Subclassification and Biochemical Analysis
of Plant Papain-like Cysteine Proteases displays
Subfamily-specific Characteristics

Kerstin H. Richau1,*, Farnusch Kaschani1,*, Martijn Verdoes2,6, Twinkal C. Pansuriya1,
Sherry Niessen3, Kurt Stüber5, Tom Colby4, Hermen S. Overkleeft6, Matthew Bogyo2
and Renier A. L. Van der Hoorn1

* Equal contributions

1 The Plant Chemetics laboratory, Chemical Genomics Centre of the Max Planck
Society, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10
50829 Cologne, Germany
2 Department of Pathology, Stanford University School of Medicine, 300 Pasteur
Drive, Stanford, 94305 California, USA
3 The Center of Physiological Proteomics, The Scripps Research Institute, La Jolla,
92037 California, USA
4 Mass Spectrometry Group, Max Planck Institute for Plant Breeding Research, Carl-
von-Linné Weg 10, 50829 Cologne, Germany
5 Max Planck Genome Center, Max Planck Institute for Plant Breeding Research,
Carl-von-Linne Weg 10, 50829 Cologne, Germany
6 Leiden Institute of Chemistry and Netherlands Proteomics Centre, Leiden
University, Gorlaeus Laboratories, 2333 CC Leiden, The Netherlands.

Running title: PLCP subclassification

Keywords:
cysteine protease; cathepsin; aleurain; protease activity profiling; papain

Corresponding author: hoorn@mpipz.mpg.de

Co-authors: richau@mpipz.mpg.de, farnusch.kaschani@uni-due.de, mverdoes@stanford.edu,
twinkal.pansuriya@gmail.com, niessse@scripps.edu, stueber@mpiz-koeln.mpg.de,
colby@mpipz.mpg.de, h.s.overkleeft@lic.leidenuniv.nl, mbogyo@stanford.edu
SUMMARY

Papain-like Cys proteases (PLCPs) are a large class of proteolytic enzymes associated with development, immunity and senescence. Although many properties have been described for individual proteases, the distribution of these characteristics has not been studied collectively. Here, we analyzed 723 plant PLCPs and classify them into nine subfamilies that are present throughout the plant kingdom. Analysis of these subfamilies revealed previously unreported distinct subfamily-specific functional and structural characteristics. For example, the NPIR and KDEL localization signals are distinctive for subfamilies and the C-terminal granulin domain occurs in two PLCP subfamilies, in which some individual members probably evolved by deletion of the granulin domains. We also discovered a conserved double cysteine in the catalytic site of SAG12-like proteases and two subfamily-specific disulphides in RD19A-like proteases. Protease activity profiling of representatives of the PLCP subfamilies using novel fluorescent probes revealed striking polymorphic labeling profiles and remarkably distinct pH-dependency. Competition assays with peptide-epoxide scanning libraries revealed common and unique inhibitory fingerprints. Finally, we expand the detection of PLCPs by identifying common and organ-specific protease activities and identify previously undetected proteases upon labeling with cell-penetrating probes in vivo. This study provides the plant protease research community with tools for further functional annotation of plant PLCPs.
INTRODUCTION

Proteases determine the fate of all proteins. Proteolysis is not only needed to cycle proteins back into amino acids, but also to activate and inactivate proteins by processing. By doing so, proteases are involved in almost any biological phenomenon, ranging from cell cycle to programmed cell death and immunity (Van der Hoorn et al., 2008). Plant genomes encode for about 500-800 proteases (Garcia-Lorenzo et al., 2006; Van der Hoorn et al., 2008). The vast majority of plant proteases have unknown functions. An important limitation in the annotation of plant protease functions is the fact that many protease families are rather large and presumed to contain proteases that act redundantly, making it difficult to study protease functions using single gene knockout. To annotate functions to proteases of large families, we need to subclassify these families into smaller units that can be studied further e.g. using reverse genetics.

Here, we focus on a functional subclassification of plant papain-like Cys proteases (PLCPs). PLCPs belong to clan CA, family C1A in the Merops protease database (Rawlings et al., 2010). The global protein structure of PLCPs is a papain-like fold of two domains; an alpha-helix and a beta sheet domain (Turk et al., 2001). The two domains (lobes) are linked to each other in a way that a deep cleft is formed which acts as the substrate binding groove, and contains the catalytic triad Cys-His-Asn. Substrate specificity is accomplished by the substrate binding pockets along the substrate binding groove that bind amino acid side chains at position two and three before the cleavage site (P3 and P2 positions) (Turk et al., 2001).

PLCPs are very stable enzymes and often found in proteolytically harsh environments such as the apoplast, the vacuole and lysosomes. To target these locations, PLCPs are encoded as preproproteins and carry various targeting signals. The signal peptide (SP) ensures that the proprotease enters the endomembrane system, whereas the autoinhibitory prodomain prevents premature activation of the protease. The prodomain is proteolytically removed in cis (intramolecular) or in trans (intermolecular) at the destination. Some PLCPs carry a signal for retention in the endoplasmic reticulum (ER) at the C-terminus (KDEL, Than et al., 2004), whereas other PLCPs carry a signal at the N-terminus of the proprotease for vacuolar targeting (NPIR, Ahmed et al., 2000). Some PLCPs also carry a C-terminal granulin-like domain, which shares homology to granulins in animals, which are growth hormones released upon wounding (Bateman and Bennet, 2009). Although these motifs and features have been noted for individual proteases, their distribution within the PLCP super family has not yet been studied.
A first classification of PLCPs was made by Beers and colleagues (2004). Using an assembly of 138 plant PLCPs (including 30 Arabidopsis PLCPs), the proteases were phylogenetically classified into eight subfamilies. This subclassification was supported by conserved positions of introns in the corresponding genes. A similar subfamily structure was found during a subclassification of poplar and Arabidopsis PLCPs (Garcia-Lorenzo et al., 2006) and during comparative genomic analysis of PLCPs in different taxons of the plant kingdom (Martinez & Diaz, 2008). The latter study named plant PLCPs according to their closest animal counterparts: cathepsin-B, -H, -F and L.

Here, we have extended the phylogenetic analysis of plant PLCPs by taking advantage of the extensive number of publicly available sequences. The broad phylogenetic analysis of an increased number of PLCPs allows us to detect conserved features within each subfamily that can be used as classifiers for new plant PLCPs. Furthermore, we study selected representatives of different subfamilies encoded by Arabidopsis to characterize the proteases biochemically using transient expression and protease activity profiling (Van der Hoorn et al., 2004). Finally, we extend the detection of PLCP activities in Arabidopsis using protease activity profiling with new probes on extracts of various organs and in vivo labeling. These tools and observations provide an important framework for the functional classification of plant PLCPs.

RESULTS

Plant PLCPs are phylogenetically divided into nine subfamilies

PLCP sequences were retrieved from NCBI and TIGR by BLAST searches using each of the 138 PLCPs reported by Beers et al. (2004). Redundant sequences, truncated sequences and sequences not having the catalytic motif [SCG][WC][AST][FV] were removed, resulting in a PLCP database of 723 unique PLCP sequences. Phylogenetic analysis of the proprotease domain shows that these PLCPs fall into nine subfamilies, numbered 1-9 (Fig.1A and Supplemental Fig.S1).

This classification is similar to the previous classification (Beers et al., 2004), except that the C1A-1 superfamily with the granulin-containing proteases splits into subfamilies 1 and 4, which is supported by further bioinformatic analysis (see below).

Subfamily 9 contains CatB-like PLCPs and are clearly separated from the other PLCPs. Subfamilies 7 (RD19A-like proteases, also called Cathepsin F-like proteases) and 8 (aleurain-like proteases, also called Cathepsin H-like proteases) are also relatively distinct from the remaining PLCPs. The remaining subfamilies 1-6
are more related to each other, and have also been classified as Cathepsin L-like proteases (Martinez and Diaz, 2008).

Previously studied plant PLCPs can be found in different subfamilies (Fig. 1A, names on the right). These studies include several Arabidopsis PLCPs: RD21A (Yamada et al., 2001); XCP1 and XCP2 (Avci et al., 2008); XBCP3 (Funk et al., 2002), SAG12 (Noh & Amasino, 1999; Otequi et al., 2005); RD19A (Bernoux et al., 2008); AALP (Ahmed et al., 2000; Watanabe et al., 2004) and Cathepsin B-like proteases (CTBs, McLellan et al., 2009). Other studied PLCPs include papain (e.g. Konno et al., 2004); maize Mir1 (Pechan et al., 2000); tomato RCR3, PIP1 and C14 (Krüger et al., 2002; Rooney et al., 2005; Shabab et al., 2008; Van Esse et al., 2008; Kaschani et al., 2010) and bean CysEP (Greenwood et al., 2005).

