresh weight; each mean of three independent biological replicates), while auxin amino acid conjugates were again below the detection limit. This S. reilianum-induced increase in the total auxin concentration in ears with elongating spikelets could indicate a potential role of auxin in the floral reversion process.
S. reilianum-Colonized Inflorescences Show an Elevated Level of Reactive Oxygen Species

Most of the differentially regulated maize transcripts detected by microarray analysis had a predicted function in the response to biotic stress. Notable was the presence of 15 genes involved in detoxification of oxidative stress. Of these, nine reproductive organ or shoot expressed genes (five glutathione S-transferase, two cytochrome P450, and two peroxidase genes) were up-regulated, whereas five root or endosperm specifically expressed peroxidase genes were down-regulated (Table 1). This suggests a need for detoxification of reactive oxygen species (ROS) in *S. reilianum*-colonized inflorescence tissue, and implies that the level of ROS is higher in *S. reilianum*-colonized than in healthy inflorescences.

To verify whether *S. reilianum*-colonized inflorescences contained a higher level of ROS, we prepared manual sections of young ears of infected or healthy plants that were immersed for two hours in a solution containing 3,3’-Diaminobenzidine (DAB) that forms a brown oxidation product when exposed to ROS. When supernatants were collected and absorbance of oxidized DAB at 465 nm was measured, a 15-fold increase in absorbance was detected in DAB solutions that had contained sections of infected inflorescences compared to supernatants of the healthy inflorescence sections (Figure 7A). When the DAB-treated sections were microscopically analyzed, brown oxidized DAB-precipitates could readily be detected on inflorescence sections of *S. reilianum*-infected plants but not on those of mock-infected plants (Figure 7B). DAB oxidation seemed to be specifically associated with fungal colonization and surrounded fungal hyphae that colonized leafy or eary spikelets (Figure 7C). This indicates that the presence of *S. reilianum* causes the observed increase in the ROS levels in inflorescences of infected plants, which could explain the up-regulation of reproductive-organ specifically expressed ROS detoxification genes (Table 1).

DISCUSSION

S. reilianum caused a number of developmental changes in the inflorescences of infected maize plants. In addition to loss of apical dominance, infected ears showed
loss of meristem identity and determinacy, and loss of organ identity. Loss of organ identity occurred at all floral organs (glume, lemma, lodicule, carpel, palea and stamen) in leafy ears (Figure 4). In eary ears and phyllodied tassels, floral organs showed reversion into vegetative structures, with the exception of the most inner whorl that developed an inflorescence (Figure 5).

Different Morphologies of S. reilianum-Colonized Inflorescences

The developmental decision of leafy or eary ear formation might be made by the crucial timing of inflorescence invasion by S. reilianum. If the fungus invades the female inflorescence at an early time point of inflorescence development before the appearance of silk tissue, it can redirect the developmental program of the floral meristem to that of an inflorescence meristem and thus cause the development of ears instead of flowers. If the fungus reaches the female inflorescence after silk development and initiation of floral organs, it redirects the floral developmental program to a vegetative program giving rise to leafy ears.

In healthy plants, each of the spikelet meristems differentiates into two florets that both initiate all floral organs including carpel and stamen. Then floret development continues differently in male and female inflorescences: Whereas in male florets the carpel primordia are aborted, in female inflorescences the complete lower floret and the stamen primordia of the upper floret are aborted (Veit et al., 1991). In the female inflorescence, the inner whorls develop three carpels, two that elongate and fuse to form the tubular silk, and one that remains rudimentary (Nickerson, 1954; Dellaporta et al., 1991). Inside the carpels, the ovule develops (Dellaporta et al., 1991).

In eary ears, a husk-like leaf forms an open structure developed at the position of carpel primordia (Figure 5B), suggesting that loss of organ identity occurred before fusion of carpel primordia was complete. In contrast, in leafy ears, the impact of S. reilianum on carpel development must have occurred after carpel fusion was completed, since a closed tubular onion leaf-like structure developed. In some cases, two more vegetative structures within the tubular structure could be observed that might either be the result of indeterminate growth of carpel primordia preceding loss of organ identity, or correspond to the rudimentary carpel and the ovule (Figure
4). In such cases, the primordia of the rudimentary carpel and the ovule could have been initiated but organ development was not yet terminated before *S. reilianum* exerted its effect. If in eary ears, *S. reilianum* colonized the inflorescence at an early stage of inflorescence development, all spikelets would be equally affected. Accordingly, we observed that most of the spikelets on eary ears were completely converted to eary spikelets (Figure 3C). Thus, the different morphologies of the *S. reilianum*-colonized inflorescences are most likely a result of differences in the developmental states of the florets at the time of fungal colonization.

The spatial and temporal colonization pattern of *S. reilianum* might also be responsible for the observed loss of apical dominance at ear branches appearing at basal nodes (Figure 2D). Ears develop first at the more apical nodes, and ears that appear at lower nodes are formed later. Since young seedling plants were used for infection, *S. reilianum* enters the plant via leaves developing from basal nodes. This enables the fungus to reach lower nodes first. Thus, it has time to colonize the sub-meristemetic tissue before development of the inflorescence meristem. Any *S. reilianum*-induced hormonal or metabolic changes would therefore immediately affect inflorescence development. In contrast, *S. reilianum* might reach the primordia at higher nodes only after inflorescence development has completed. In this case, any *S. reilianum*-induced hormonal or metabolic changes would have little impact on inflorescence morphology. Such a scenario would also explain why female inflorescences on infected plants show phyllody much more frequently (91%, see above) than male inflorescences (5%). Since the male inflorescence emerges from the plant apex, the fungus might only rarely be able to reach it before the completion of tassel development.

The conversion to vegetative growth could have the potential advantage for the fungus to be provided with nutrients generated by photosynthetic activity of the green leaf-like tissue. If eary ears develop, the fungus can profit in two ways: First, the husk leaves of the newly developing inflorescence will provide nutrients by photosynthesis, while the additional inflorescences will enlarge the tissue suitable for fungal proliferation and spore formation.

Loss of Floral Organ Identity
A reversion of floral organs into vegetative structures implies a change in the identity of affected organs. Floral organ identity is regulated by a number of homeotic transcription factors including those of the MADS and the AP2 families (Coen and Meyerowitz, 1991). According to the ABCDE model that was developed for dicots, transcription factors belong to five functional classes that determine floral organ identity in different combinations (Coen and Meyerowitz, 1991; Weigel and Meyerowitz, 1994; Ng and Yanofsky, 2001; Ditta et al., 2004). While genes that carry out B, C, D, and E functions were identified in rice and maize, information about an A function outside the higher eudicots is ambiguous (Yanofsky et al., 1990; Ambrose et al., 2000; Dreni et al., 2007; Thompson et al., 2009). While AP2 carries out A function in Arabidopsis, diverse functions have been described for AP2-like genes in monocots and dicots (Tang et al., 2007; Chuck et al., 2008; Maeo et al., 2009). This suggests that monocots might follow different regulatory networks to govern floral development, and that AP2-like genes regulate additional developmental processes in monocots.

It has been proposed that lemma/palea and lodicules of monocots correspond to sepals and petals of dicots, respectively (Ambrose et al., 2000). In dicots, the organ identity of sepals is governed by A class genes, while that of petals is defined by A and B class genes (Weigel and Meyerowitz, 1994). Active B and C class genes define organ identity of stamens, C class genes of carpels and D class genes of ovules (Weigel and Meyerowitz, 1994; Colombo et al., 1995). E class genes work as scaffolds and are required for organ identity of all floral whorls (Ditta et al., 2004). In *S. reilianum* infected leafy ears, floral organs corresponding to lemma, lodicule, stamen and carpel have lost their organ identity and have reverted to vegetative leaf-like organs. This could indicate that *S. reilianum* affects the function of A, B, C, and D genes, or of E genes to cause loss of floral organ identity.

