van Lis et al.

Running title: Chlamydomonas reinhardtii pyruvate:ferredoxin oxidoreductase

Corresponding Author:

Ariane Atteia

Unité de Bioénergétique et Ingénierie des Protéines-UMR 7281
CNRS-Aix-Marseille Université
31 Chemin Joseph Aiguier
13402 Marseille
France

Tel: 00 33 4 91 16 46 71
Fax: 00 33 4 91 16 45 78
e-mail: Ariane.Atteia@imm.cnrs.fr
Chlamydomonas reinhardtii chloroplasts contain a homodimeric pyruvate:ferredoxin oxidoreductase that functions with FDX1

Robert van Lis, Carole Baffert, Yohann Couté, Wolfgang Nitschke, and Ariane Atteia

Unité de Bioénergétique et Ingénierie des Protéines-UMR 7281, CNRS-Aix-Marseille Université, 31 Chemin Joseph Aiguier, 13402 Marseille, France (R. vL., C.B., W.N., A.A.); and CEA, IRTSV, Laboratoire Biologie à Grande Echelle, 38054 Grenoble, France; INSERM, U1038, 38054 Grenoble, France; Université Joseph Fourier, Grenoble 1, 38000 Grenoble Cedex 09, France (Y.C.)
Footnotes

*This work was supported by the Centre National de la Recherche Scientifique (CNRS) and the Agence Nationale pour la Recherche (ANR-11-BIOE-004-03, project AlgoH2) (AA, CB and RvL).

Corresponding author: e-mail: Ariane.Atteia@imm.cnrs.fr

The abbreviations:
FDX: ferredoxin of *C. reinhardtii* chloroplast
PFL: pyruvate formate-lyase
PFO: pyruvate ferredoxin:oxidoreductase
CrPFO: native *C. reinhardtii* pyruvate ferredoxin:oxidoreductase
Cr-rPFO: recombinant *C. reinhardtii* PFO with C-terminal 6-Histidine tag
DaPFO: *Desulfovibrio africanus* pyruvate ferredoxin:oxidoreductase

Keywords: anaerobic enzymes, *Chlamydomonas*, chloroplast, ferredoxin, pyruvate metabolism
ABSTRACT

Eukaryotic algae have long been known to live in anoxic environments, but interest in their anaerobic energy metabolism has only recently gained momentum, largely due to their utility in biofuel production. Chlamydomonas reinhardtii figures remarkably in this respect, because it efficiently produces H₂ and its genome harbors many genes for anaerobic metabolic routes. Central to anaerobic energy metabolism in many unicellular eukaryotes (protists) is pyruvate:ferredoxin oxidoreductase (PFO), which decarboxylates pyruvate and forms acetyl-CoA with concomitant reduction of low potential ferredoxins or flavodoxins. Here we report the biochemical properties of the homodimeric PFO of C. reinhardtii expressed in Escherichia coli. EPR spectroscopy of the recombinant enzyme (Cr-rPFO) showed three distinct [4Fe-4S] clusters and a thiamine pyrophosphate (TPP) radical upon reduction by pyruvate. Purified Cr-rPFO exhibits a specific decarboxylase activity of 12 µmol pyruvate min⁻¹ mg⁻¹ protein, using benzyl viologen as electron acceptor. Despite the fact that the enzyme is very O₂-sensitive, it localizes to the chloroplast. Among the six known chloroplast ferredoxins (FDX1-6) in C. reinhardtii, FDX1 and FDX2 were the most efficient electron acceptors from Cr-rPFO with comparable apparent Km values of approximately 4 µM. As revealed by immunoblotting, anaerobic conditions that lead to the induction of CrPFO did not increase levels of either FDX1 or FDX2. FDX1, being by far the most abundant ferredoxin, is thus likely the partner of PFO in C. reinhardtii. This finding postulates a direct link between CrPFO and hydrogenase and provides new opportunities to better study and engineer H₂ production in this protist.
INTRODUCTION

Unicellular protists, including photosynthetic algae, commonly experience periods of hypoxia or anoxia as a result of low light exposure and/or biotic activities in their habitats, typically soils, fresh water and marine water, during which their survival relies on anaerobic energy metabolism (Atteia et al., 2012; Müller et al., 2012). Surveys of genome sequences are uncovering the diversity of metabolic routes among microalgae (Atteia et al., 2006; 2012). The alga *Chlamydomonas reinhardtii*, a model organism for studying photosynthesis and chloroplast biogenesis (Rochaix, 2002; Eberhard et al., 2008) as well as the impact of micronutrient deficiency (Merchant et al., 2006; Page et al., 2012), has the most diverse set of anaerobic metabolic routes known, not only among algae (Atteia et al., 2006, 2012; Grossman et al., 2007, 2011) but among eukaryotes in general (Müller et al., 2012). In addition to anaerobic metabolic routes typical of plants and mammals that involve ethanol and lactate fermentations and/or alanine accumulation (de Sousa and Sodek, 2003; Catalanotti et al., 2012; Bailey-Serres et al., 2012), *C. reinhardtii* has also an assortment of enzymes which were long thought to be specific to anaerobic, non-photosynthetic protists.