Representatives of subfamilies 1, 2, and 3 have been crystallized (Fig. 1A, marked with *). These studies concern papain, chymopapain and caricain from papaya (Drenth et al., 1968; Katerlos et al., 1996; Maes et al., 1996); CysEP of castor bean (Than et al., 2004); actinidin of kiwi (Varughese et al., 1992); ervatamin-A of crape jasmine (Ghosh et al., 2007); and EP-B2 of barley (Bethune et al., 2006).

Six subfamilies contain 32-67 PLCPs, whereas subfamilies 1, 6 and 7 are twice as large, having 157, 105 and 125 PLCPs, respectively. The relatively large size of these three subfamilies is corroborated by the larger number of PLCPs encoded by sequenced genomes (Fig. 1B). Each plant species seems to have multiple copies for members of subfamilies 1, 6 and 7. The total number of PLCPs per plant genome is between 20 and 40 genes and nearly each subfamily is represented in sequenced plant species (Fig. 1B). This indicates that plants carry a PLCP repertoire that is conserved throughout angiosperm evolution.

Importantly, also the Arabidopsis genome encodes PLCPs of each subfamily (Fig. 1C). Studies on Arabidopsis PLCPs may therefore provide information that is representative for the different subfamilies. We consequently refer to each of the nine subfamilies with a type-member from Arabidopsis: subfamily 1 (contains RD21A-like proteases); subfamily 2 (CEP1-like); subfamily 3 (XCP2-like); subfamily 4 (XBCP3-like); subfamily 5 (THI1-like); subfamily 6 (SAG12-like); subfamily 7 (RD19A-like); subfamily 8 (AALP-like) and subfamily 9 (CTB3-like) (Fig. 1A, printed larger).

PLCP sequences carry subfamily-specific functional motifs

We next investigated the frequency of functional motifs in each of the nine PLCP subfamilies. Prediction of the signal peptide using SignalP (Emanuelsson et al., 2007) shows that 70-100% of the members of each subfamily carry a predicted signal peptide (Fig. 2A, first column). The protein sequences for the other PLCPs
may not have been complete, carry a signal peptide that is not recognized by
SignalP, or do not have a signal peptide. Nevertheless, this finding indicates that the
vast majority of the members of each PLCP subfamily enter the endomembrane
system. This observation is in agreement with a recent study on the frequent
occurrence of signal peptides of proteases of Arabidopsis and rice (Goulet et al.,
2012).

Subfamilies 1-6 and 8 carry the ERFNIN motif (ExxxRxxxFxxNxxx(I/V)xxxN,
one mismatch allowed) in the prodomain (Fig.2A, Supplemental Fig.S2). This motif
provides the core structure of the auto-inhibitory prodomain and was originally
identified as a plant-specific feature (Karrer et al., 1993). The ERFNIN motif is absent
from cathepsin B-like proteases (subfamily 9), whereas RD19A-like proteases
(subfamily 7, cathepsin F-like) carry a conserved ERFNAQ motif instead of the
ERFNIN motif (Supplemental Fig.S2).

Nearly all PLCPs possess the catalytic triad (Cys-His-Asn, indicating that all
these proteins are functional Cys proteases (Fig.2A, Supplemental Fig.S2).
Exceptions are three highly homologous soybean proteins in subfamily 4 (XBCP3-
like) which carry Gly-His-Asn (GI:1199563, GI:129353 and GI:3097321). These
proteins are the P34 proteins of soybean that cause allergy and have been targeted
for silencing, but their endogenous function is so far unknown (Herman et al., 2003).
Furthermore, Ipomea nil (ipnitc1650) and Oryza sativa Japonica (GI: 13365804)
sequences from subfamily 5 (THI1-like) carry a Ser-His-Asn motif. Their different
phylogenetic origins indicate that these replacements occurred independently. Since
Ser can act as a nucleophile, it might be that these two proteins still have proteolytic
activity.

Subcellular targeting of the subfamilies is predicted by the presence of two
different motifs. First, vacuolar targeting sequence NPIR at the N-terminus of the
prodomain is reported for some PLCP, including AALP, which served as a model
protein for vacuolar targeting (Holwerda et al., 1992; Ahmed et al., 2000).
Interestingly, NPIR is found in over 70% of AALP-like proteases (subfamily 8), but not
in any of the other PLCP subfamilies (Fig.2A, Supplemental Fig.S2). A second
targeting signal is the C-terminal KDEL or HDEL motif, which mediates retrieval of
soluble proteins to the endoplasmic reticulum (ER). This feature has been described
e.g. for bean CysEP (Schmid et al. 1999). Importantly, the C-terminal KDEL or HDEL
occurs in 70% of CEP1-like proteases (subfamily 2), and in none of the other
subfamilies (Fig.2A). The majority of the other 30% of the CEP1-like proteases carry
a C-terminal sequence that is similar: -KDEM, -TDEL, -SDEL, or –KETQ
(Supplemental Fig.S2). These subfamily-specific distributions of targeting signals
have not been reported before and indicate that AALP-like and CEP1-like proteases function in the ER and vacuole, respectively.

The granulin-containing PLCPs

Some of the PLCPs carry a C-terminal extension, consisting of a proline-rich domain, followed by a granulin-like domain. Granulins were originally described in the animal kingdom and are growth hormones that are released upon wounding (Bateman & Bennett, 2009). Granulins are usually encoded as an array of granulin domain (progranulin) that can be processed. The fusion of the granulin domain with a PLCP, however, only occurs in the plant kingdom, and granulin domains without being fused to PLCPs have not been detected in plants.

The plant granulin-containing PLCPs are specific to RD21A-like proteases (subfamily 1) and XBCP3-like proteases (subfamily 4) (Fig. 2A). However, not all PLCPs of these two subfamilies carry a granulin domain. There are two possible scenarios for the polymorphic nature of the granulin domain in these subfamilies. In the loss-of-domain scenario, the granulin-lacking PLCPs evolved from PLCP-granulin fusions by domain deletion. In the gain-of-domain scenario, the PLCP-granulin fusions evolved by domain fusion. Interestingly, when plotted on the phylogenetic trees of the subfamilies, the granulin-lacking proteases are scattered throughout both subfamilies (Fig. 2). This indicates that the granulin polymorphism evolved by the loss-of-domain scenario.

The phylogenetic tree based on the prodomain and protease domains also indicates that the proprotease domains of RD21A-like and XBCP3-like proteases are distinct from each other (Fig. 1A and Fig. 2B). This subdivision is different from the preceding analysis made by Beers and colleagues who placed both subfamilies in superfamily C1A-1 (Beers et al., 2004). To investigate if our subdivision is correct, we performed phylogenetic analysis of the granulin domains only. This analysis shows that the granulin domains fall into two distinct groups: one group contains all granulin domains from RD21A-like proteases (subfamily 1) and the second group contains all granulin domains from XBCP3-like proteases (subfamily 4) (Fig. 2C and Fig. 2D). Thus, the separation of granulin-containing PLCPs into the two subfamilies based on the pro- and protease- domains is supported by phylogenetic separation based on the granulin domain. Furthermore, these data support the loss-of-domain scenario as they indicate that the proprotease domains have coevolved with the granulin domains in two distinct subfamilies.

The granulin domain is circa 60 amino acids long and contains 14 Cys residues in a remarkably conserved pattern (Cx5Cx5CCx7Cx4CCx9CCx5CCx6C).
Alignment with the human Granulin A (hGrnA) reveals the same pattern of Cys residues, but the plant granulins have one additional pair of Cys residues that reside in a region that is absent in hGrnA (Fig.2D). The crystal structure of hGrnA has been resolved by NMR (2jye, Tolkatchev et al., 2008). We modelled the granulin domain of RD21A using 2jye as a template to predict the disulphide bridging in plant granulins. hGrnA folds as series of three pairwise antiparallel β-sheets that are connected by six disulphide bridges (Tolkatchev et al., 2008). The two extra Cys residues in RD21A are in close proximity suggesting that they are making a disulphide bond that stabilizes a plant-specific loop that is absent in hGrnA (Fig.2E, Tolkatchev et al., 2001). This analysis indicates that the disulphide bridging in the plant granulin domains is: 1-3, 2-7, 4-9, 5-6, 8-11, 10-13 and 12-14 (Fig.2D). This intense disulphide bridging probably serves to provide stability to the granulin domain in proteolytic environments.