Transcriptional analysis of young *S. reilianum* infected ears showed that the E class resembling gene *ZAG3* (*BDE*) (Thompson et al., 2009) was down-regulated (Table 1). In addition, the C class gene *ZAG1* (Mena et al., 1996) was down-regulated. Two AP2 family genes were up-regulated (Table 1) indicating an A class-typical antagonistic regulation to the C class genes (Chuck et al., 2008) but whether the two AP2 family genes fulfill other A class functions is unknown. One gene likely belonging to the B class of floral transcription factors, *ZMM29* (Münster et al., 2001)
was down-regulated (Table 1). ZAG2, a gene that is homologous to the rice D class gene OsMADS13 (Dreni et al., 2007) and whose expression is constrained to the ovule and extensions that form the silk (Schmidt et al., 1993; Colombo et al., 1998), was also down-regulated, as was its homolog ZMM1 (Theissen et al., 1995). According to the UniGene data base, the B, C, D, E class transcription factors, as well as one AP2-family protein were found to be specifically expressed in floral organs (Table 1). S. reilianum infection apparently greatly impacts the transcriptional profile of A, B, C, D, and E class genes, supporting the observation that in infected inflorescences vegetative organs develop in place of floral organs. While S. reilianum infection might affect the regulation of floral organ identity genes directly it is more likely that the infection has an impact on regulatory mechanisms acting upstream of flower development such as meristem identity, local hormone concentration, or general metabolite levels that all may affect gene expression.

In this respect, it is remarkable that ROS accumulation was observed around fungal hyphae in colonized inflorescences (Figure 7). While it is unclear, whether ROS generation stems from the fungus or the plant, it is obvious that ROS are detected by the plant, since we observed a dramatic increase in the expression level of plant genes involved in detoxification of oxidative stress (Table 1). In plants, ROS are known to have a role in signaling and development (Gapper and Dolan, 2006; Møller and Sweetlove, 2010). Therefore, it is possible that the morphological changes induced by S. reilianum colonization of the inflorescence are an indirect result of the increased ROS levels in the plant cells. Possibly, this indirect effect is exerted via redox-regulation of glutaredoxins, that have recently been shown to play a crucial role in floral organ development (Xing and Zachgo, 2008; Li et al., 2009; Li et al., 2009). On the other hand, the increased ROS levels in infected floral tissues might be a result of down-regulation of a specific MADS box transcription factor. It has recently been shown in rice that a mutation in the C class gene MADS3 leads to ROS accumulation, which may be responsible for the observed decreased pollen viability (Hu et al., 2011).

Inflorescence Development in Eary Ears
In early ears, the floral whors corresponding to lemma/palea, lodicule, stamen and carpel showed loss of organ identity leading to formation of vegetative organs, similar to what happens in leafy ears. However, in early ears, the whorl that corresponded to the ovule developed an inflorescence (Figure 5). This indicates that the remnants of stem cells in the floral meristems did not terminate in forming ovules. Instead, the floral meristems changed identity to inflorescence meristems. These new inflorescence meristems showed loss of meristem determinacy: Transition of spikelet to floral meristems did not occur but spikelets developed inflorescence meristems (Figure 6). In addition, these newly formed inflorescences were heavily colonized by fungal hyphae, and fungal growth was prominent in the core of the inflorescence and did not extend to the surrounding vegetative organs (Figure 7). Apparently, inflorescences are preferred substrates for fungal growth. Thus, abolishing meristem determinacy may be advantageous for proliferation of the fungus, because more inflorescence tissue for colonization would be available.

How could fungal presence induce these described changes? Spikelet meristem determinacy was shown to be regulated by three AP2 family genes, INDETERMINATE SPIKELET1 (IDS1), SISTER of INDETERMINATE SPIKELET1 (SID1) and BRANCHED SILKLESS1 (BD1) (Chuck et al., 2002; Chuck et al., 2008). Of these, only IDS1 was represented on the arrays and did not show changes in transcript level. However, two uncharacterized AP2 family genes were up-regulated in S. reilianum-infected ears and one of them was found to have a flower-specific expression pattern (Table 1). This could hint at a role of these AP2 family members in regulating meristem determinacy.

Floral meristem identity has been shown to be additionally regulated by two redundantly acting genes, ZAG1 and ZAG3 (Thompson et al., 2009). The zag1 zag3 double mutants show a severe ear phenotype, in which the floral meristems fail to develop floral organs but instead produce branch-like structures that initiate ectopic meristems (Thompson et al., 2009). The indeterminate meristem phenotype in the zag1 zag3 double mutants is very similar to the occurrence of inflorescence meristems that continuously differentiate into additional meristems observed in S. reilianum-infected early ears (Figure 6). Since both ZAG1 and ZAG3 were down-regulated in young S. reilianum-infected ears (Table 1) their down-regulation could at least partially explain the changes in meristem fate caused by S. reilianum even
though it is unknown how the infection influences the transcription levels of ZAG1 and ZAG3.

S. reilianum-Triggered Loss of Apical Dominance

S. reilianum infected plants show an increase in the number of ears per branch (Figure 2). This observation can be explained by a loss of apical dominance leading to activation and outgrowth of the axillary meristems on the ear shank. Shanks of ears lacking silks show outgrowth of the subapical ear meristems in many maize inbred lines (Virginia Walbot, personal communication). Because loss of carpel identity precludes silk formation, the observed change of carpel identity induced by S. reilianum could explain the increased ear number per branch. How outgrowth of axillary meristems in maize is regulated has not been deeply studied. However, two C2H2 zinc-finger transcription factors with a role in axillary meristem fate, RAMOSA1 (RA1) and INDETERMINATE1 (ID1), have been identified. Whereas RA1 determines the fate of second-order meristems (Vollbrecht et al., 2005), ID1 controls the transition from vegetative to reproductive growth in maize, and id1 mutants fail to form ears (Colasanti et al., 1998). Neither RA1 nor ID1 was found to be regulated in the microarray experiments. While one C2H2 zinc-finger family member was up-regulated in young S. reilianum-infected ears (Table 1), it is unknown whether the gene has a function in the regulation of meristem outgrowth.

In addition to an increased number of ears per branch, S. reilianum-infected plants exhibited an increased ROS level in colonized ears (Figure 7). A similar finding has been described for the Epichloe festucae-perennial ryegrass interaction. Perennial ryegrass infected with E. festucae strains lacking the stress-activated mitogen-activated protein kinase gene sakA showed an elevated ROS level and increased tillering (Eaton et al., 2010), thereby linking ROS accumulation with loss of apical dominance.