Pyruvate plays a central role in both aerobic and anaerobic metabolism. The metabolic fate of pyruvate is regulated in large part by the cell’s redox state. In the absence of O₂, pyruvate can be converted into acetyl-CoA by two distinct enzymes, i) pyruvate formate-lyase (PFL; EC 2.3.1.54) and ii) pyruvate:ferredoxin oxidoreductase (PFO, also named PFOR or PFR; E.C. 1.2.7.1). PFL is a non-redox enzyme that converts pyruvate into acetyl-CoA and formate through a radical-based mechanism (Wagner et al., 1992). Inactive PFL is converted to the active form by pyruvate formate lyase-activating enzyme (PFL-AE; EC 1.97.1.4), which introduces a free radical on the ultimate glycine residue of PFL in a S-adenosyl-L-methionine and flavodoxin-dependent reaction (Knappe et al., 1969; Wagner et al., 1992). Molecular oxygen irreversibly inactivates the radical -active- form of PFL (Wagner et al., 1992). Pyruvate oxidation by PFO generates CO₂, acetyl-CoA and two electrons, which are typically delivered to a small low redox potential protein, either a ferredoxin (FDX) or a flavodoxin. PFO contains multiple [4Fe-4S] centers and thiamine pyrophosphate (TPP) as cofactor. Three types of PFO which differ in their subunit composition have been described to date. Depending on the organism, PFO can be homodimeric, heterodimeric or multimeric (Kletzin and Adams, 1996; Hug et al., 2010). In some eukaryotes, an alternative form of PFO has been found that consists of a PFO domain fused with a NADPH-cyt P450 reductase-type flavoprotein at its C-terminus (Rotte et al., 2001; Lantsman et al., 2008). This pyruvate:NADP⁺ oxidoreductase (PNO) decarboxylates pyruvate into acetyl-CoA and requires NADP⁺ as electron acceptor instead of a proteinaceous electron carrier. All PFOs, with the exception of those of the *Desulfovibrio* species (Pieule et al., 1995; Vita et al., 2008), are irreversibly inactivated by O₂. PFL and PFO (or PNO) are crucial enzymes in the anaerobic metabolism of a great variety of prokaryotes and of a number of eukaryotes (Akhmanova et al., 1999; Horner et al., 1999; Gelius-Dietrich and Henze, 2004;
van Lis et al.

Hug et al., 2010; Stairs et al., 2011). The occurrence of PFL or PFO in microalgae has been mostly inferred from genome surveys. The concomitant presence of PFL and PFO is not common among prokaryotes, and among eukaryotes only a few microalgae, notably C. reinhardtii and the diatom Thalassiosira pseudonana (Atteia et al., 2012), appear to have both enzymes for the anaerobic conversion of pyruvate into acetyl-CoA.

In C. reinhardtii, PFL has been the subject of several studies (Atteia et al., 2006; Hemschemeier et al., 2008). PFL is dually targeted to the chloroplast and the mitochondria (Atteia et al., 2006; Terashima et al., 2010), but it is not clear whether the enzyme is functional in both cell compartments because the intracellular localization of its activase PFL-AE is currently unknown. PFL is required for anaerobic metabolism in the dark, as evidenced by the production of formate from pyruvate (Kreuzberg, 1984; Mus et al., 2007) that derives from the degradation of starch or other carbon stores. In the absence of PFL, fermentative metabolism is rerouted towards lactate and ethanol production (Philipps et al., 2011; Catalanotti et al., 2012). Evidence for the existence of a PFO in C. reinhardtii was first obtained from its genome sequence (Atteia et al., 2006; Grossman et al., 2007), but discrepancies between gene models are noted. Pfo transcript levels in the algal cells have been found to increase after exposure to dark anoxia (Mus et al., 2007), sulfur-deprivation (Hemschemeier et al., 2008) or copper deficiency (Casruita et al., 2011). So far, physiological and biochemical studies are lacking to follow up and rationalize the transcriptomic data. Also, the intracellular localization of PFO in the photosynthetic alga is not clearly established. In parasitic anaerobic eukaryotes, PFO is located in the cytosol or the hydrogenosomes, which are H₂-producing mitochondria-like organelles (Müller et al., 2012). PNO is found in the mitochondria of the euglenophyte Euglena gracilis (Inui et al., 1984) and in the hydrogenosomes of the parasite Blastocystis (Lantsman et al., 2008). We proposed earlier that C. reinhardtii PFO (CrPFO) is targeted to the chloroplast stroma where its activity might be coupled to that of the iron-only hydrogenase (HYDA) via a ferredoxin under anaerobic conditions (Atteia et al., 2006). Support for its chloroplast localization came out recently from a comparative proteomic analysis of chloroplast and mitochondrial fractions of anaerobic algal cells provided (Terashima et al., 2010).

The present study aimed at expanding our understanding of the anaerobic metabolism in C. reinhardtii, and unicellular algae in general. We focused on PFO, a metalloenzyme that typically catalyzes anaerobic oxidative decarboxylation of pyruvate in a variety of bacteria and parasites, but which has never been investigated in a photosynthetic eukaryote. Here, we have identified CrPFO and established its intracellular localization. The in-depth characterization of CrPFO was carried out on the purified recombinant enzyme (Cr-rPFO) that was functionally expressed in Escherichia coli. Finally, the study of the electron transfer between Cr-rPFO and different C. reinhardtii FDXs provided insight into its physiological partners. Our data on CrPFO open the way to investigate the respective roles of the different routes for anaerobic interconversion of pyruvate and acetyl-CoA.
RESULTS