Structural features are subfamily specific

We further investigated class-specific structural features in the PLCP subfamilies. These structural features are illustrated with a crystal structure of papain (1ppp, Kim et al., 1992), which belongs to XCP2-like PLCPs (subfamily 3) and represents subfamilies 1-8. CTB3-like proteases (subfamily 9) are illustrated with a crystal structure of human cathepsin B (4csb, Turk et al., 1995) (Fig.3A). PLCPs fold in two domains: an α-helix domain (left) and a β-sheet domain (right), forming the substrate binding cleft and the catalytic triad in between (Fig.3A). PLCPs of all subfamilies carry two pairs of highly conserved Cys residues that make disulfide bridges 1 and 2 in the α-helix domain (Fig.3A-C). Cys residues for disulphide bridge 3 are present in all subfamilies, except for CTB3-like proteases (subfamily 9), which lack the first Cys residue, leaving one conserved unpaired Cys residue in the C-terminus (Fig.3A-C). Interestingly, RD19A-like proteases (subfamily 7) carry two distinct extra pairs of highly conserved Cys residues. Modelling of RD19A using papain as template indicates that these four Cys residues make Cys bridges 4 and 5, which stabilize α-helix and β-sheet domains, respectively (Fig.3A-C). Four additional disulfide bridges (Cys bridges 6-9) stabilize the α-helix domain and are highly conserved and unique to CTB3-like proteases (subfamily 9) (Fig.3A-C). Notably, we identified a double cysteine in the catalytic site of SAG12-like proteases (subfamily 6) (Fig.3B). Furthermore, AALP-like proteases (subfamily 8) carry a conserved Cys in the C-terminus of both the prodomain and the protease domain.

We next investigated the location of putative N-glycosylation sites (PGS, with sequence NxS/T). Many PLCPs have one or two PGSs at non-conserved positions.
Three PGSs, however, are conserved at subfamily-specific positions. PGS1 and PGS3 is common for XCP2-like proteases (subfamilies 3) and CTB3-like proteases (subfamily 9), whereas PGS2 occurs in RD19A- and AALP-like proteases (subfamilies 7 and 8, respectively) (Fig.3A and Fig.3B). All PGSs are in the α-helix domain, but at different positions. The positions of PGS1 and PGS3 are different when plotted onto the crystal structures of papain and cathepsin B, respectively (Fig.3A).

Polymorphic labeling profiles for Arabidopsis PLCPs

To characterize the PLCPs biochemically, we selected ten Arabidopsis enzymes as representatives of different subfamilies and cloned them into binary vectors for Agrobacterium tumefaciens-mediated transient overexpression in Nicotiana benthamiana (agroinfiltration, Voinnet et al., 2003; Van der Hoorn et al., 2000). Epitope tags were not included in the constructs since they are frequently degraded in the proteolytic environment created when proteases are overexpressed (data not shown).

To quantitatively display activities of different PLCP isoforms, we designed and synthesised MV201, an activity-based probe that labels the active site Cys residue of PLCPs. MV201 is a fluorescent derivative of PLCP inhibitor E-64, and is similar to the biotinylated activity-based probe DCG-04 (Greenbaum et al., 2000), which has been frequently used to determine PLCP activities in plants (Van der Hoorn et al., 2004; Rooney et al., 2005; Tian et al., 2007; Gilroy et al., 2007; Martinez et al., 2007; Shabab et al., 2008; Van Esse et al., 2008; Song et al., 2009; Lampl et al., 2010; Kaschani et al., 2010). Labeling with the fluorescent MV201 is detected and quantified from protein gels by fluorescent scanning.

Labeling of extracts of agroinfiltrated leaves revealed that all ten tested PLCPs react with MV201 (Fig.4B). Interestingly, the fluorescent signals are highly polymorphic between the different PLCPs (Fig.4B). Single signals were detected only for XCP1 and RDL2 at 30 kDa and SAG12 and AALP at 25 kDa (Fig.4B, lanes 4, 9, 7 and 12, respectively). Two signals were detected for THI1 at 15 kDa, two for CTB3 at 30 and 40 kDa, and two for both RD19A and RD19B at 25 and 30 kDa (Fig.4B, lanes 6, 8, 10 and 11, respectively). A single 30 kDa signal appeared for XCP2 (Supplemental Fig.S3), but a ladder of signals at 30-40 kDa and 50 kDa signals appeared when frozen leaf extracts were used (Fig.4B, lane 5). Labeling of the other PLCPs did not display mobility shifts between fresh extracts or frozen extracts. Three or more signals appeared for RD21A, RD21B and RD21C (Fig.4B, lanes 1-3). Signals in the 40 kDa regions correspond to the granulin-containing...
proteases, and the 25-30 kDa signals are caused by different isoforms of the mature protease domains (Yamada et al., 2001).

PLCP labeling occurs at distinct pH ranges

Since PLCPs act at different locations inside and outside the cell, they are exposed to different microenvironments that differ e.g. in pH. To test if PLCP labeling depends on pH we performed protease activity profiling at different pH and quantified the labeled signals. This analysis revealed distinct differences in pH-dependencies of PLCP labeling (Fig. 5). RD21A, RD21B, RD21C, RDL2 and CTB3 can be labeled at any pH to different degrees, but labeling of the other PLCPs pH sensitive. Labeling of AALP occurs at a narrow, neutral pH range. Labeling of XCP1 and XCP2 also occurs at neutral pH, but the range of labeling is wider. In contrast, SAG12, RD19A and RD19B can only be labeled at acidic pH (pH4-6.5), whereas THI1 labeling increases significantly at basic pH (pH7-10). These distinct pH sensitivities are remarkably different and may reflect that these proteases act at various locations in the cell where their activities are specified by controlled pH.

Inhibitory fingerprinting displays common and unique inhibitor sensitivities

To determine if the PLCPs have distinct sensitivities for inhibitors, we screened a peptide-epoxide library carrying different amino acids at the P2 and P3 positions for their ability to prevent labeling with MV201. Two libraries were synthesized and tested. The P2 library contains fixed amino acids at the P2 position (Fig. 6A), and a mixture of amino acids at the P3 position, whereas the P3 library contained fixed amino acids at the P3 position and a mixture of amino acids at the P2 position (Fig. 6B). All natural amino acids except Cys and Met were included at both the fixed and the mixed positions, and the non-natural nor-isoleucine (n) was included to replace Met. To determine inhibitor specificity, protease-containing extracts were preincubated with the compound mixtures and then labeled with MV201. Fluorescent signals were quantified from protein gels and a heatmap of the inhibition was calculated for the most abundant protease-derived signals (Fig. 6).

The amino acid at the P2 position has a strong effect on the inhibitory ability of the peptide epoxides. Generally, peptide epoxides carrying hydrophobic amino acids (L, I, F, n, W, Y, V) at the P2 position are good inhibitors for most PLCPs, whereas peptide epoxides carrying small or hydrophilic amino acids (A, D, E, K, Q, G, H, P, S, R, T) at the P2 positions are poor inhibitors (Fig. 6A). A few PLCPs (RD21C, XCP1, XCP2 and AALP) make some exceptions to these general rules.
The amino acid at the P3 position also has a strong effect on the inhibitor ability of peptide epoxides, but here the general rules are different. Peptide epoxides carrying various amino acids (N, I, n, T, Y, V, W) are generally good inhibitors, whereas those carrying others (D, E, G, S, L, K, P, F) are generally poor inhibitors (Fig. 6B). Peptide epoxides carrying three of the amino acids (R, A, H) are good inhibitors of RD19As, and poor inhibitors of RD21As.

If a protease has two different isoforms, then the inhibitory profile is generally similar between the two isoforms. For example, intermediate and mature isoforms of RD21A behave similarly for P2 and P3 scanning libraries (Fig. 6), indicating that these isoforms cannot be discriminated using inhibitors. The isoforms are also indistinguishable for RD21B, RD21C, RD19A and RD19B. However, some exceptions are noted for RD19B (P2 library) and RD21C (P3 library).