Initiation of vegetative and reproductive development in maize has recently been shown to be mediated by the tryptophan aminotransferase VANISHING TASSEL2, an enzyme involved in auxin biosynthesis (Phillips et al., 2011). A gene encoding tryptophan aminotransferase was down-regulated upon maize infection with S.
reilianum (Table 1) possibly linking lack of auxin to the observed developmental defects in infected inflorescences. Although the tryptophan aminotransferase gene was clearly down-regulated, we did not observe an overall decrease in auxin concentration in the emerging ear. Instead, the auxin content of young S. reilianum-infected ears showed an increase of 30% relative to control ears. This increase was detectable although complete inflorescences were collected at a stage where the inflorescences only partially showed symptoms. In addition, two auxin biosynthesis genes encoding tryptophan synthase alpha subunits and one encoding an IAA-amino acid conjugate hydrolase for auxin mobilization were up-regulated, pointing to an overall increase in auxin production in the infected ears. How could an increase in auxin levels lead to loss of apical dominance? Generation of local auxin maxima is known to be necessary for axillary meristem formation (Gallavotti et al., 2008). Local auxin maxima at axillary meristems could be responsible for the observed increase in the number of ears per branch in S. reilianum-infected plants. In addition, polar auxin transport is necessary to activate axillary meristems. In maize, the serine/threonine protein kinase BARREN INFLORESCENCE2 (BIF2) and the bHLH protein BARREN STALK1 (BA1), have been implicated in polar auxin transport and initiation of axillary meristems (McSteen and Hake, 2001; Gallavotti et al., 2004; McSteen et al., 2007; Wu and McSteen, 2007; Gallavotti et al., 2008). BIF2 has been shown to interact with BA1 (Skirpan et al., 2008). It was suggested that BIF2 functions upstream of polar auxin transport and that polar auxin transport is required for BA1 expression (Bennetzen and Hake, 2009). The auxin canalization model predicts that - irrespective of absolute auxin concentration – polar auxin transport is necessary to activate axillary meristems (Domagalska and Leyser, 2011). The axillary bud is activated, if it generates auxin and if this auxin is exported from the bud into the main polar auxin transport canal. This would implicate that there is auxin export from the axillary buds that developed on shanks of infected ears leading to bud activation and development of additional ears.

Conclusion

S. reilianum infection of Zea mays ‘Gasp Flint’ induced loss of apical dominance and led to two major modifications of the inflorescences. Loss of organ identity was
evident in leafy ears, eary ears and phyllodied tassels. Loss of meristem identity and
determinacy was exclusive to eary ears and phyllodied tassels. The timing of \textit{S.}
\textit{reilianum} colonization relative to the developmental state of the colonized
inflorescence could be decisive for the outcome of the floral modification resulting in
leafy or eary ears. \textit{S. reilianum} colonized inflorescences showed a higher level of
ROS, a higher level of auxin, and misregulation of floral regulatory transcription
factors. In accordance with the expectations of the ABCDE model, we observed up-
regulation of A and down-regulation of B, C, D and E class genes. Together, these
changes might explain, how \textit{S. reilianum} modulates floral architecture of maize
inflorescences (Figure 8). While floral gene regulation might be a secondary
consequence of increased ROS or auxin levels, it could also be that \textit{S. reilianum}
directly regulates key players controlling floral gene expression, e.g. via secretion of
small effector proteins that are translocated into the plant cells. Future experiments
will clarify whether and how ROS, auxin or fungal secreted effectors contribute to
symptom development of \textit{S. reilianum}.
MATERIALS AND METHODS

Maize Growth Conditions

The maize (Z. mays) cultivar ‘Gaspe Flint’ was obtained from Regine Kahmann, Marburg, Germany. Plants were grown in T-type soil (Frühstorfer Pikiererde, Germany) under 15 h day conditions at 28°C, 50% relative humidity and illumination at a minimum of 28,000 lux with additional occasional up to 90,000 lux sun radiation, and 9 h night conditions at 20°C and 60% relative humidity. Between day and night shifts, 2.5 h and 3.5 h of light ramping was included to simulate sunset and sunrise, respectively. For transcriptome analysis, plants were transferred after six days to a phytochamber (Vötsch, Balingen-Frommern, Germany) with the same growth conditions as the greenhouse with the exception of 1 h ramping between day and night shifts and 50% relative humidity during the day and not sun radiation.

Plant inoculation with S. reilianum

The S. reilianum compatible mating type strains SRZ1 and SRZ2 (Schirawski et al., 2005) were inoculated in 2 ml YEPSL medium (1% tryptone, 1% yeast extract and 1% sucrose) modified from (Tsukuda et al., 1988) and incubated at 28°C with 200 rpm shaking for 8-12 h. Each culture was used to inoculate 50 ml potato dextrose (2.4%) broth (PDB, Difco) overnight until an OD$_{600\text{nm}}$ of 0.5 to 1.0 was reached. The cultures were centrifuged at 3500 rpm for 5 min. Cell pellets were resuspended in water to an OD$_{600\text{nm}}$ of 2.0. Suspension cultures of SRZ1 and SRZ2 were mixed and used to inoculate seven-day old maize seedlings as described (Gillissen et al., 1992).

RNA Extraction

Ears (1-2 cm in length) from 20 plants at 4 weeks post inoculation (wpi) were collected from healthy or S. reilianum-infected plants. Of infected ears, those displaying clear vegetative structures were excluded and only ears showing
elongation of spikelets were collected. RNA from three independent experiments was extracted with Trizol (Invitrogen, Karlsruhe, Germany). DNase treatment was performed using RNase-Free DNase Set (Qiagen; Hilden; Germany), and RNA was purified with RNeasy Plant Mini Kit (Qiagen; Hilden; Germany). The RNA quality was verified using a Bioanalyzer 2100 (Agilent, Böblingen, Germany), and the RNA purity and concentration were assessed with NanoDrop ND-1000 (Thermo Fisher Scientific, Schwerte, Germany).

Gene Expression Analyses

The Affymetrix GeneChip Maize Genome arrays were performed for 3 independent experiments. RNA amplification was performed according to the manual of the One-Cycle cDNA Synthesis Kit (Affymetrix, Santa Clara, California). cRNA labeling and cRNA fragmentation and labeling were performed according to the manual of the GeneChip IVT Labeling Kit (Affymetrix). Array hybridization, washing and staining was performed according to the Midi_Euk2V3 protocols using GeneChip Fluidics Station 400, and arrays were scanned with Affymetrix GSC3000 scanner (Affymetrix).

The microarray fluorescence signals were processed using the GCOS v1.4 software package (Affymetrix). The software was used to produce presence-absence calls and to normalize the signal intensities from each array with scaling the target signal to 300 and using default parameters. The produced files were used to analyze the statistical significant difference using the Bioconductor v2.3 package. Genes with adjusted p-values <0.05 were considered to be significantly misregulated. Microarray data were verified for five randomly selected genes by qRT-PCR using actin as internal control (Ghareeb et al., 2011) with the primers detailed in Supplemental Table S2.

Staining and Microscopy
To visualize the modifications in inflorescence structures, ears and tassels showing different developmental stages were fixed overnight at 4°C in FAA (2.5% formaldehyde, 5% glacial acetic acid, 60% ethanol) and dehydrated in a graded ethanol series. Following substitution with Histo-clear (National Diagnostics), we embedded the samples in Paraplast Plus (McCormick Scientific) and sectioned them at 15 µm thickness using a rotary microtome. Sections were stained with O-Safranin-Fast Green staining according to (Orashakova et al., 2009).

To stain fungal appressoria or fungal structures on planta, infected leaves at 1 dpi were dipped in Calcofluor White (100 ng/ml Fluorescent Brightener 28) for 30 s and then washed once with water. The samples were immediately scanned by a Zeiss Axioplan II microscope (Zeiss, Jena, Germany) using the DAPI filter set (EX BP 365, BS FT 395, EM BP 445/50).

For visualization of fungal structures in planta, leaves, nodes and ear sections were soaked in ethanol overnight. The samples were rinsed once with water and incubated in 10% KOH overnight. After washing with water, the leaves and nodes were incubated in WGA-Alexa Fluor 488 and Propidium Iodide staining solution (10 µg/ml WGA-Alexa Fluor 488, 20 µg/ml Propidium Iodide, 0.02% Tween 20, in phosphate buffered saline, pH 7.4) for 30 min with three 2-min intervals of vacuum infiltration. The samples were scanned with TCS-SP5 confocal microscope (Leica, Bensheim, Germany). WGA-Alexa Fluor 488 was detected with excitation at 488 nm and emission at 500–540 nm, and Propidium Iodide was detected with excitation at 561 nm and emission at 580-660 nm. For staining the fungal hyphae in leaves or in inflorescences, leaves or ear sections were incubated in Chlorazole Black E staining solution (0.03%(w/v) Chlorazole Black E in a 1:1:1 mixture of water, lactic acid (80%) and glycerol (97%), at 60°C overnight. The sections were destained in 50% glycerol overnight and then scanned using light microscopy.