The C. reinhardtii genome encodes a typical homodimeric PFO

Considering the discrepancies between the C.reinhardtii pfo gene models available on the Joint Genome Institute (JGI) and phytozome web portals, in particular at the 5’ and 3’ ends, reconstitution of the CrPFO coding sequence was necessary. To achieve this, we carried out a series of PCR amplifications using a C. reinhardtii cDNA library as template and different pairs of primers designed from the sequence data available on the JGI website. The sequences of the PCR products were assembled into a cDNA sequence of 4338 nucleotides (FR848330), which exhibits an open reading frame of 3984 nucleotides flanked by non-coding regions of 141 bp on the 5’ end and 213 bp on the 3’-end. With a (G+C) content of 68% the C. reinhardtii Pfo-cDNA is close to the average (G+C) content of C. reinhardtii nuclear genes of about 65% (Grossman et al., 2003). The Pfo-cDNA sequence relates best to the sequence on the phytozome web portal (v8: Cre11.g473950.t1.1) with 99% sequence identity; the differences between the two sequences lie in the absence of a 42 bp-stretch in the Pfo-cDNA sequence (position 2817-2859 in the phytozome gene sequence) and in changes at 7 nucleotide positions. The sequences found on the JGI genome portal (assemblies v2.0, v3.0 or v4.0) differ by several gaps and/or insertions from the Pfo-cDNA sequence determined here, and are likely due to erroneous intron-exon predictions.

The C. reinhardtii Pfo-cDNA encodes a protein of 1327 amino acids which shows extensive sequence identity to homodimeric PFOs (Supplemental Fig. S1, S2). CrPFO shares 52% amino acid sequence identity with its well-characterized counterparts in the heterotrophic anaerobic eukaryotes Trichomonas vaginalis and Entamoeba histolytica. The highest sequence identity with bacterial PFOs is found in deltaproteobacteria (Desulfovibrio species) and firmicutes (Clostridium, Heliobacterium, and Moorella species) (52-54%). Homology with cyanobacterial enzymes is somewhat lower with 42 to 45% sequence identity. CrPFO exhibits two typical ferredoxin-type sequences (Cys-X2-Cys-X2-Cys-X3-Cys-Pro) at positions 804-815 and 860-871 (Fig. 1; Supplemental Fig. S1), which are assumed to ligate the median and distal [4Fe-4S] clusters, respectively. The conserved Cysteine residues at position 925, 928, 953 and 1191 (Supplemental Fig. S2) are likely to serve as ligands for the [4Fe-4S] cluster proximal to the TPP. CrPFO also exhibits the sequence motif Gly-Gly-Asp-Gly-X3-Asp-Ile-Gly for TPP binding (Hawkins et al., 1989; Kletzin and Adams, 1996) (Supplemental Fig. S1).

Compared to bacterial and parasitic eukaryote PFOs, the CrPFO exhibits extensions at its N-terminus (~ 95 residues) and C-terminus (~ 36 residues) (Fig. 1; Supplemental Fig. S2). The N-terminal extension is suggestive of organelle targeting; however, it contains a stretch of 9 Threonine residues, which is uncommon among chloroplast or mitochondrial targeting peptides (Tardif et al., 2012). The C-terminal extension comprises a hydrophobic region rich in Proline and Alanine residues followed by a
hydrophilic region that contains 5 Histidine residues (Fig. 1A). This extension is clearly distinct from that found in the enzymes of Desulfovibrio species (domain VII) and which protects the proximal [4Fe-4S] cluster from O₂ via disulfide bridge formation (Cys1195 and Cys1212) (Fig. 1; Chabrière et al., 1999; Vita et al., 2008). Because the C-terminus of CrPFO lacks the pair of Cysteine residues, it is unlikely to protect the enzyme from oxidative damage. Modeling CrPFO (lacking the first 95 residues and the last 36 residues) on the 3D structure of the Desulfovibrio africans PFO (DaPFO) was possible due to a high similarity between the two sequences (~52% amino acid identity), and as observed in Fig. 1B, overlay was almost complete.

CrPFO is a soluble chloroplast protein

The subcellular localization of CrPFO was investigated by immunoblot analysis, thereby circumventing possible O₂ sensitivity problems in activity measurements. Chloroplasts and mitochondria were isolated from C. reinhardtii cells kept few hours under dark anoxic conditions, and further purified by density gradient centrifugation following a standard protocol (van Lis et al., 2005). The relative purity of the organelle fractions was assessed by immunoblotting using antibodies against the proteins of the chloroplast light harvesting complex (LHCs) and the beta subunit of the mitochondrial F₀F₁-ATPase (ATP2). As shown in Fig. 2A, mitochondrial fractions were virtually devoid of chloroplast contamination whereas chloroplasts were slightly contaminated by mitochondria, a frequent situation (Atteia et al., 2006; Page et al., 2012). PFO antiserum detected CrPFO solely in the chloroplast fraction with an apparent molecular mass (Mr) of 130 kDa (Fig. 2A). The cellular CrPFO concentration was estimated from different protein blots to be in the range of 300 ng/mg of total cell protein.

C. reinhardtii chloroplasts were broken by two cycles of freezing/thawing and fractionated by ultracentrifugation. CrPFO, present in the soluble fraction, was further purified by anion exchange chromatography (all steps under a N₂ atmosphere). The resultant CrPFO-enriched fraction was loaded on a SDS-PAGE, and a gel band covering the 130 kDa region was analyzed by mass spectrometry (MS) (Fig. 3A). CrPFO was identified with tryptic peptide coverage over 50% (Supplemental Table S2). In the same analysis, PFL was also identified (Supplemental Table S2). Immunoblot with a PFL antiserum showed that the PFL at a Mr of ~130 kDa represented a minor fraction of the total PFL present in this sample, which migrates with at ~75 kDa (Fig. 3A). The 130 kDa-PFL likely corresponds to the undisassociated dimer.