When inhibitory fingerprints of different proteases within one family are compared, there are both similarities and clear differences. RD21A and RD21B, for example, have similar inhibitory fingerprints, and also RD19A and RD19B behave similar to each other (Fig. 6). The similarity of inhibitory sensitivities of these protease pairs indicates that also the substrate specificity may be similar. Differences between proteases in the same subfamily are also observed. RD21C, for example, behaves different from RD21A/B, and XCP1 is different from XCP2 (Fig. 6). The differences in inhibitor sensitivity indicate that these proteases may have different substrate specificities.

Detection of common and organ-specific PLCP activities.

Protease activity profiling on extracts of various Arabidopsis organs with DCG-04 revealed that PLCP activities can be detected in all organs to different degrees (Fig. 7A). Specific signals are absent in the no-probe-control and upon pre-treatment with PLCP inhibitor E-64. Interestingly, activity profiles seem similar but differ in details between the different organs (Fig. 7A). Root extracts generated signals at 30, 35 and 40 kDa, whereas seed extracts only generated a 25 kDa signal (Fig. 7A, lanes 2 and 5, respectively). Seedling extracts generated doublet signals at 25 and 30 kDa and a single signal at 40 kDa (Fig. 7A, lane 8). Flower extracts generate doublets at 20 and 30 kDa and one signal at 40 kDa (Fig. 7A, lane 11). Extracts from stem generate a strong 30 kDa signal and weaker signals at 25 and 40 kDa (Fig. 7A, lane 14).

We determined the identities of the labeled proteins from root, leaf and flowers by enriching the DCG-04-labeled proteins on streptavidin beads. Biotinylated proteins were separated on protein gels, stained, excised, digested with trypsin and
analyzed by LC-MS/MS. Spectra with high quality scores for being peptides from PLCPs were counted and are summarized in Fig.7B and Supplemental Table S1. We could identify RD21A in root, leaf and flowers (Fig.7B), consistent with the 40 kDa signal seen in the activity profiles (Fig.7A). In contrast, AALP was detected in leaves but not in roots and flowers (Fig.7B), consistent with the absence of a 25 kDa signal from activity profiles from these organs (Fig.7A). Interestingly, the majority of the spectral counts from flowers are from THI1 (Fig.7B). The abundance of this protease may explain the strong 20 kDa signal in the flower activity profile (Fig.7A, lane 11), which is consistent with the size obtained by labeling transiently expressed THI1 (Fig.4B). RD21B and RD21C were detected in roots (Fig.7B) and may explain the 30 and 35 kDa signals in the root activity profiles (Fig.7A).

The identified PLCPs from different organs are consistent with the mRNA levels of PLCPs in different organs (Hruz et al., 2008). For instance, RD21A and AALP are expressed in root, leaf, stem and flower, but not in seed (Fig.7C). This is consistent with the MS data and the presence of 40 and 25 kDa signals in the activity-profiles (Fig.7A and Fig.7B). THI1 is highly expressed in flowers (Fig.7C), hence its identification and the flower-specific 20 kDa signal (Fig.7A and Fig.7B). RD21B and RD21C are highly expressed in roots (Fig.7C), where they were identified by MS (Fig.7B). Thus, the PLCPs that were identified by MS are also highly expressed in the different organs. However, not all highly-expressed proteases were also identified by MS. The expression of RD19A and RD19C, for example, is notably high in all plant tissues yet the corresponding proteases have not been identified in any of the MS experiments, despite the fact that RD19A can react with DCG-04 when overexpressed by agroinfiltration (Fig.4B).

In vivo labeling expands PLCP detection

The MS experiments described above were performed on extracts at chosen labeling conditions (e.g. pH 6). Since the compartmentalization is lost in leaf extracts, it is possible that PLCPs are artificially activated and inactivated. To investigate which PLCPs are active in living tissue, we labeled cell cultures *in vivo* using MV201, which carries an azide minitag (Fig.4A). After labeling, azide-labeled proteins were biotinylated with alkyne-biotin using "click-chemistry" (Kaschani et al., 2009a), and the resulting biotinylated proteases were purified and analyzed by mass spectrometry. Interestingly, besides RD21A, RD21B and AALP, which were also detected after labeling cell culture extracts, we also detected RDL2, RD19A and RD19B (Fig.7D and Supplemental Table S1). Thus, RD19A and RD19B activities can be detected in living tissues, but not in tissue extracts, unless they are...
overexpressed. These data indicate that *in vivo* labeling greatly expands the number of PLCPs that can be detected.

DISCUSSION

Despite the importance of protein degradation, plant PLCPs have not been extensively characterized before. Here, we exploited the large number of publicly available sequences to subclassify plant PLCPs into nine subfamilies, revealing subfamily-specific features. Some features like NPIR, KDEL and ERFNIN were noted earlier, but their distributions in the PLCP superfamily has not been analyzed before. Other features like the double cysteine in the catalytic site of SAG12-like proteases and the additional disulphides in RD19A-like proteases have not been noted before and might be important for the function of these subfamilies. Biochemical analysis of representatives from the different subfamilies shows that these proteases exist in different active isoforms, and have a distinct pH-requirement and show different sensitivities towards inhibitors. Finally, activity profiling on various Arabidopsis organ extracts reveals different PLCP activities and even more PLCPs were detected when profiling was performed *in vivo*. These observations and functional tools are instrumental for further research of the PLCP superfamily.

Classifiers of PLCP subfamilies

We divided the plant PLCP superfamily into nine subfamilies, based on phylogenetic analysis and conserved functional and structural features. The facts that these subfamilies appear in previous studies (Beers et al., 2004); are conserved between poplar and Arabidopsis (Garcia-Lorenzo et al., 2006); and also exist in moss and green algae (Marinez & Diaz, 2008), indicates that this subclassification is valid and has biological relevance. A number of obvious subfamily-specific sequence features can be used as classifiers for newly identified PLCPs (*Table I*). If the PLCP carries an KDEL or HDEL ER-retrieval signal or the NPIR vacuolar targeting signal then it probably belongs to CEP1-like (subfamily 2) or AALP-like (subfamily 8) proteases, respectively. The presence of the double Cys in the catalytic site (CCW) is indicative for SAG12-like proteases (subfamily 6). The presence of the ERFNAQ motif in the prodomain and the presence of two additional disulfide bridges are classifiers for RD19A-like proteases (subfamily 7). The absence of ERFNIN/ERFNAQ motifs in the prodomain, and the presence of a distinct set of six disulfide bridges is indicative for CTB3-like proteases (subfamily 9). Also the presence of conserved putative N-glycosylation sites (PGS1-3) could aid in quick subclassification.
However, not all PLCPs can be classified using these features. Even within each subfamily there are some exceptions for these classifiers. The presence of the granulin domain, for example, would classify the PLCP to RD21A-like (subfamily 1) or XBCP3-like (subfamily 4) proteases, but these families also contain many PLCPs that do not carry a granulin domain. In case none of the classifiers are present in the sequence, a BLAST search to identify the closest PLCP subfamily is needed to classify the PLCP.

Similarities and differences of PLCPs with animal cathepsins

Some of the features described above are absent in the type-members of the C1A family, the human cathepsins. Human cathepsin F (Q9UBX1) is closest to RD19A-like proteases (subfamily 7), and shares a signal peptide, ERFNAQ motif, catalytic residues, but lacks the extra disulfide bridges 4 + 5 and conserved PGS2. Human cathapsin H (P09668) is most closely related with AALP-like proteases (subfamily 8), and shares a signal peptide, ERFNIN motif, two unpaired Cys residues and PGS2, but lacks the NPIR vacuolar targeting signal. Furthermore, human cathepsin B (P07858) is related to CTB3-like proteases (subfamily 9) and shares the signal peptide, a prodomain lacking an ERFNIN motif, catalytic residues, all Cys residues, but lacks conserved PGS3. Finally, human cathepsin L (P07711) is closest to subfamilies 1-6, and contains a signal peptide, ERFNIN motif, catalytic residues and conserved cysteines, and lacks a granulin domain, ER-retrieval motif, or conserved PGS1. In conclusion, although the similarities with human cathepsins are high, plant PLCPs have distinct targeting signals and conserved glycosylation sites that are absent in human cathepsins.