ROS Quantification and Localization

To test ROS production in ears in response to S. reilianum proliferation, ROS were quantified using 3,3’-Diaminobenzidine (DAB) obtained from Sigma (Herzog and Fahimi, 1973). Manual sections of four-week-old female inflorescences were
prepared and weighed (50-80 mg) prior to adding a 10-fold volume excess of freshly prepared DAB staining solution (1 mg DAB/ml water). The samples were incubated in the dark for 5 h at room temperature before removing the sections and photometrically determining the absorption of the DAB solution at 465 nm.

To localize ROS production in infected ears, ears sections were stained with DAB-HCl solution for 3 h at room temperature. The samples were destained in ethanol: chloroform (4:1), and then kept in the dark in 60% glycerol until analysis by light microscopy.

Hormone analysis

In order to measure auxin and giberellin concentrations plant material was extracted as previously described for lipids, with some modifications (Matyash et al., 2008). Plant material (100 mg) was extracted with 0.75 mL of methanol containing 20 ng D5-IAA (Eurisotop, Freising, Germany), 10 ng D3-GA3 (OLChemIm Ltd, Olomouc, Czech Republic) each as internal standard. After vortexing, 2.5 mL of methyl-tert-butyl ether (MTBE) were added and the extract was shaken for 1 h at 4°C. For phase separation, 0.6 mL water was added. The mixture was incubated for 10 min at room temperature and centrifuged at 450 x g for 15 min. The upper phase was collected and the lower phase was reextracted with 0.7 mL methanol/water (3:2.5 v/v) and 1.3 mL MTBE as described above. The combined upper phases were dried under streaming nitrogen and resuspended in 100 µl of acetonitrile/water/acetic acid (20:80:0.1, v/v/v).

The analysis of constituents was performed using an Agilent 1100 HPLC system (Agilent, Waldbronn, Germany) coupled to an Applied Biosystems 3200 hybrid triple quadrupole/linear ion trap mass spectrometer (MDS Sciex, Ontario, Canada). Nanoelectrospray (nanoESI) analysis was achieved using a chip ion source (TriVersa NanoMate; Advion BioSciences, Ithaca, NY, USA). Reversed-phase HPLC separation was performed on an EC 50/2 Nucleodure C18 gravity 1.8 µm column (50 x 2.1 mm, 1.8 µm particle size; Macherey and Nagel, Düren, Germany) applying a column temperature of 30°C. For analysis 10 µl extract were injected. The binary gradient system consisted of solvent A, water/acetic acid (100:0.1, v/v) and solvent
B, acetonitrile/acetic acid (100:0.1, v/v) with the following gradient program: 5 % solvent B for 1 min, followed by a linear increase of solvent B up to 95 % within 10 min and an isocratic run at 95 % solvent B for 4 min. To re-establish starting conditions a linear decrease to 5 % B within 2 min was performed, followed by 10 min isocratic equilibration at 5 % B. The flow rate was 0.3 ml min⁻¹. For stable nanoESI, 130 µl min⁻¹ of 2-propanol/acetonitrile/water/acetic acid (70:20:10:0.1, v/v/v/v) delivered by a 2150 HPLC pump (LKB, Bromma, Sweden) were added just after the column via a mixing tee valve. By using another post column splitter 790 nl min⁻¹ of the eluent were directed to the nanoESI chip. Ionization voltage was set to -1.7 kV. Phytohormones were negatively ionized and detected in a scheduled multiple reaction monitoring mode. For the scheduled mode the MRM detection window was 72 sec and a target scan time of 1.2 sec was applied. Mass transitions were as follows: 179/135 [declustering potential (DP) -40 V, entrance potential (EP) -6.5 V, collision energy (CE) -22 V] for D₅-IAA, 174/130 (DP -40 V, EP -6.5 V, CE -22 V) for IAA, (DP -55 V, EP -10 V, CE -40 V) for D₂-GA₃, 345/143 (DP -85 V, EP -10 V, CE -38 V) for GA₃, 347/273 (DP -115 V, EP -10 V, CE -30 V) for GA₁, 331/213 (DP -105 V, EP -10 V, CE -40 V) for GA₄, 329/145 (DP -120 V, EP -10 V, CE -34 V) for GA₅, 363/275 (DP -160 V, EP -10 V, CE -24 V) for GA₆, 315/271 (DP -95 V, EP -10 V, CE -28 V) for GA₉, 331/287 (DP -95 V, EP -10 V, CE -30 V) for GA₂₀, 347/259 (DP -240 V, EP -10 V, CE -24 V) for GA₃₄. The mass analyzers were adjusted to a resolution of 0.7 amu full width at half-height. The ion source temperature was 40 °C, and the curtain gas was set at 10 (given in arbitrary units). Quantification was carried out using a calibration curve of intensity (m/z) ratios of [unlabeled]/[deuterium-labelled] vs. molar amounts of unlabeled (0.3-1000 pmol).

Accession Numbers

Microarray data included in this article were submitted to the Gene Expression Omnibus (GEO) database under accession number GSE29747.

SUPPLEMENTAL MATERIAL
Supplemental Figure S1. Representative developmental morphologies of mock and
S. reilianum-infected ears used for microarray experiments.

Supplemental Figure S2. Comparison of gene expression profiles determined by
microarray or qRT-PCR.

Supplemental Table S1. Complete list of S. reilianum-regulated genes in maize
inflorescences, and their correlated approximate gene expression patterns.

Supplemental Table S2. List of primers used for qRT-PCR analysis.

ACKNOWLEDGEMENTS

We thank Regine Kahmann, Alfred Batschauer and Virginia Walbot for fruitful
discussions and Cornelia Herrfurth for her support with the establishment of the
hormone measurements.

LITERATURE CITED

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local

Ambrose BA, Lerner DR, Ciceri P, Padilla CM, Yanofsky MF, Schmidt RJ (2000)
Molecular and genetic analyses of the silky1 gene reveal conservation in floral
organ specification between eudicots and monocots. Mol. Cell 5: 569-579

primordia to vegetative growth in sorghum. Plant Sci. 71: 113-118

Brefort T, Doehlemann G, Mendoza-Mendoza A, Reissmann S, Djamei A,
47: 423-445

Chandra A, Huff DR (2010) A fungal parasite regulates a putative female-
suppressor gene homologous to maize tasselseed2 and causes induced
hermaphroditism in male buffalograss. Mol. Plant-Microbe Interact. 23: 239-
250

are regulated by the maize AP2 genes ids1 and sid1. Development 135:
3013-3019

spikelet meristem identity by the branched silkless1 gene in maize. Science
298: 1288-1241

Maeo K, Tokuda T, Ayame A, Mitsui N, Kawai T, Tsukagoshi H, Ishiguro S, Nakamura K (2009) An AP2 type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW box sequence conserved among...
proximal upstream regions of genes involved in fatty acid synthesis. Plant J. 60: 476-487

Semisi ST, Ball SFL (1989) Infection of the pearl millet (Pennisetum americanum) inflorescence by the downy mildew fungus (Sclerospora graminicola). Plant Pathol. 38: 571-576

Xing S, Zachgo S (2008) ROXY1 and ROXY2, two Arabidopsis glutaredoxin genes, are required for anther development. Plant J. 53: 790-801

FIGURE LEGENDS

Figure 1. Morphological stages of S. reilianum outside, on and in Zea mays ‘Gaspe Flint’.

(A) Axenically grown haploid sporidia of S. reilianum. Bar = 15 µm.