Mass spectrometry data allowed to solve a few issues related to the divergent protein sequences predicted from gene models and the Pfo-cDNA. The seven nucleotides differing in the Pfo sequence in the phytozome database and the Pfo-cDNA sequence (see above) translate into four amino acid changes (D390N, E745K, F849L and T894A; positions in CrPFO), none of which are in conserved positions or anywhere near the cofactor binding sites (Supplemental Fig. S2). MS analysis of CrPFO identified two peptides (VIVLMGSGAAVEAVNYLNAGK and LDIPASWSSLPTHVNPNPPAK) which support the
phytozome sequence (Supplemental Fig. S3). It is unclear whether these two divergent positions in the Pfo-cDNA sequence result from variations in the nucleotide sequences between strains (cDNA library vs genomic DNA) or from errors introduced by the DNA polymerase during nucleic acid amplification. In the 130 kDa gel band, the tryptic peptide 911-GSQLQPPLMEFSGACEGCGETPYVK-935 was also identified. This peptide matches the sequences derived from the Pfo-cDNA and the phytozome sequences but not that from the JGI genome portal (Supplemental Fig. S3). In the latter sequence the last 2 residues (VK) are replaced by 7 residues (WVLFCAR). Following the tryptic peptide indicated above, the phytozome sequence shows, as compared to the Pfo-cDNA sequence, an insertion of 14 residues which shares 7 residues with the JGI sequence sequence. While these insertions may be due to an inaccurate prediction for intron/exon (exon 8), it cannot be excluded that different isoforms of CrPFO exist. Lastly, the presence of the C-terminal extension in the native enzyme (Fig. 1B) was confirmed through the identification of the tryptic peptide 1286-HMAAGGHMEPSPPPAAAAAPQAQAPDHGQHNTK-1331 (Supplemental Fig. S3).

PredAlgo, a newly released targeting prediction software dedicated to green algae (Tardif et al., 2012), gave a convincing score of 2.34 for CrPFO being targeted to the chloroplast, with a predicted cTP length of 33 amino acids (Fig. 2B). A search for peptides with a non-tryptic N-terminal site (“semi-tryptic peptides”) identified four peptides that match the N-terminal part of CrPFO, indicating four candidate positions for the mature N-terminus of the algal enzyme (Ala43, Pro47, Pro49 and Phe84) (Fig. 3B). Several hypotheses could explain the identification of multiple N-terminal peptides: i) cleavage of the CrPFO chloroplast targeting peptide (cTP) occurs at more than one position, as described for C. reinhardtii ATP2 with mature N-termini differing by one amino acid (Tardif et al., 2012); ii) processing of CrPFO proceeds through sequential steps, or iii) specific and partial proteolytic events at the N-terminal end. To discriminate between these hypotheses, further studies on the native enzyme will be needed. Of note, two proteins close together on SDS-PAGE are often immunodetected (Fig. 3A); these proteins might either be isoforms of CrPFO or enzymes with distinct N-termini.

In the CrPFO-enriched fraction from anion exchange chromatography, oxidative pyruvate decarboxylation was negligible. Rather than drastically upscaling C. reinhardtii cultures and working on the purification procedure to try to improve the yield and purity of CrPFO (and remove PFL, in particular), it appeared more practical to produce the enzyme in a heterologous system to obtain sufficient amounts of protein for enzymatic and spectroscopic characterization and shorten the purification procedure.

Expression of CrPFO in E. coli and purification of the recombinant enzyme

No singular N-terminus for mature C. reinhardtii PFO could be inferred from the MS data. With the objective of expressing CrPFO, we thus chose as a starting residue Proline 96, which corresponds to
the N-terminus of prokaryotic PFOs (Supplemental Fig. S2). Specific primers were designed to amplify
the region coding for Pro96-His1327. For as yet unclear reasons, amplification of that complete region
using the cDNA library as template did not work. This DNA region could however be amplified in two parts
that were then cloned into the expression vector pET24a (see Materials and Methods for details). C. re
inhardtii C-terminal 6-His-tagged recombinant PFO (Cr-rPFO) was produced in E. coli grown aerobically
at 37°C, although at low levels (less than one mg of protein/liter of culture). Expression under anaerobic
conditions led to negligible amounts of expressed Cr-rPFO and was thus abandoned. Attempts to grow
the cells at lower temperature (25°C) resulted in degradation of Cr-rPFO with concomitant cell death,
probably because this redox enzyme interferes with the metabolism of the bacterial host by competing for
pyruvate. Either this effect is more problematic for the E. coli cells at lower temperatures, or it is caused
by a higher expression of Cr-rPFO, leading to a proteolytic response. Expression of C. reinhardtii
recombinant PFO with an N-terminal 6-Histidine tag led to a higher level of protein (by a factor 3), which
was however mainly insoluble.

Purification of Cr-rPFO was done under an N₂-atmosphere in a glove box. Key steps of the
purification protocol were: i) cell breakage by two freeze-thaw cycles and ii) incubation with the Ni-affinity
gel in the presence of 30 mM imidazole to reduce unspecific interactions. The recombinant protein
showed a higher than usual affinity for the particular nickel resin used (HIS-Select®Nickel Affinity Gel), as
it still binds in the presence of 30 mM imidazole. A likely explanation for this strong affinity is that CrPFO
itself interacts with the resin via a few Histidine residues at its C-terminus, located at the surface of the
dimeric enzyme (Fig. 1). As judged by SDS-PAGE, purified Cr-rPFO was essentially homogeneous (Fig.
4-lane 5) and SDS-PAGE analysis of several preparations revealed negligible contamination. Cr-rPFO
has a Mr of 130 kDa (Fig. 4), equal to that of the native enzyme (Fig. 2). On blue native-PAGE, run in the
glove box, Cr-rPFO migrated as a main band of estimated Mr of ~ 235 kDa (Fig. 4, lane CBB), consistent
with the molecular mass of the dimer. This same band was able to reduce NBT in the presence of
pyruvate and CoASH (Fig. 4, lane NBT).