Putative biological roles of subfamily-specific features

The subfamily-specific features are of biological relevance. The importance of NPIR and KDEL/HDEL localization signals is evident, since they target the proteases to specific cellular locations. We speculate that the presence of the additional Cys residue in the catalytic site of SAG12-like proteases may also have functional relevance. The extra Cys may act as alternative catalytic residue or redox sensor (Weerapana et al., 2010). It is interesting to note that also the defence-related protease RCR3 and PIP1 of tomato belong to the SAG12 subfamily and carry a CCW motif. The additional disulfide bridges in RD19A-like protease and CTB3-like proteases may increase their stability in a proteolytic environment. This would implicate that the microenvironment of these proteases might be different from the other proteases.
PLCPs have distinct biochemical properties

Our biochemical studies reveal that PLCPs exist in multiple active isoforms. The molecular basis and the biological relevance of these isoforms are not clear, but we anticipate that these isoforms also exist under native conditions in Arabidopsis. Different active RD21A isoforms, for example, have been detected in Arabidopsis previously (Yamada et al., 2001).

Labeling of the different PLCPs depends strongly on pH. pH-dependent labeling reflects a property of the protease and not of the probe. Some caution is needed while interpreting these results since the absence of labeling could be caused by protease degradation, even though these proteases are thought to sustain proteolytic environments. The distinct pH-dependency is remarkable and probably reflects the fact that these proteases act in different microenvironments inside the cell. Subfamily-specific biochemical properties are evident from the fact that PLCPs within the family behave similarly (e.g. XCP1/XCP2 and RD19A/RD19B), and PLCPs from different subfamilies have distinct pH-sensitive labeling profiles.

Inhibitory fingerprinting revealed that most PLCPs have common sensitivity for inhibitors carrying certain amino acids at P2 and P3 positions. There are, however, also some differences in inhibitor sensitivity in between PLCPs for these inhibitors. Some of these differences are common to different members of the subfamily, while others may distinguish different members of the same subfamily. Similar observations were made by inhibitory fingerprinting of human cathepsins (Greenbaum et al., 2002). The distinct inhibitor fingerprints give an impression of the differences of the substrate binding sites of the proteases and therefore are of functional relevance. However, this study should be followed up by screening a next generation inhibitor library having fixed P2 and P3 positions to confirm the general observations made here. The specificity of peptide epoxides could significantly increase when both P2 and P3 positions are fixed. These studies may also result in the development of activity-based probes that are more specific for one particular PLCP subfamily.

Detecting more PLCP activities by protease activity profiling

Protease activity profiling only displays a fraction of the 30 PLCPs that are encoded by the Arabidopsis genome. Obviously, many PLCPs are not detected because the corresponding genes are not expressed in the tissues used in these studies. However, some PLCPs are highly expressed in leaf tissue but were not detected by protease activity profiling. RD19A, for example, is highly expressed in many tissues.
yet it was never identified when labeling tissue extracts (Van der Hoorn et al., 2004; Van Esse et al., 2008; this manuscript). Detecting RD19A activity is of particular interest since this protease interacts with the bacterial type-III effector PopP2 and relocates to the nucleus (Bernoux et al., 2008). The detection of RD19A by protease activity profiling on living cells is remarkable and is consistent with previous findings. RD19A was also detected by in vivo labeling with vinyl-sulfone (VS) probes (Kaschani et al., 2009a). These VS probes cause relatively strong labeling of PLCPs in vivo but not in vitro (Gu et al., 2010), consistent with the labeling of RD19A in living cells. These data indicate that RD19A is active in living tissues but its activity is suppressed in extracts. Alternatively, the probe may concentrate in RD19A-containing vesicles, causing enhanced RD19A labeling in vivo. Besides RD19A, several other PLCP activities were detected upon in vivo labeling.

In conclusion, we have subdivided the plant PLCP superfamily into nine functional subfamilies. In silico analysis revealed several subfamily-specific features that can be used as classifiers. Biochemical characterization of representatives of the subfamilies indicates pH-dependent activities and inhibitor sensitivities that are subfamily-specific. Several new PLCP activities were detected in extracts of various Arabidopsis organs and upon in vivo labeling. These discoveries will greatly facilitate the further functional characterization of this important protease family in plants.

MATERIALS AND METHODS
Construction of the plant PLCP database. Plant PLCP sequences were retrieved from the TIGR database (Childs et al. 2007) using local BLAST searches with the 31 Arabidopsis PLCP protein sequences (Altschul et al. 1990). Nucleotide sequences were retrieved and translated in all six ORFs (open reading frames). ORFs smaller than 100 amino acids and sequences not containing the characteristic “CWAF”-like sequence ([S|C|G][W|C][A|S|T][F|V]) were removed. Identical sequences were kept if they were from different species. This resulted in a TIGR PLCP database with 317 PLCP sequences.

An NCBI PLCP database was generated by blasting the protein sequences from Beers et al. (2004) against the NCBI protein database, restricting the search to plant species. All the obtained GI numbers were pooled, duplicate entries removed and sequences retrieved from the NCBI batch download site. Arabidopsis thaliana sequences, all sequences from Xray projects, sequences that were too short and sequences not containing the “CWAF” sequence ([S|C|G][W|C][A|S|T][F|V]) were...
removed, resulting in the NCBI-PLCP database containing 794 plant PLCP sequences.

The TIGR-PLCP database and the NCBI-PLCP database were combined and supplemented with the 31 Arabidopsis thaliana PLCP sequences. We also added and replaced several sequences that were of particular interest to our research, but were not present in the screened databases (e.g. LeCatB1, LeCatB2, LeALP, NbC14; Shabab et al., 2008; Kaschani et al., 2010). Next we removed duplicate entries and submitted the resulting 1106 sequences to a PFAM search (Finn et al. 2010). All sequences not containing the "Peptidase_C1" domain were removed from the database. This step was included to insure that only PLCPs would enter the subsequent phylogenetic analysis. The remaining database contained 1034 entries. Next we counted the distance from the “CWAF” sequence to the C- and N-terminus. Database entries with an N-terminal distance <50 and a C-terminal distance < 150 were removed. These sequences were considered to be fragments and not useful for the phylogenetic analysis (Baldauf 2003). Also, we noticed that several sequences were exceptionally long. These sequences were also removed or trimmed.

The remaining database with 789 unique plant PLCP entries was then used to generate a first alignment with ClustalW2 (Larkin et al. 2007; Settings: pairwise alignment: gap-opening 35; gap-extension 0.75. Multiple alignment: gap-openenig 15, gap-extension 0.3, delay divergence 25%). 66 sequences did not align well and had to be removed (723 sequences remaining). A second alignment with ClustalW2 resulted in a better alignment. In order to remove the phylogenetically uninformative gaps in the alignment (Talavera & Castresana 2007) the alignment was submitted to the "trimAl" program (Capella-Gutierrez et al. 2009) with the settings –gt 0.8. This setting removed gap columns if they were found in more than 20% of the sequences. The obtained alignment was then refined once more by resubmitting to ClustalW2. A bootstrap tree was generated from this alignment using ClustalW2 (standard settings, correct for multiple substitutions, bootstrap 100). The tree was annotated and edited in TreeDyn v198.3 (Chevenet et al. 2006).

Chemicals and antibiotics. All chemicals were supplied by Sigma (Deisenhofen, Germany), Roth (Karlsruhe, Germany), Merck (Darmstadt, Germany) and Promega (Mannheim, Germany). DCG-04 was synthesized as described previously (Greenbaum et al., 2000). E-64d was purchased from Sigma (Deisenhofen, Germany).
Synthesis of Azido-BODIPY-DCG04 (MV201). To a solution of Azido-BODIPY-OSu (Verdoes et al., 2008; 59 mg; 0.105 mmol) and DIPEA (20 μl, 0.115 mmol, 1.1 equiv.) in DMF (1 ml), a solution of DCG-04 amine (Greenbaum et al., 2002; 78 mg, 0.115 mmol, 1.1 equiv.) in DMF (1 ml) was added and the reaction mixture was stirred for 16 hr., before being concentrated in vacuo. Purification by flash column chromatography (5% MeOH in DCM → 10% MeOH in DCM) afforded the title compound (110 mg, 98 μmol, 93%) as a deep-red solid. 1H NMR (400 MHz, CDCl3/MeOD): δ ppm 7.87 (d, J = 8.9 Hz, 2H), 7.63 (s, 1H), 7.25-7.20 (m, 1H), 7.17-7.10 (m, 1H), 7.05-6.95 (m, 5H), 6.73 (d, J = 8.5 Hz, 2H), 6.57 (d, J = 4.1 Hz, 1H), 4.47 (t, J = 7.5 Hz, 1H), 4.41 (t, J = 7.3 Hz, 1H), 4.33-4.23 (m, 3H), 4.13 (t, J = 6.0 Hz, 2H), 3.67 (d, J = 1.8 Hz, 1H), 3.57 (d, J = 1.8 Hz, 1H), 3.55 (t, J = 6.6 Hz, 2H), 3.21-3.11 (m, 3H), 3.04 (dd, J1 = 13.5, J2 = 6.8 Hz, 1H), 2.97 (dd, J1 = 13.8, J2 = 7.6 Hz, 2H), 2.86 (dd, J1 = 13.7, J2 = 7.5 Hz, 1H), 2.75 (t, J = 7.5 Hz, 2H), 2.53 (s, 3H), 2.31 (t, J = 7.5 Hz, 2H), 2.25 (s, 3H), 2.19 (t, J = 7.5 Hz, 2H), 2.08 (p, J = 6.3 Hz, 2H), 1.82-1.71 (m, 1H), 1.66-1.50 (m, 6H), 1.49-1.34 (m, 6H), 1.33 (s, 2H, 3H, 1.22-1.11 (m, 2H), 0.91 (dd, J1 = 13.7, J2 = 6.0 Hz, 6H).