(B) On the plant surface, dikaryotic hyphae of S. reilianum form appressoria for plant penetration at one day after infection. An appressorium (arrowhead) is visualized here by fluorescence microscopy after calcofluor staining. Bar = 15 µm.

(C) Appressoria of S. reilianum penetrate the leaf surface. From the appressorium (arrowhead, left panel) a hypha penetrates the underlying epidermal tissue (arrows, right panel). Pictures in the left and right panels are different focal planes visualized by bright field microscopy after staining with Chlorazol Black E. Bar = 10 µm.

(D) In the plant leaf, fungal hyphae proliferate along leaf vascular bundles. Z-stack of a WGA-Alexaflour (green, fungal hyphae) and Propidium Iodide (red, plant cells) stained samples visualized by confocal microscopy. Bar = 300 µm.

(E) A close up of fungal hyphae colonizing bundle sheath cells. Bar = 50 µm.

(F) In the nodes of the plant, fungal hyphae (green) surround the plant vascular bundles (red). A cross section stained with WGA-Alexaflour and Propidium Iodide was visualized by confocal microscopy. Bar = 500 µm.

(G) Spores of S. reilianum forming on maize ear (left) and tassel (right).

Figure 2. Effect of S. reilianum infection on ear number of Zea mays ‘Gaspe Flint’.

(A) S. reilianum-infected plants (right) show a higher ear number then mock-infected plants (left). Each pot contains 4 plants.

(B) In mock-infected plants (left), ears form at apical points of a side branch. In infected plants (right), additional secondary ears (arrowheads) develop on subapical side branches of an ear-bearing side branch.
(C) Quantification of the ear number per plant. Error bars represent SEM of three independent experiments with 23±2 plants per infection and replicate. The difference is significant (p-value = 0.01).

(D) *S. reilianum*-infected plants significantly (*, p-value = 0.05) develop more ears per branch at the 2nd, 3rd, and 4th node. The 2nd node was defined as the upmost node with brace roots, and counting was towards the top. Error bars represent SEM of three independent experiments with more than 25 plants per infection and replicate.

Figure 3. Phyllody caused by *S. reilianum* infection in female and male inflorescences of *Zea mays* ‘Gaspe Flint’.

(A) Morphology of female inflorescences of *S. reilianum*-infected (leafy ear, middle, and eary ear, right), and healthy plants (left). Bars = 1 cm.

(B) Morphology of male inflorescences of *S. reilianum*-infected (phyllodied tassel, right), and healthy plants (left). Bars = 1 cm.

(C) Symptom distribution of eary and leafy ears. Eary or leafy morphology could cover more (>50%) or less (<50%) than half of the inflorescence. Error bars represent standard deviation of three independent experiments with more than 25 plants each.

Figure 4. Spikelet development of healthy and *S. reilianum*-colonized leafy ears of *Zea mays* ‘Gaspe Flint’.

(A) A healthy ear spikelet. Bar = 2 mm.

(B) Longitudinal section of a young healthy ear spikelet showing upper floret (uf) with developing floral organs and the aborted lower floret (lf). Bar = 1 mm.

(C) Developmental stages of the leafy spikelet. The leafy spikelet first elongates, then a silk-like protrusion emerges. The protrusion elongates and thickens, and gives rise to an onion leaf-like structure. Bar = 5 mm.
Manually dissected floral structures of a leafy spikelet. Vegetative structures were formed at positions of all floral organs, except at stamen positions in the lower floret, indicating loss of organ identity. Tubular structures were formed at the position of the fused carpels, which infrequently enclosed a leafy and a needle-like structure. Bar = 5 mm.

Floral organs forming in the healthy florets (A, B) are abbreviated by si, silk, gl, glume, le, lemma, lo, lodicules, o, ovule, ca, carpel, st, stamen, and pl, palea. In phyllodied spikelets (D), these abbreviations indicate the position at which vegetative structures appeared.

Figure 5. Loss of meristem and organ identity in spikelets of eary ears and phyllodied tassels caused by *S. reilianum* infection of *Zea mays* 'Gaspe Flint'.

(A) Developmental stages of eary spikelets. Eary spikelet development starts with spikelet elongation. Elongation continues but no silk emerges, and finally two ear like structures appear that correspond to the upper and lower floret. On the right, the surrounding husk-like leaves have been partially removed to show a new developing inflorescence (arrowhead) that also bears fungal sori (star). Bars = 5 mm.

(B) Manually dissected floral whorls of the eary spikelet. All the floral organs in the upper and lower floret including the two carpels that normally form the silk, were replaced by husk leaf-like structures. The most inner whorl that normally gives rise to the ovule was transformed into a new inflorescence (arrows and inset). Bar = 5 mm.

(C) Spikelet developmental stages of phyllodied tassels. Bars = 5 mm.

(D) Closed (top) and open (bottom) healthy spikelets of a tassel. Bars = 5 mm.

(E) Manually dissected floral whorls of the upper floret of a spikelet of a phyllodied tassel spikelet. All floral organs were elongated and transformed into husk leaf-like structures, except the most inner whorl, which developed a new inflorescence (arrow). Bar = 5 mm.
Floral organs forming in the healthy florets (D) are abbreviated by gl, glume, le, lemma, lo, lodicules, o, ovule, ca, carpel, st, stamen, and pl, palea. In phyllodied spikelets (B, E), these abbreviations indicate the position at which vegetative structures or new inflorescences appeared.

Figure 6. Loss of meristem determinacy in spikelets of eary ears and phyllodied tassels of *S. reilianum*-infected *Zea mays* ‘Gaspe Flint’.

(A) Longitudinal section of an eary spikelet showing development of new inflorescences in the upper and lower florets. Bar = 1 mm.

(B) Magnification of the part boxed in (A) showing development of an inflorescence meristem instead of a spikelet meristem. Bar = 200 µm.

(C) Longitudinal section of an eary spikelet showing massive hyphal growth of *S. reilianum* (black, white star) in the newly formed inflorescence. Arrows highlight non-colonized vegetative tissues. Fungal hyphae were stained with Chlorazole Black E. Bar = 500 µm.

(D) Tassel inflorescence of a healthy plant showing development of a branched inflorescence. Bar = 500 µm.

(E) Tassel-like inflorescence formed in the center of an infected phyllodied tassel floret. Bar = 500 µm.

(F) Longitudinal section of a healthy tassel inflorescence showing development of spikelet pairs (arrows). Bar = 500 µm.

(G) Longitudinal section of a newly formed tassel-like inflorescence from a phyllodied tassel floret of an infected plant showing development of spikelet pairs (arrows). Branches of the newly formed tassel-like inflorescence are enclosed within leafy structures (*). Bar = 500 µm.

(H) Magnification of the part boxed in (F) showing development of floral organs. Bar = 200 µm. gl, glume; le, lemma; lo, lodicules; st, stamens; pl, palea.
Magnification of the part boxed in (G) showing development of an inflorescence meristem instead of a floret meristem. Bar = 200 µm.

Sections were stained with O-Safranin-Fast Green staining.

Figure 7. Detection of reactive oxygen species (ROS) in healthy and *S. reilianum*-infected female inflorescences of *Zea mays* ‘Gaspe Flint’. ROS were stained and visualized by exposure to 3,3′-Diaminobenzidine (DAB).

(A) DAB oxidization as a measure of ROS production in the supernatant of DAB-stained sections of female inflorescences. Error bars correspond to the standard deviation of six independent measurements.

(B) Sections of healthy ears (left) and *S. reilianum*-colonized ears (right) after staining with DAB. Bar = 2 mm.

(C) ROS accumulation (brown color) in sections of an ear spikelt (left) and around fungal hyphae (right). Bars = 100 µm.