Assessment of redox cofactors

From the sequence analysis, it is inferred that all of the Cysteines residues ligating the three
cubane [4Fe-4S] clusters in the Desulfovibrio structure (Pieulle et al., 1997; Chabriere et al., 1999) are
conserved in the PFO of the green alga (Fig. 1; Supplemental Fig. S2). Iron contents of 8-11 mol of Fe
per mol of monomeric Cr-rPFO were found by inductively coupled plasma mass spectrometry (ICP/MS).
This Fe-content is somewhat lower than expected (12 mol Fe/mol Cr-rPFO monomer), likely because of
an incomplete maturation of the Cr-rPFO and/or a partial degradation of the iron-sulfur clusters due to
trace O₂. The UV/Vis spectrum of Cr-rPFO shows features characteristic of iron-sulfur clusters, with a
broad absorption band around 420 nm that decreases upon dithionite addition (Fig. 5). To further confirm
the identification of dithionite-reducible [4Fe-4S] clusters, we performed EPR spectroscopy on the
anaerobically purified \textit{Cr-rPFO}. Fig. 6 (top panel) shows corresponding spectra recorded on samples treated with sub-equimolar amounts of dithionite (dotted line), excess amounts of dithionite (dashed line), and reduced by addition of its substrates pyruvate and CoASH (solid line). The lower panel represents normalized difference spectra together with the least-reduced spectrum recorded in the presence of low dithionite concentration. All three spectra are substantially distinct from each other and thus provide evidence for the presence of 3 distinct [4Fe-4S] clusters. When \textit{Cr-rPFO} was incubated in the presence of pyruvate but in the absence of CoASH, the EPR feature of the TPP radical (hyperfine structure) was observed (inset Fig. 6), which very much resembles that reported for native PFO from \textit{D. africanus} (Pieulle et al., 1995) and \textit{Moorella thermoacetica} (Menon and Ragsdale, 1997).

Pyruvate decarboxylase activity of \textit{Cr-rPFO}

The ability of \textit{Cr-rPFO} to catalyze the oxidative decarboxylation of pyruvate was assessed spectrophotometrically following the reduction of different electron acceptors (Table I). The best activities were obtained with the artificial acceptor benzyl viologen (BV) (E_j = -375 mV) with an average specific activity of 12 µmol pyruvate min⁻¹mg⁻¹ protein (12U). The specific activity with methyl viologen (MV) (-450 mV) or with methylene blue (MB) (+10 mV) was respectively 3-4 times and 2.5-3 times lower than that with BV. Neither NAD⁺ nor NADP⁺ could be reduced by \textit{Cr-rPFO} (Table I). As stated above, ferredoxin is a typical physiological electron acceptor of homodimeric PFOs. Therefore, as a first assessment, petF from \textit{C. reinhardtii} (FDX1) and spinach (Fd1) were tested. Ferredoxin reduction by \textit{Cr-rPFO} was followed in an indirect assay that consists of following the reduction of horse heart cyt c by PFO-reduced ferredoxins (Pieulle et al., 2004). Pyruvate decarboxylation in the presence of these [2Fe-2S] ferredoxins was achieved with rates about half those measured with BV, while direct reduction of cyt c by \textit{Cr-rPFO} was marginal (Table I).

Apparent Km values for the natural PFO substrates CoASH and pyruvate were estimated to be 0.16 mM for pyruvate, and of 5.2 µM for CoASH (Table II), both being of the same order of magnitude as for other characterized PFOs.

TPP is an essential cofactor for the PFO decarboxylase activity. Its required addition in the reaction mixture (Table III) indicates that this cofactor was lost during purification of \textit{Cr-rPFO}. To observe the stimulating effect of TPP, preincubation was not required. Upon addition of Mg²⁺, an ion that stabilizes TPP, the enzymatic activity almost doubled (Table III). The addition of 0.3M NaCl to the standard assay mixture caused a significant inhibition (up to 80%) of BV reduction by \textit{Cr-rPFO}. The presence of NaCl during the purification allowed obtaining pure \textit{Cr-rPFO} in a single step, and as a consequence the exposure of the enzyme to this salt had to remain as short as possible. The enzyme activity was unaffected by imidazole even at concentrations up to 100mM. DTT was found to have no influence on the activity catalyzed by the recombinant enzyme (Table III), in contrast to the stimulative effect observed on the activity of PFOs from \textit{Desulfovibrio} species (Vita et al., 2008). When \textit{Cr-rPFO} (1.5
mg/mL in Tricine 50 mM, pH 8.0) was exposed to air for 1 hr on ice, a drastic loss of activity was observed (Table III) indicating that the algal enzyme is O₂-sensitive, as most PFOs are. The pH optimum of Cr-rPFO in 25 mM potassium phosphate was at pH 7.0-7.5, being comparable to that reported for the homodimeric PFOs of the methanogenic archaeon *M. barkeri* (Bock et al., 1996) and *C. acetobutylicum* (Meinecke et al., 1989) but quite different from the pH optimum of 9 reported for DaPFO (Pieulle et al., 1995; Cavazza et al., 2006). The temperature curve maximum was at 44°C (not shown). Generally, even under a N₂ atmosphere, the enzyme was found to be sensitive to desalting, dilution and concentration steps, resulting in variable loss of protein and specific activity.