Synthesis of Azido-BODIPY-DCG04 (MV202; MVB093). To a solution of MV201 (15mg; 13.3μmol) in tBuOH (0.5 mL) was added propargylamine-biotine (Verdoes et al., 2008) (7.5 mg; 26.6 μmol; 2equiv.), CuSO4 (250 μL 5.32 mM in H2O; 1.33 µmol; 10 mol%) and Sodium Ascorbate (250 μL 10.64 mM in H2O; 2.66 µmol; 15 mol%). After addition of toluene (0.5 mL), the solution was stirred vigorously at 80°C for 6 hr. Excess toluene was added and the mixture was concentrated in vacuo before purification by flash column chromatography (acetone → 5% H2O in acetone) to afford the title compound (17.4 mg, 12.4 μmol, 93%). 1H NMR (400 MHz, MeOD) δ = 7.91 – 7.81 (m, 3H), 7.42 (s, 1H), 7.25 – 7.08 (m, 5H), 7.07 (d, J=4.1, 1H), 7.01 (d, J=8.4, 2H), 6.94 (d, J=8.8, 2H), 6.69 (d, J=8.4, 2H), 6.60 (d, J=4.1, 1H), 4.61 (t, J=6.6, 2H), 4.50 – 4.36 (m, 5H), 4.31 – 4.17 (m, 4H), 4.03 (t, J=5.8, 2H), 3.66 (d, J=1.7, 1H), 3.57 (d, J=1.7, 1H), 2.99 (m, 9H), 2.75 (t, J=7.3, 2H), 2.50 (s, 3H), 2.38 (m, 2H), 2.25 (s, 3H), 2.19 (m, 4H), 1.81 – 1.11 (m, 38H), 0.91 (m, 6H). 13C NMR (101 MHz, MeOD) δ 177.14, 176.10, 175.95, 174.77, 173.68, 173.16, 168.73, 168.39, 160.78, 157.29, 151.84, 136.60, 131.89, 131.37, 129.92, 129.36, 129.21, 128.92, 127.20, 126.30, 124.73, 119.14, 116.25, 115.24, 65.72, 63.29, 63.23, 61.60, 56.98, 56.51, 54.40, 54.22, 53.42, 53.20, 49.64, 49.43, 49.21, 49.00, 48.79, 48.57, 48.45, 48.36, 41.65, 41.05, 40.34, 40.18, 38.22, 36.92, 36.65, 35.65, 35.62, 32.72, 30.91, 29.95, 29.85, 29.68, 29.41, 27.41, 26.68, 26.48, 25.89, 24.26, 23.31, 22.04, 21.34, 14.37, 9.62.
Synthesis of peptide epoxide library. Rink resin (0.63 g 0.8 mmol/g; 0.5 mmol) was treated with 20% piperidine in DMF for 20 min. After washing the resin with DMF (3x) and DCM (3x), it was reacted with Fmoc-Pra-OH (0.78 g; 1.25 mmol; 2.5 equiv.), HBTU (0.47 g; 1.25 mmol; 2.5equiv.) and DiPEA (0.26 ml; 1.5 mmol; 3 equiv.) for 16 hr. The P2 and P3 positional-scanning libraries were synthesized following literature procedures (Ostresh et al. 1994; Nazif et al. 2001). In short, the P2 and P3 libraries were made up of 19 sublibraries containing each of the natural amino acids (without cysteine and methionine, plus norleucine) at the designated constant position. At the variable position an isokinetic mixture of those same Fmoc protected amino acids was coupled (Ostresh et al. 1994) in a 10-fold excess over the resin load with diisopropylcarbodiimide and hydroxybenzotriazole as the condensating agents in DMF. The resin-bound Fmoc-protected peptide libraries were deprotected with 20% piperidine in DMF for 20 min. The resin was washed with DMF (3x) and DCM (3x) before being capped with the warhead (2S,3S)-3-(ethoxycarbonyl)oxirane-2-carboxylic acid (Willems et al. 2010). The libraries were cleavage from the resin by treatment with TFA/TIS (97.5/2.5, v/v) for 2 hrs. The peptides were precipitated in ice cold ether and lyophilized to dryness. The crude peptide libraries were dissolved in DMSO (10 mM stock) based on average weights for each mixture.

Plant material. Arabidopsis plants (ecotype Col-0) were grown under a 12h light regime in growth cabinets at day/night temperatures of 24°C and 20°C, respectively. Four to five-week old plants were used for protein extraction for further experiments. The Arabidopsis cell culture (ecotype Ler) was obtained from Sainsbury lab (John Innes centre, Norwich, UK) and maintained according to the method described by Kaffarnik et al. (2009). N. benthamiana was grown in a climate chamber at a 14-h light regime at 18°C (night) and 22°C (day). Four- to six-week old plants were used for infiltration experiments.

Molecular cloning. A summary of the cloning is provided in Supplemental Tables S2 and S3. The following plasmids have been described previously: pRH80 (Van der Hoorn et al., 2000); pRH385 (Van der Hoorn et al., 2005); pTP5 and pFK26 (Shabab et al., 2008); and pMOG800 (Honée et al., 1998). The construction of the RD21A-expressing binary plasmid (pRH628) has been described elsewhere (Wang et al., 2008). The open reading frames encoding full length PLCPs were amplified from cDNA clones or cDNA isolated from various Arabidopsis organs using primers summarized in Supplemental Tables S2 and S3. PCR fragments were subcloned
into pRH80 or pFK26 (See Supplemental Table S2). The cloned PCR fragments were verified by sequencing. Correct expression cassettes were shuttled into binary vectors as summarized in Supplemental Table S2, resulting in a collection of binary plasmids that all carry a T-DNA with a 35S-driven PLCP open reading frame, followed by a terminator of the potato PI-II gene.

Agroinfiltration. Transient overexpression of PLCPs by agroinfiltration was achieved as described previously (Shabab et al., 2008). Overnight grown Agrobacterium cultures (Agrobacterium tumefaciens strain GV3101) carrying binary plasmids were centrifuged and bacteria were resuspended in infiltration buffer (10 mM MES pH 5, 10 mM MgCl₂, 1 mM acetosyringone). Cultures were incubated for 2-4 hours at room temperature. OD₆₀₀ was adjusted to 2 and cultures carrying PLCP-expressing vectors were mixed with cultures carrying p19-expressing vectors. These cultures were infiltrated into fully expanded leaves of 4-6-week old N. benthamiana plants. Infiltrated leaves were harvested after 3-5 days post infiltration.

Protease activity profiling of extracts. Protein of agroinfiltrated leaves were extracted by grinding three fully expanded leaves in 5 mL water in a mortar. Extracts of Arabidopsis organs were made by grinding tissues in 1 mL water. The extracts were cleared by centrifugation (5 min at 13,000 g) and extracts were aliquoted and stored at -80°C. Protein concentrations were determined by using the reducing agent Compatible/Detergent Compatible (RC/DC) protein assay (Bio-Rad) following the manufacturer's instructions.