Figure 8. Hypothetical model of changes in inflorescence and branching architectures of maize induced by *S. reilianum*.

Fungal colonization leads to ROS and auxin accumulation in the inflorescence. Possibly, elevated ROS or auxin levels in the *S. reilianum*-infected ears promote outgrowth of the subapical inflorescence meristems leading to loss of apical dominance and consequently a change in branching architecture. Additionally, loss of organ identity triggered by *S. reilianum* could be the result of an altered expression of the A-, B-, C-, D- and E-class genes. Altering expression of the ABCDE regulators could be the result of a direct regulation by fungal secreted proteins, or of an indirect regulation by ROS and/or auxin. Alternatively, increased accumulation of auxin and ROS could be the result of modulation of the ABCDE regulators. *S. reilianum* could trigger loss of meristem identity and determinacy (dashed arrow), if it reached the floral meristem before stem cells terminate into an ovule.
Black arrows indicate up- or down-regulation of ABCDE transcription factors. Lemma (le), palea (pl), lodicule (le), stamen (st), carpel (ca), ovule (ov).
Table 1. Functional Classification and Approximate Tissue Gene Expression Pattern of Maize Genes with Altered Expression in *S. reilianum*-Infected Ears.

<table>
<thead>
<tr>
<th>Accession</th>
<th>Fold change(^a)</th>
<th>Annotation</th>
<th>Approximate gene expression pattern(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biotic stress</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF244689.2</td>
<td>12.3</td>
<td>glutathione S-transferase GST 24</td>
<td>ovary</td>
</tr>
<tr>
<td>BM380003</td>
<td>10.4</td>
<td>glutathione S-transferase GST 31</td>
<td>root; ovary</td>
</tr>
<tr>
<td>U12679.1</td>
<td>6.0</td>
<td>glutathione S-transferase IV (GSTIV)</td>
<td>silk; root; ovary; ear</td>
</tr>
<tr>
<td>BM381077</td>
<td>4.9</td>
<td>glutathione S-transferase GSTU6</td>
<td>shoot</td>
</tr>
<tr>
<td>CF626259</td>
<td>4.7</td>
<td>glutathione S-transferase GST 25</td>
<td>endosperm</td>
</tr>
<tr>
<td>AF244684.1</td>
<td>-3.8</td>
<td>glutathione S-transferase GST 19</td>
<td>ovary; ear; endosperm</td>
</tr>
<tr>
<td>BM332131</td>
<td>5.3</td>
<td>cytochrome P450 monoxygenase</td>
<td>aerial organs; root; embryo</td>
</tr>
<tr>
<td>BM382553</td>
<td>3.9</td>
<td>similar to cytochrome P450</td>
<td>ovary; shoot</td>
</tr>
<tr>
<td>BU050860</td>
<td>4.5</td>
<td>similar to putative peroxidase</td>
<td>ovary; ear</td>
</tr>
<tr>
<td>AY107230.1</td>
<td>3.2</td>
<td>similar to peroxidase</td>
<td>silk; ovary; glume</td>
</tr>
<tr>
<td>BG874182</td>
<td>-6.0</td>
<td>putative peroxidase</td>
<td>root</td>
</tr>
<tr>
<td>BG842197</td>
<td>-5.4</td>
<td>similar to putative peroxidase</td>
<td>root</td>
</tr>
<tr>
<td>CF629008</td>
<td>-5.1</td>
<td>peroxidase 1</td>
<td>root</td>
</tr>
<tr>
<td>AW424608</td>
<td>-4.3</td>
<td>peroxidase 1</td>
<td>endosperm</td>
</tr>
<tr>
<td>BM381423</td>
<td>-3.3</td>
<td>similar to putative peroxidase</td>
<td>endosperm; tassel</td>
</tr>
<tr>
<td>CF014750</td>
<td>48.3</td>
<td>putative sesquiterpene cyclase</td>
<td>silk; glume</td>
</tr>
<tr>
<td>BM379420</td>
<td>22.1</td>
<td>pathogenesis-related protein 10</td>
<td>endosperm; meristem</td>
</tr>
<tr>
<td>BM351351</td>
<td>15.3</td>
<td>pathogenesis related protein-1</td>
<td>leaf</td>
</tr>
<tr>
<td>BM379802</td>
<td>11.5</td>
<td>putative serine type endopeptidase inhibitor</td>
<td>ovary; root</td>
</tr>
<tr>
<td>BM079805</td>
<td>5.2</td>
<td>Ustilago maydis induced 1</td>
<td>silk</td>
</tr>
<tr>
<td>BM379606</td>
<td>4.5</td>
<td>polygalacturonase inhibitor</td>
<td>sheath; ovary</td>
</tr>
<tr>
<td>BM348442</td>
<td>4.1</td>
<td>similar to glycosyl hydrolase family 17 protein</td>
<td>ovary; endosperm</td>
</tr>
<tr>
<td>CF649483</td>
<td>4.0</td>
<td>O-methyltransferase ZRP4</td>
<td>silk; ear; meristem</td>
</tr>
<tr>
<td>BM331999</td>
<td>3.5</td>
<td>xylanase inhibitor protein 1</td>
<td>aleurone; ovary; root</td>
</tr>
<tr>
<td>AW330894</td>
<td>-4.7</td>
<td>lichenase-2</td>
<td>glume; leaf; ovary</td>
</tr>
<tr>
<td>AI834666</td>
<td>-3.9</td>
<td>protease inhibitor/seed storage/LTP family protein</td>
<td>tassel; ear; pollen; endosperm; meristem</td>
</tr>
<tr>
<td>BM074215</td>
<td>-3.9</td>
<td>protease inhibitor/seed storage/LTP family protein</td>
<td>shoot; meristem</td>
</tr>
<tr>
<td>AW355997</td>
<td>-3.2</td>
<td>elicitor-responsive protein 3</td>
<td>ovary; root</td>
</tr>
<tr>
<td>Transcription factors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U31522.1</td>
<td>-5.5</td>
<td>Zea mays MADS 1 (ZMM1)</td>
<td>pedicel; pericarp; ear; embryo; ovary; tassel</td>
</tr>
<tr>
<td>U31521.1</td>
<td>-4.1</td>
<td>Zea AGAMOUS2 (ZAG2)</td>
<td>pedicel; pericarp; ovary; ear; endosperm</td>
</tr>
<tr>
<td>AW055920</td>
<td>-3.7</td>
<td>MADS box protein 29 (ZMM29)</td>
<td>ear; silk; pedicel; pericarp; pollen; shoot</td>
</tr>
<tr>
<td>L46397.1(^*)</td>
<td>-2.6(^*)</td>
<td>Zea AGAMOUS3 (ZAG3)</td>
<td>pedicel; ear; pericarp</td>
</tr>
<tr>
<td>L18924.1(^*)</td>
<td>-2.3(^*)</td>
<td>Zea AGAMOUS1 (ZAG1)</td>
<td>pericarp; ear</td>
</tr>
<tr>
<td>CF348980</td>
<td>3.9</td>
<td>AP2 domain containing protein</td>
<td>pedicel; ovary</td>
</tr>
<tr>
<td>CF637428</td>
<td>4.8</td>
<td>similar to AP2 domain-containing protein (AP28)</td>
<td>unknown</td>
</tr>
<tr>
<td>AI629804</td>
<td>5.4</td>
<td>MYB-related protein Hv33</td>
<td>aerial organs; meristem</td>
</tr>
<tr>
<td>BM075809</td>
<td>4.0</td>
<td>MYB domain protein 43</td>
<td>mixed tissues</td>
</tr>
<tr>
<td>AF099413.1</td>
<td>3.7</td>
<td>MYB-domain protein</td>
<td>unknown</td>
</tr>
<tr>
<td>AF099391.1</td>
<td>3.3</td>
<td>MYB domain transcription factor family</td>
<td>mixed tissues</td>
</tr>
<tr>
<td>CF045441</td>
<td>-3.8</td>
<td>NAC domain transcription factor family</td>
<td>endosperm</td>
</tr>
<tr>
<td>AW352507</td>
<td>-3.6</td>
<td>similar to vascular-related NAC-domain protein 7</td>
<td>leaf</td>
</tr>
<tr>
<td>AI670293</td>
<td>-3.3</td>
<td>NAC domain-containing protein</td>
<td>mixed tissues</td>
</tr>
<tr>
<td>CO533291</td>
<td>3.7</td>
<td>C2H2 zinc finger family</td>
<td>mixed tissues</td>
</tr>
<tr>
<td>Accession</td>
<td>Fold change</td>
<td>Annotation</td>
<td>Approximate gene expression pattern</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>BM380514</td>
<td>5.1</td>
<td>basic helix-loop-helix (bHLH) family protein</td>
<td>sheath; meristem</td>
</tr>
<tr>
<td>BG842397</td>
<td>4.5</td>
<td>nuclear transcription factor Y</td>
<td>meristem; embryo; shoot</td>
</tr>
<tr>
<td>BM999944</td>
<td>7.5</td>
<td>1-cys peroxiredoxin antioxidant</td>
<td>aleurone; embryo; endosperm</td>
</tr>
<tr>
<td>BM40976</td>
<td>5.2</td>
<td>1-cys peroxiredoxin antioxidant</td>
<td>endosperm</td>
</tr>
<tr>
<td>BM080758</td>
<td>4.9</td>
<td>similar to nodulin MtN3 family protein</td>
<td>root; aerial organs; meristem</td>
</tr>
<tr>
<td>BM338644</td>
<td>3.4</td>
<td>embryonic abundant protein</td>
<td>pollen; shoot</td>
</tr>
<tr>
<td>BS939573</td>
<td>6.3</td>
<td>meiosis 5</td>
<td>aerial organs; meristem</td>
</tr>
<tr>
<td>AF322177.1</td>
<td>3.6</td>
<td>beta-expansin 4 (EXP4)</td>
<td>aerial organ; meristem</td>
</tr>
<tr>
<td>AF322180.1</td>
<td>-3.9</td>
<td>beta-expansin 7 (EXP7)</td>
<td>mixed tissues; root; silk</td>
</tr>
<tr>
<td>BM105217</td>
<td>-9.9</td>
<td>vegetative cell wall protein gp1</td>
<td>root</td>
</tr>
<tr>
<td>CK30036</td>
<td>-4.0</td>
<td>vegetative cell wall protein gp1</td>
<td>root; silk</td>
</tr>
<tr>
<td>CK369379</td>
<td>-4.0</td>
<td>L-ascorbate oxidase precursor</td>
<td>mixed tissues; root; silk</td>
</tr>
<tr>
<td>CK982611</td>
<td>-4.1</td>
<td>late embryogenesis abundant protein</td>
<td>root</td>
</tr>
<tr>
<td>AM1098450.1</td>
<td>-3.9</td>
<td>lower-specific gamma-thionin</td>
<td>mixed tissues</td>
</tr>
<tr>
<td>CD946261</td>
<td>-3.3</td>
<td>phosphatidylethanolamine-binding proteins (ZCN1)</td>
<td>endosperm</td>
</tr>
<tr>
<td>AM254104.1</td>
<td>7.7</td>
<td>tryptophan synthase alpha subunit</td>
<td>meristem; pericarp; tassel</td>
</tr>
<tr>
<td>CF650494</td>
<td>5.2</td>
<td>similar to tryptophan synthase alpha subunit</td>
<td>root</td>
</tr>
<tr>
<td>CO503600</td>
<td>3.8</td>
<td>IAA-amino acid conjugate hydrolase ILR1-like 4</td>
<td>pollen</td>
</tr>
<tr>
<td>CK347988</td>
<td>-3.3</td>
<td>L-tryptophan-2-oxoglutarate aminotransferase</td>
<td>endosperm</td>
</tr>
<tr>
<td>BM339600</td>
<td>4.1</td>
<td>SAUR36 - auxin-responsive SAUR family member</td>
<td>meristem; aerial organs</td>
</tr>
<tr>
<td>BM379658</td>
<td>3.2</td>
<td>SAUR55 - auxin-responsive SAUR family member</td>
<td>mixed tissues</td>
</tr>
<tr>
<td>AM562491.1</td>
<td>11.5</td>
<td>kaurene synthase2</td>
<td>leaf</td>
</tr>
<tr>
<td>CF028197</td>
<td>3.2</td>
<td>gibberellin 20 oxidase 2</td>
<td>silk; leaf</td>
</tr>
<tr>
<td>AM105651.1</td>
<td>-3.4</td>
<td>gibberellin 20-oxidase (GAO20)</td>
<td>meristem; pericarp; pollen</td>
</tr>
<tr>
<td>CN845512</td>
<td>-3.8</td>
<td>cytokinin-O-glucosyltransferase 2</td>
<td>ovary; root; meristem</td>
</tr>
<tr>
<td>CF650678</td>
<td>-4.7</td>
<td>transducin family protein</td>
<td>ovary; root; meristem; endosperm; shoot</td>
</tr>
<tr>
<td>BG319707</td>
<td>-4.3</td>
<td>protein phosphatase 2C</td>
<td>pericarp; ear; ovary; endosperm; meristem</td>
</tr>
<tr>
<td>AM105086.1</td>
<td>-3.8</td>
<td>phosphatase</td>
<td>ovary; tassel; shoot</td>
</tr>
<tr>
<td>D87045.1</td>
<td>-3.4</td>
<td>protein kinase</td>
<td>ear</td>
</tr>
<tr>
<td>CF028241</td>
<td>6.2</td>
<td>brassinoesteroid insensitive 1-associated receptor</td>
<td>leaf; root</td>
</tr>
<tr>
<td>BS928747</td>
<td>4.1</td>
<td>protein serine/threonine phosphatase</td>
<td>pollen</td>
</tr>
</tbody>
</table>