Identification of the physiological partner(s) of CrPFO

The distal [4Fe-4S] cluster near the surface of the dimer (Fig. 1B) delivers electrons to an acceptor, typically a ferredoxin or a flavodoxin. The localization of the CrPFO to the chloroplasts (see above) allowed us to constrain the investigation of its physiological acceptor(s). Of the various ferredoxins encoded by the alga, FDX1-6 (all of the [2Fe-2S]-type) localize to the chloroplast (Jacobs et al., 2009; Terauchi et al., 2009). No genetic or biochemical evidence exists for the presence of flavodoxin(s) in *C. reinhardtii*. The ability of Cr-rPFO to reduce each of the six FDXs, produced in *E. coli* and purified, was tested in an indirect assay using cyt c, as described above. The concentrations of holoFDXs were adjusted in the reaction mixture (Fig. 7- inset). Our data showed that FDX reduction by Cr-rPFO was far faster with FDX1 and FDX2 than with the other four (Fig. 7). The reduction rate was low with FDX3 and FDX5, and nearly undetectable with FDX4 and FDX6 (Fig. 7). In independent measurements, it was confirmed that the electron transfer from reduced FDXs to cyt c was likely not a limiting factor in the observed reduction rates (Supplemental Table S3). Apparent Km values for FDX1 and FDX2 were determined to be in the same range (~ 4µM; Table IV).

To gain insights into the significance of FDX1 and FDX2 as physiological partners of CrPFO, their intracellular levels were followed by immunoblotting. Protein levels were assessed in wild-type strain cc124 and mutant strain 10-6C, which lacks Rubisco activity (Spreizer and Mets, 1980). For PFO induction, the cells were maintained for a few hours in dark anoxia, either in TAP medium or in anaerobic induction buffer (AIB), a reference medium for anaerobic studies on the green alga (Mus et al., 2007; Magneschi et al., 2012). As observed in Fig. 8, highest levels of CrPFO were immunodetected in both cells when incubated in anaerobic TAP medium (lanes 3). In anaerobic AIB, CrPFO was found in trace amounts in cc124 cells while not detectable in 10-6C cells (lanes 2). FDX1 levels were high under all conditions although slightly diminished in cells accumulating CrPFO (lanes 3). By contrast, FDX2 was not detected in any of these samples, which is in line with its reported function being specific to nitrate metabolism (Terauchi et al., 2009). The algal cells were also grown in the presence of nitrate instead of ammonium, and then incubated in anaerobic TAP medium (containing nitrate) to induce the expression of CrPFO (Fig. 8, lanes 5). In strain 10-6C, FDX2 levels were elevated in aerated cultures (Fig. 8, lane 4) but
slightly lower in cells after anaerobic incubation (lane 5). The situation with strain cc124 was different, as FDX2 was detected neither in aerobic nor in anaerobic conditions (Fig. 8, lanes 4-5). While these observations suggest a deviant nitrate metabolism in cc124, the fact that CrPFO is induced without concomitant FDX2 accumulation, or accompanies lowering of existing FDX2 pools, made clear that in the alga, FDX2 is not dedicated to CrPFO. Taken together our data indicate no obvious correlation between the accumulation of FDX1 or FDX2 and CrPFO. Because FDX1 is (by far) the most abundant isoform in C. reinhardtii, it is highly likely that this ferredoxin is the physiological partner of CrPFO.

DISCUSSION

Pyruvate:ferredoxin oxireductases are found in all three domains of life (Kletzin and Adams, 1996; Müller et al., 2012). In eukaryotes, PFO activity was first discovered in the hydrogenosomes of the anaerobic flagellate *Trichomonas foetus* (Lindmark and Müller, 1973) and later found in various parasite lineages (Horner et al., 1999; Hug et al., 2010). Being a key enzyme of anaerobic metabolism of some parasites, intensive research has been devoted to the use of PFO as a medical target. The release of the *C. reinhardtii* genome sequence uncovered a gene for a PFO, thus suggesting that this metabolic enzyme was not restricted to anaerobic heterotrophic lineages. Here we provided evidence for a functional PFO in the photosynthetic alga *C. reinhardtii*.

Chloroplast CrPFO

The *Pfo*-cDNA sequence as well as the mass spectrometry data on the native CrPFO have indicated differences with reference gene models on the JGI and the phytozome portals, thereby emphasizing the need to confirm sequences prior to *in silico* studies, such as structure predictions or phylogenetic studies. CrPFO is a new member of the large family of homodimeric PFOs, which occur in mesophilic bacteria, such as *Clostridium* species (Uyeda and Rabinowitz, 1971; Meinecke et al., 1989) and *Desulfovibrio* species (Pieulle et al., 1995), in cyanobacteria, and in anaerobic eukaryotes (Williams et al., 1987; Townson et al., 1996). There exist two other types of PFOs, which differ from the homodimeric enzymes in their subunit composition, *i.e.*, the heterodimeric PFOs in archaeal halobacteria (Kerscher and Oesterhelt, 1981; Plaga et al., 1992) and the multimeric PFOs (containing 4 or 5 distinct subunits) found in anaerobic hyperthermophiles, comprising both bacteria such as *Thermotoga maritima* (Blamey and Adams, 1994) and archaea such as *Pyrococcus furiosus* (Blamey and Adams, 1993). The only type of PFO encountered in eukaryotes so far belongs to the homodimeric family. In phylogenetic trees, the eukaryotic enzymes form a completely separate clade wedged between two clades comprising bacterial representatives (Atteia et al., 2006; Hug et al., 2010). PFO was present in the eukaryote common ancestor (Embley and Martin, 2006; Müller et al., 2012) which is reflected in the high homology
to PFOs from heterotrophic eukaryotes. Also, since CrPFO is more related to deltaproteobacteria and firmicutes than to cyanobacteria, a cyanobacterial origin for the algal PFO can be excluded.