In-vitro labeling was carried out by incubating 100 µg of protein in 100 µl final volume containing 25 mM sodium acetate buffers (pH<7) or 50 mM Tris buffers (pH>7) in the presence of 2 mM dithiothreitol (DTT). DCG-04, MV201 or MV202 was added at 2 µM final concentration and the sample was incubated for 2.5 hours in the dark under gentle agitation. Equal volumes of dimethyl sulfoxide (DMSO) were added to the no-probe-control. A pre-treatment with 10 µM of E-64 or epoxide-peptides for 30 min before adding the probes was done during inhibition assays. Incubation was stopped by adding 20 µl of 4X SDS-PAGE loading buffer containing β-mercaptoethanol, and the samples were heated for 10 min at 90°C. The samples were shortly centrifuged (1 min at 13,000 g) and separated on 12% SDS-PAGE (10 µg protein per lane). Gels were washed with water and fluorescently labeled proteins were detected using a Typhoon 8600 scanner (Molecular Dynamics) with a TAMRA filter and an excitation and emission of 532 and 580 nm, respectively. Fluorescent signals were quantified using ImageQuant (Molecular Dynamics). To detect
biotinylated proteins, the proteins were transferred to PVDF membranes (Immobilon-P, Millipore). Membranes were incubated with streptavidin-HRP (Ultrasensitive, Sigma, dilution of 1:3000) and signals were detected using Enhanced Chemiluminescence (ECL, Super Signal Femto/Pico substrate, Thermo Fisher Scientific, Bonn, Germany) and X-ray films (Kodak, Germany).

Affinity purification and identification of labeled proteins. Purification was usually done by incubating approximately 5 mg/ml of protein. Proteins of 4-5 week-old plants were extracted by grinding rosette leaves, roots and flowers in an ice-cold mortar with 3 mL water and subsequent centrifugation for 10 min at 20,000 g. The supernatant was labeled with 10 µM MV202 in labeling buffer (50 mM NaOAc, pH 6) and 1 mM DTT for 2 h at room temperature under gentle agitation. The labeled plant extracts were applied to a PBS-equilibrated Econo-Pac 10DG size exclusion column (Bio-Rad). Desalted samples were incubated with 100 µl avidin beads (Sigma) for 1 h at room temperature under gentle agitation. The beads were collected by centrifugation (10 min at 2000 rpm) and were washed twice with 1 mL 0.1% SDS, twice with 1 mL 6 M urea, once with 1 mL 50 mM Tris pH8 containing 0.1% Tween 20, once with 1 mL 0.1% Tween 20, and once with 1 mL water. After washing with water three times, the beads were boiled in 50 µl 1X SDS-PAGE loading buffer containing β-mercaptoethanol and separated on 12% one-dimensional SDS-PAGE gel. Labelled proteins were visualised in-gel by detection of fluorescence on a Typhoon 8600 fluorescence scanner (GE Healthcare). Fluorescent bands were excised with a razor blade and placed into a 1.5 mL vial. The slices were washed twice with 500 µL 100 mM ammonium bicarbonate solution (Sigma) for 15 min. Proteins were reduced for 30 min at 62ºC with 10 mM tris(2-carboxyethyl)-phosphine (TCEP, Sigma) and alkylated with 55 mM iodoacetamide in the dark for 30 min at room temperature (RT). Gel fragments were washed three times for 15 min with 500 µL of a 50:50 mixture of acetonitrile with 100 mM ammonium bicarbonate and two times with 50 µL 100% acetonitrile to dehydrate the gel slices. The gel fragments were dried using a Eppendorf SpeedVac for 5 min. Dry gel slices were incubated for 10 min with 20 µL 25 mM ammonium bicarbonate containing 10 ng/µL trypsin (Promega) at RT. The quelled gel pieces were covered with 25 mM ammonium bicarbonate, vortexed briefly and incubated over-night (12-16 hours) at 37ºC under vigorous shaking. The supernatant was transferred to a new vial, and the gel slices were covered with 5% formic acid (Agros Organics) and incubated for 15 min at room temperature to inactivate the trypsin. Gel slices were washed three times (100, 75, and 50 µl) for 5 min with 100% acetonitrile. All supernatants were combined and
concentrated in a Eppendorf SpeedVac to a final volume of ~10 µL. Tryptic peptides were analyzed using an Thermo Scientific LTQ XL mass spectrometer and annotated as described previously (Kaschani et al., 2009b).

Protease activity profiling in vivo. 20 mL of a seven-day old Arabidopsis cell culture (ecotype Landsberg; Kaffarnik et al., 2009) was allowed to settle down. The medium was replaced by an equal amount of fresh media. One mL of the cell suspension was then transferred to multi well plate and incubated for 2 h in the presence of 5 µM MV201. The cells were washed three times with cell culture medium. The cell culture was transferred to a fresh Eppendorf tube and ground in water (final volume ~250-300 µL). The protein concentration was determined and ~1 mg Protein precipitated with acetone and dissolved in 1 mL phosphate buffered saline (1xPBS, pH 7.4) supplemented with 1% SDS. The biotin-alkyne affinity tag was then chemically attached to the azide group of MV201-labelled proteins by click chemistry (Kaschani et al. 2009a). The click reaction mix was passed over a 10DG desalting column (BioRad). The eluted proteome was diluted with 1xPBS to a final volume of 8.5 mL and supplemented with avidin agarose beads (Sigma). Affinity purification and mass spectrometry was done as described above.

Arabidopsis accession numbers. The following Arabidopsis proteins from the TAIR10 database have been studied experimentally in this manuscript: RD21A (At1g47128), RD21B (At5g43060), RD21C (At3g19390), RDL2 (At3g19400), XBCP3 (At1g09850), XCP1 (At4g35350), XCP1 (At1g20850), THI1 (At1g06260), SAG12 (At5g45890), RD19A (At4g39090), RD19B, (At2g21430), RD19C (At4g16190), AALP (At5g60360), ALP2 (At3g45310), and CTB3 (At4g1610).

Supplemental Data

Figure S1 Phylogenetic tree of 723 plant PLCPs
Figure S2 Alignments of protein sequences of each subfamily.
Figure S3 Labeled XCP2 is 30 kDa in fresh extracts.
Table S1 Spectral count of identified peptides
Table S2 Binary plasmids
Table S3 Primers

ACKNOWLEDGEMENTS
We would like to thank Chintha Raju for technical assistance. This work was financially supported by the Max Planck Society, the Deutsche Forschungsgemeinschaft (DFG projects HO 3983/4-1 and SCHM 2476/2-1).

LITERATURE CITED

Table I Sequence-based classifiers of plant PLCP subfamilies

<table>
<thead>
<tr>
<th>Subfamily</th>
<th>Classifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 RD21A-like</td>
<td>C-terminal granulin domain</td>
</tr>
<tr>
<td>2 CEP1-like</td>
<td>(K/H)DEL ER-retrieval signal at C-terminus</td>
</tr>
<tr>
<td>3 XCP2-like</td>
<td>Carries conserved PGS in TGN[L(S/T)] motif in protease domain</td>
</tr>
<tr>
<td>4 XBCP3-like</td>
<td>C-terminal granulin domain</td>
</tr>
<tr>
<td>5 THI1-like</td>
<td>(no distinct features noted)</td>
</tr>
<tr>
<td>6 SAG12-like</td>
<td>Carries extra Cys before catalytic Cys (CGCWAFS motif)</td>
</tr>
<tr>
<td>7 RD19A-like</td>
<td>ERFNAQ instead of ERFNIN in prodomain</td>
</tr>
<tr>
<td></td>
<td>two extra disulfide bridges in protease domain (4 and 5)</td>
</tr>
<tr>
<td></td>
<td>conserved PGS in VxNF[S/T] motif in middle of protease domain</td>
</tr>
<tr>
<td>8 AALP-like</td>
<td>NPIR vacuolar targeting signal at N-terminus of prodomain</td>
</tr>
<tr>
<td></td>
<td>extra Cys in ATC motif in C-terminus of protease domain</td>
</tr>
<tr>
<td></td>
<td>extra Cys in ČSAT motif at the C-terminus of prodomain</td>
</tr>
<tr>
<td></td>
<td>conserved PGS in VNIT motif in middle of protease domain</td>
</tr>
<tr>
<td>9 CTB3-like</td>
<td>no ERFNIN/ERFNAQ motif in prodomain</td>
</tr>
<tr>
<td></td>
<td>no disulfide bridge 3; unpaired Cys in EQGIE motif in C-terminus</td>
</tr>
<tr>
<td></td>
<td>four extra disulfide bridges (6-9)</td>
</tr>
<tr>
<td></td>
<td>PGS located in non-conserved loop between disulfide bridges 6 and 2</td>
</tr>
</tbody>
</table>
FIGURE LEGENDS

Figure 1. Phylogenetic subclassification of plant PLCPs.