*Genes have an adjusted p-value of <0.05, except L46397.1 and L18924.1, which have adjusted p-values of 0.18 and 0.38, respectively.

*Estimated gene expression patterns obtained from the UniGene data base at NCBI, which were inferred from EST counts and the cDNA library sources (as reported by sequence submitters at NCBI). Libraries known to be normalized, subtracted, or otherwise biased had been removed. Tissues or organs are ordered according to their potential to express the gene.
Figure 1. Morphological stages of *S. reilianum* outside, on and in *Zea mays* ‘Gaspe Flint’.

(A) Axenically grown haploid sporidia of *S. reilianum*. Bar = 15 µm.

(B) On the plant surface, dikaryotic hyphae of *S. reilianum* form appressoria for plant penetration at one day after infection. An appressorium (arrowhead) is visualized here by fluorescence microscopy after calcofluor staining. Bar = 15 µm.

(C) Appressoria of *S. reilianum* penetrate the leaf surface. From the appressorium (arrowhead, left panel) a hypha penetrates the underlying epidermal tissue (arrows, right panel). Pictures in the left and right panels are different focal planes visualized by bright field microscopy after staining with Chlorazole Black E. Bar = 10 µm.

(D) In the plant leaf, fungal hyphae proliferate along leaf vascular bundles. Z-stack of a WGA-Alexaflour (green, fungal hyphae) and Propidium Iodide (red, plant cells) stained samples visualized by confocal microscopy. Bar = 300 µm.

(E) A close up of fungal hyphae colonizing bundle sheath cells. Bar = 50 µm.