C. reinhardtii PFO differs from (most of) its counterparts in bacteria and eukaryotes by the presence of an extension at its C-terminus. The reported high sensitivity of the recombinant algal enzyme to O_2 rules out the possibility that this extension protects the enzyme catalytic center from oxidative damage, as is the case for the C-terminus of *Desulfovibrio* PFOs (Vita et al., 2008). Currently, we are left with the question as to what the function of this short extension could be. It is worth noting that Alanine stretches, as found at the C-terminus of *Cr*PFO (Fig. 1A), are also present at the C-terminus of the PFO from the free-living flagellate *Trimastix pyriformis* (Supplemental Fig. S2). This is also true for the C-termini of several other enzymes of *C. reinhardtii* (anaerobic) metabolism, *i.e.* phosphotransacetylases PTA1 and PTA2, and acetate kinase ACK2. The role of these stretches may constitute a topic for future investigation into function and/or regulation of eukaryotic anaerobic enzymes.

Thus far, eukaryote PFO and its alternative form PNO have been found in the cytosol, the hydrogenosomes, or the mitochondrion (Müller et al., 2012). Our data provides experimental evidence for the localization of the *Cr*PFO in the chloroplast. Therefore, PFO can function in any cell compartment. Once the evolutionary history of the eukaryote PFOs is resolved, PFO might become an interesting model to study recompartmentalization, *i.e.* the evolutionary move of an enzyme from one cell compartment to another (Martin, 2010).

In contrast to PFL, which was found in both the chloroplast and mitochondria of *C. reinhardtii* (Atteia et al., 2006; Terashima et al., 2010), *Cr*PFO appears to be restricted to one single cell compartment. After the hydrogenase (HYDA) (Happe et al., 1994) and PFL, PFO is the third highly O_2-sensitive enzyme shown to populate the chloroplast in the alga, suggesting that there must be an underlying principle explaining this occurrence. In its natural habitats, the photosynthetic alga encounters fermentation products such as acetate, which result from the anaerobic metabolic activity of other organisms as well as its own. It was observed that acetate inhibits *C. reinhardtii* O_2-producing photosynthetic activity (Heifetz et al., 2000), and thus acetate may constitute a turn-on switch for anaerobic metabolism and its O_2-sensitive enzymes.

*Cr*PFO was not (immuno)detected in cells growing under aerobic conditions in contrast to PFL (Atteia et al., 2006; Magneschi et al., 2012). It is assumed that the detected PFL is in its inactivated form, which is not sensitive to O_2. Since cellular energy is comparatively low in an anaerobic environment, it maybe good housekeeping to maintain a constant level of PFL and only upregulate the expression of the small PFL-activase protein upon anoxia. In contrast, synthesis and maturation of CrPFO might only occur under anoxic conditions.
Spectroscopic and enzymatic properties of heterologously expressed CrPFO

Our study of the native CrPFO indicated its relatively low intracellular levels in the culture conditions investigated, resulting in a negligible activity detected in chloroplast soluble fractions. Hence, for the characterization of CrPFO, we pursued heterologous expression of the enzyme in E. coli. This was deemed feasible since a pyruvate:flavodoxin oxidoreductase (akin PFO) is also part of the enzymatic arsenal of this bacterium (Blaschkowski et al., 1982). Expression of a functional Cr-rPFO was achieved by growing E. coli cells aerobically in an auto-inducible rich medium, in contrast to the expression of DaPFO which was achieved after manual induction with IPTG under anaerobic conditions (Pieulle et al., 1997).

Since under physiological conditions the cytoplasm of E. coli is reducing, anaerobic expression of anaerobic enzymes in the bacterium may not be necessary, especially when the recombinant enzyme is confined to the cytoplasm and the expression of required chaperones or production of cofactors is not dependent on anaerobic culture conditions. Since these prerequisites were met for PFO, it seemed likely that Cr-rPFO could be properly expressed under aerobic culture conditions, as was observed. It is known that E. coli PFO is usually expressed only at low levels, playing a role in PFL activation via flavodoxin (Blaschkowski et al., 1982); the observed low heterologous expression of Cr-rPFO in E. coli cells might be explained when higher PFO levels activity would lead to disruptive oxidative pyruvate conversion, upsetting the redox balance and damaging or killing bacterial cells. This effect is for example known for E. coli expressing high levels of cyt c type proteins (R. van Lis, unpublished results).