A, The unrooted phylogenetic tree of 723 plant PLCPs is subdivided into nine PLCP subfamilies (1 to 9). Arabidopsis PLCPs are indicated in the first column in colour, and other studied PLCPs are indicated in the second column black. *, crystal structure available. Type members for each subfamily are printed larger. Key bootstrap values are indicated. The annotated phylogenetic tree with readable entries is available as Supplemental Figure S1.

B, Distribution of PLCPs over subfamilies for plant species with n>20 sequenced PLCPs.

C, Nomenclature and subclassification of Arabidopsis PLCPs. The ATG accession codes of genes encoding putative PLCPs are followed by a given name. The domain structure consists of a signal peptide (sp), prodomain (pro-), protease domain with catalytic cysteine (C) and in some cases a proline-rich domain (p) and a granulin domain. The PLCPs studied biochemically in this work are marked in the right column.

Figure 2. Conserved functional motifs in PLCP subfamilies

A, Position and frequencies of functional motifs in each PLCP subfamily. SP, N-terminal signal peptide, predicted by SignalP; NPIR, vacuolar targeting signal at N-terminus of prodomain (NPIR): ERFNIN, structural motif in the prodomain (ExxxRxxxFxxNxxx[I/V]xxxN, allow one mismatch); Triad, the catalytic triad: Cys-His-Asn; KDEL, C-terminal retrieval signal for localization to the endoplasmic reticulum ({K/H}DEL); Granulin, C-terminal granulin domain containing the Cys pattern Cx5Cx5CCCx7Cx4CCx6CCx5CCx6Cx6C.

B, Presence of the granulin domain in PLCP subfamilies 1 and 4. Granulin-containing proteases are indicated with black or red lines, and proteases lacking a granulin domain are indicated in grey or pink. Shown are only the trees of subfamilies 1 and 4 of Fig.1A.

C, The phylogenetic tree of the granulin domain branches into the same subfamilies as the proprotease tree. Note that the subfamily 4 PLCPs (red, XBCP§-like) are grouped together.

D, Conserved structural features of the granulin domain. Consensus sequences of granulin domain of subfamilies 1 and 4 are aligned with that of RD21A and human Granulin A (hGrnA). Disulphide bridging has been determined for hGrnA and is shown on top.

E, Illustration of the structure of the granulin domain of RD21A, modelled on hGrnA (2jye). The numbering of the disulphide bridges residues corresponds to those in (D).

Figure 3. Conserved structural features in PLCP subfamilies

A, Position of disulphide bridges and putative N-glycosylation sites (PGSs) mapped onto the crystal structure of Papain (1ppp) and Cathepsin B (3k9m). Cartoon models show the enzymes from the side with the α-helix domain (left) and β-sheet domain (right) and the catalytic triad (dotted spheres) with the catalytic cysteine (cyan sticks) on top. Color code: α-helix (cyan); β-sheet (purple); loop (pink); extendable loop (blue); disulphide bridge (red); PGS (green). Numbers 1-9 correspond to conserved putative disulphide bridges, summarized in (b) and (c).

B, Summary of the position of putative disulphide bridges and PGSs in the mature protease domain. Positions are indicated for: catalytic residues C, H and N (black dashed lines); PGSs (Nxs/T, green lines); and putative disulphide bridges (red lines).

C, Frequency of conserved putative disulphide bridges, a double catalytic Cys (CCW) and putative N-glycosylation sites (PGS, Nxs/T) in the different subfamilies.
Figure 4. ABPP of representative PLCPs

A, Structures of MV201 and MV202. The E-64-based inhibitor-group (red) contains an epoxide reactive group and a dipeptide carrying Leu (P2) and Tyr (P3) and is linked to the BODIPY fluorescent group (yellow) and either an azide minitag (green) or biotin (blue).

B, PLCPs react with MV201. PLCPs were overexpressed in *N. benthamiana* by agroinfiltration in the presence of p19 silencing inhibitors. Extracts of agroinfiltrated leaves were labelled with 2 μM MV201 at pH 6 for one hour and labelled protein were detected from protein gels using fluorescent scanning. *, for identification purposes proteins were labelled with MV202 and identified by in-gel digestion with trypsin and mass spectrometry. This gel is a representative of at least three independent labeling experiments.

Figure 5. pH-dependent labeling of PLCPs.

N. benthamiana leaves overexpressing different PLCPs were labelled with 2 μM MV201 for one hour at different pH. Fluorescent signals were quantified from protein gels by fluorescent scanning and plotted against pH. Each pH series was repeated at least once with similar outcome.

Figure 6 PLCPs have distinct inhibitor sensitivities.

Inhibitory fingerprinting using P2 (A) and P3 (B) scanning epoxide libraries. These libraries contain a fixed amino acid at the P2 or P3 position, respectively, and an isokinetic mixture of 19 amino acids at the P3 or P2 position, respectively (top). Extracts containing different PLCPs were preincubated with 10 μM epoxide library for 30 min minutes and then labeled with 2 μM MV201 for 2 hours. Labeled proteins were quantified from fluorescent gels, and normalized relative to the median signal. The data was quantified and clustered based on similarity of inhibition profiles. Similar inhibition data were obtained with repetition experiments.

Figure 7. PLCP activity and expression in different organs and *in vivo.*

A, Activity profiles of PLCPs of different organs. Crude extracts of various organs were labeled with 2 μM DCG-04, either with or without 30 min pre-treatment with E-64 (10 μM) for 2,5 hours at pH 6. Biotinylated proteins were detected on protein blots using streptavidin-HRP.

B, Spectral counts of labeled PLCPs detected in different organs. Extracts from various organs were labeled with MV202 at pH 6 and labeled proteins were purified on avidin beads, separated on protein gels, excised, digested with trypsin and analyzed by LC-MS/MS. The spectra of peptides with >95% confidence was counted for each PLCP and summarized in Supplemental Table S1.

C, Transcript levels of all PLCPs in different organs. This data was extracted from genevestigator (Hruz et al., 2008).

D, *In vivo* labeling of PLCPs reveals activities of RD19A and RD19B. Arabidopsis cell cultures were labeled with 5 μM MV201. Proteins were extracted and coupled to Bio≡ using click chemistry. Biotinylated proteins were purified on avidin beads, separated on denaturing acrylamide gels, excised, digested with trypsin, and analyzed by LC-MS/MS. The spectra of peptides with >95% confidence was counted for each PLCP.
A

Minitag

Bodipy

MV201

E-64

Biotin

Bodipy

MV202

E-64

B

<table>
<thead>
<tr>
<th></th>
<th>RD21A</th>
<th>RD21B</th>
<th>RD21C</th>
<th>XCP1</th>
<th>XCP2</th>
<th>CTB3</th>
<th>SAG12</th>
<th>TH1</th>
<th>RL2</th>
<th>RD19A</th>
<th>RD19B</th>
<th>AALP</th>
<th>control</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

Fluorescence
Chart A

P2

| iRD21A | mRD21A | iRD21B | mRD21B | RDL2 | iRD21C | mRD21C | XCP1 | XCP2 | THI1 | SAG12 | iRD19A | mRD19A | iRD19B | mRD19B | AALP | CTB3 |
|--------|--------|--------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|-------|
| | | | | | | | | | | | | | | | | |

P3

<table>
<thead>
<tr>
<th>iRD21A</th>
<th>mRD21A</th>
<th>iRD21B</th>
<th>mRD21B</th>
<th>RDL2</th>
<th>iRD21C</th>
<th>mRD21C</th>
<th>XCP1</th>
<th>XCP2</th>
<th>THI1</th>
<th>SAG12</th>
<th>iRD19A</th>
<th>mRD19A</th>
<th>iRD19B</th>
<th>mRD19B</th>
<th>AALP</th>
<th>CTB3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Chart B

P3

<table>
<thead>
<tr>
<th>iRD21A</th>
<th>mRD21A</th>
<th>iRD21B</th>
<th>mRD21B</th>
<th>RDL2</th>
<th>iRD21C</th>
<th>mRD21C</th>
<th>XCP1</th>
<th>XCP2</th>
<th>THI1</th>
<th>SAG12</th>
<th>iRD19A</th>
<th>mRD19A</th>
<th>iRD19B</th>
<th>mRD19B</th>
<th>AALP</th>
<th>CTB3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>full</th>
<th>no</th>
<th>Inhibition</th>
</tr>
</thead>
</table>

Legend:
- **full**: Full inhibition
- **no**: No inhibition
- **Inhibition**: Inhibition level