(F) In the nodes of the plant, fungal hyphae (green) surround the plant vascular bundles (red). A cross section stained with WGA-Alexaflour and Propidium Iodide was visualized by confocal microscopy. Bar = 500 µm.

(G) Spores of *S. reilianum* forming on maize ear (left) and tassel (right).
Figure 2. Effect of *S. reilianum* infection on ear number of *Zea mays* ‘Gaspe Flint’.

(A) *S. reilianum*-infected plants (right) show a higher ear number than mock-infected plants (left). Each pot contains 4 plants.

(B) In mock-infected plants (left), ears form at apical points of a side branch. In infected plants (right), additional secondary ears (arrowheads) develop on subapical side branches of an ear-bearing side branch.

(C) Quantification of the ear number per plant. Error bars represent SEM of three independent experiments with 23±2 plants per infection and replicate. The difference is significant (p-value = 0.01).

(D) *S. reilianum*-infected plants significantly (*, p-value = 0.05) develop more ears per branch at the 2nd, 3rd, and 4th node. The 2nd node was defined as the upmost node with brace roots, and counting was towards the top. Error bars represent SEM of three independent experiments with more than 25 plants per infection and replicate.
Figure 3. Phyllody caused by *S. reilianum* infection in female and male inflorescences of *Zea mays* 'Gaspe Flint'.

(A) Morphology of female inflorescences of *S. reilianum*-infected (leafy ear, middle, and eary ear, right), and healthy plants (left). Bars = 1 cm.

(B) Morphology of male inflorescences of *S. reilianum*-infected (phyllodied tassel, right), and healthy plants (left). Bars = 1 cm.

(C) Symptom distribution of eary and leafy ears. Eary or leafy morphology could cover more (>50%) or less (<50%) than half of the inflorescence. Error bars represent standard deviation of three independent experiments with more than 25 plants each.
Figure 4. Spikelet development of healthy and *S. reilianum*-colonized leafy ears of *Zea mays* ‘Gaspe Flint’.

(A) A healthy ear spikelet. Bar = 2 mm.

(B) Longitudinal section of a young healthy ear spikelet showing upper floret (uf) with developing floral organs and the aborted lower floret (lf). Bar = 1 mm.

(C) Developmental stages of the leafy spikelet. The leafy spikelet first elongates, then a silk-like protrusion emerges. The protrusion elongates and thickens, and gives rise to an onion leaf-like structure. Bar = 5 mm.

(D) Manually dissected floral structures of a leafy spikelet. Vegetative structures were formed at positions of all floral organs, except at stamen positions in the lower floret, indicating loss of organ identity. Tubular structures were formed at the position of the fused carpels, which infrequently enclosed a leafy and a needle-like structure. Bar = 5 mm.

Floral organs forming in the healthy florets (A, B) are abbreviated by si, silk, gl, glume, le, lemma, lo, lodicules, o, ovule, ca, carpel, st, stamen, and pl, palea. In phyllodied spikelets (D), these abbreviations indicate the position at which vegetative structures appeared.
Figure 5. Loss of meristem and organ identity in spikelets of eary ears and phyllodied tassels caused by *S. reilianum* infection of *Zea mays* ‘Gaspe Flint’.

(A) Developmental stages of eary spikelets. Eary spikelet development starts with spikelet elongation. Elongation continues but no silk emerges, and finally two ear like structures appear that correspond to the upper and lower floret. On the right, the surrounding husk-like leaves have been partially removed to show a new developing inflorescence (arrowhead) that also bears fungal sori (star). Bars = 5 mm.

(B) Manually dissected floral whorls of the eary spikelet. All the floral organs in the upper and lower floret including the two carpels that normally form the silk, were replaced by husk leaf-like structures. The most inner whorl that normally gives rise to the ovule was transformed into a new inflorescence (arrows and inset). Bar = 5 mm.

(C) Spikelet developmental stages of phyllodied tassels. Bars = 5 mm.

(D) Closed (top) and open (bottom) healthy spikelets of a tassel. Bars = 5 mm.

(E) Manually dissected floral whorls of the upper floret of a phylloplied spikelet. All floral organs were elongated and transformed into husk leaf-like structures, except the most inner whorl, which developed a new inflorescence (arrow). Bar = 5 mm. Floral organs forming in the healthy florets (D) are abbreviated by gl, glume, le, lemma, lo, lodicules, o, ovule, ca, carpel, st, stamen, and pl, palea. In phyllodied spikelets (B, E), these abbreviations indicate the position at which vegetative structures or new inflorescences appeared.
Figure 6. Loss of meristem determinacy in spikelets of early ears and phyllodied tassels of *S. reilianum*-infected *Zea mays* ‘Gaspe Flint’.

(A) Longitudinal section of an early spikelet showing development of new inflorescences in the upper and lower florets. Bar = 1 mm.

(B) Magnification of the part boxed in (A) showing development of an inflorescence meristem instead of a spikelet meristem. Bar = 200 µm.

(C) Longitudinal section of an early spikelet showing massive hyphal growth of *S. reilianum* (black, white star) in the newly formed inflorescence. Arrows highlight non-colonized vegetative tissues. Fungal hyphae were stained with Chlorazole Black E. Bar = 500 µm.

(D) Tassel inflorescence of a healthy plant showing development of a branched inflorescence. Bar = 500 µm.

(E) Tassel-like inflorescence formed in the center of an infected phyllodied tassel floret. Bar = 500 µm.

(F) Longitudinal section of a healthy tassel inflorescence showing development of spikelet pairs (arrows). Bar = 500 µm.

(G) Longitudinal section of a newly formed tassel-like inflorescence from a phyllodied tassel floret of an infected plant showing development of spikelet pairs (arrows). Branches of the newly formed tassel-like inflorescence are enclosed within leafy structures (*). Bar = 500 µm.

(H) Magnification of the part boxed in (F) showing development of floral organs. Bar = 200 µm. gl, glume; le, lemma; lo, lodicules; st, stamens; pl, palea.

(I) Magnification of the part boxed in (G) showing development of an inflorescence meristem instead of a floret meristem. Bar = 200 µm.
Figure 7. Detection of reactive oxygen species (ROS) in healthy and *S. reilianum*-infected female inflorescences of *Zea mays* ‘Gaspe Flint’. ROS were stained and visualized by exposure to 3,3'-Diaminobenzidine (DAB).

(A) DAB oxidization as a measure of ROS production in the supernatant of DAB-stained sections of female inflorescences. Error bars correspond to the standard deviation of six independent measurements.

(B) Sections of healthy ears (left) and *S. reilianum*-colonized ears (right) after staining with DAB. Bar = 2 mm.

(C) ROS accumulation (brown color) in sections of an eary spikelet (left) and around fungal hyphae (right). Bars = 100 µm.
Figure 8. Hypothetical model of changes in inflorescence and branching architectures of maize induced by *S. reilianum*.

Fungal colonization leads to ROS and auxin accumulation in the inflorescence. Possibly, increased auxin in the *S. reilianum*-infected ears promotes outgrowth of the subapical inflorescence meristems leading to loss of apical dominance and consequently a change in branching architecture. Additionally, loss of organ identity triggered by *S. reilianum* could be the result of an altered expression of the A-, B-, C-, D- and E-class genes. Altering expression of the ABCDE regulators could be the result of a direct regulation by fungal secreted proteins, or of an indirect regulation by auxin and/or ROS. Alternatively, increased accumulation of auxin and ROS could be the result of modulation of the ABCDE regulators. *S. reilianum* could trigger loss of meristem identity and determinacy (dashed arrow), if it reached the floral meristem before stem cells terminate into an ovule.

Black arrows indicate up- or down-regulation of ABCDE transcription factors. Lemma (le), palea (pl), lodicule (le), stamen (st), carpel (ca), ovule (ov).