C. reinhardtii PFO produced in E. coli is functional. We showed here that the recombinant enzyme contains the full set of redox cofactors, i.e. the catalytic TPP and three [4Fe-4S] centers, as found for most PFOs from various bacterial species and likely from heterotrophic eukaryotes, although to our knowledge no EPR spectra have been published. The decarboxylase activity of Cr-rPFO using the artificial acceptor BV (12U) is in the activity range reported for native PFOs from the heterotrophic eukaryote Trichomonas vaginalis (10-20U; Williams et al., 1987), the firmicute Clostridium acetobutylicum (25U; Meinecke et al., 1989) and the methanogenic archaeon Methanosarcina Barkeri (22U; Bock et al., 1996). It is however significantly smaller than the activities reported for the homodimeric PFO from D. africanus (70U; Pieulle et al. 1995) or the multimeric PFO from the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus (74U; Kunow et al., 1995). This may have to do with the more robust heat-resistant configuration of PFOs from hyperthermophiles and the O2 protective C-terminus found in the DaPFO, protecting these types of PFOs from structural and oxidative damage. In this regard it is noted that the iron-sulfur cluster content of Cr-rPFO was to some extent too low, which should be kept in mind when considering its specific decarboxylating activities. Also, it cannot be excluded that the few amino acids in Cr-rPFO that differ from the native CrPFO (Supplemental Fig. S3), although they are not conserved and removed from the catalytic center(s), may have some effect on the kinetic parameters.
Addition of TPP was required for Cr-rPFO decarboxylase activity, likely because this cofactor was lost during purification. The loss of TPP is not specific for the algal enzyme. It has indeed been reported in various studies, such as those on the native PFOs from *Klebsiella pneumoniae*, *M. thermoaceticum* (Wahl and Orme-Johnson, 1987) and *T. vaginalis* (Williams et al., 1987). Similar to most homodimeric PFOs, that of the green alga shows a high sensitivity to O2. This sensitivity is currently explained by the degradation of the [4Fe-4S] cluster proximal to the TPP which is in most species exposed to the solvent (Fig.1; Pieulle et al., 1995; Chabrière et al., 1999; Vita et al., 2008).

Catalytic and molecular insights into the interaction between Cr-rPFO and ferredoxins

The oxidation of pyruvate by PFO generates low potential electron transfer to small soluble proteins, typically ferredoxins or flavodoxins. As far as small soluble electron carrier proteins go in *C. reinhardtii*, no flavodoxin could be found, so we were left with six ferredoxins (FDX1-6) that have been identified in the chloroplast and that were shown to be differentially regulated (Terauchi et al., 2009). So far, specific physiological roles have only been assigned to FDX1 and FDX2. FDX1 (petF), the most abundant isoform in the alga (Schmitter et al., 1988; Terauchi et al., 2009) is the electron acceptor to ferredoxin:NADP+ oxidoreductase (FNR) and the best donor to hydrogenase (HYDA) (Winkler et al., 2009). FDX2 is involved in nitrate metabolism: i) it specifically accumulates in algal cells grown on nitrate (as opposed to ammonium-grown cells), and ii) it is a better electron donor to nitrite reductase than FDX1 (Terauchi et al., 2009). A role for FDX5 in anaerobic hydrogen production was initially considered because its transcript and protein levels increase significantly upon exposure to anaerobic conditions (Mus et al., 2007; Jacobs et al., 2009). This hypothesis was later ruled out as no hydrogen evolution could be measured *via in vitro* activity assays using (heterologously expressed) FDX5 (Jacobs et al., 2009).

The efficiency of the chloroplast FDXs in accepting electrons from Cr-rPFO was here evaluated in *in vitro* assays. FDX1 was found to be the best electron acceptor, with a maximum decarboxylase activity of 6 U, followed by FDX2 with an activity of 4 U. The other FDXs were found to be poor acceptors. FDX1 and FDX2 are related: i) they share 68% amino acid sequence identity (mature proteins), ii) exhibit acidic pIs in the range of ~4.1-4.3 and iii) migrate as a dimer on SDS-PAGE (not shown). However, as shown by Terauchi et al. (2009), FDX2 differs from FDX1 in its redox potential (which is 80 mV more positive) as well as in its surface charge in the vicinity of the [2Fe-2S] cluster (which is more negative). Our data showed that the electron transfer from Cr-rPFO and the Km values for FDX1 and FDX2 are of the same order of magnitude, thus indicating some flexibility in the interaction between Cr-rPFO and its ferredoxin partner. The low electron transfer efficiency observed with FDX3-FDX6 as compared to FDX1 (and FDX2), might be explained by the fact that former FDXs exhibit extensions at their C-terminus, 8 residues for FDX4 and FDX5, and 33-34 residues for FDX3 and FDX6. These C-terminal extensions might
interfere with the interaction with CrPFO, an interaction believed to occur primarily through electrostatic forces (Pieulle et al., 2004). This assumption is comforted by the fact that no Cr-rPFO activity could be measured when FDX1 was expressed with a C-terminal 6-Histidine tag which adds a stretch of 8 amino acids (LEHHHHHHH) to the protein. It is also noted that the reduction of FDxs by FNR, using NADPH as electron donor, follows the same trend as with CrPFO, i.e. FDX1 and FDX2 are highly efficient electron acceptors but FDX3-FDX6 are not (R. van Lis, unpublished results).

Immunoblotting experiments showed that the levels of FDX1 and FDX2 do not strictly correlate with the levels of PFO in the algal cells. In strain cc124, anaerobic accumulation of CrPFO in nitrate-containing culture medium occurs in the absence of any detectable FDX2. As shown here, between the two FDxs that were found to work efficiently with Cr-rPFO, FDX1 is by far the most abundant isoform and is thus very likely the main acceptor for CrPFO.

In most anaerobic eukaryotes and bacteria, PFO is a catabolic enzyme, involved in a metabolic route that can lead to hydrogen production (Verhaart et al., 2010; Rydzak et al., 2011; Müller et al., 2012). With the identification of FDX1 as the best electron acceptor from Cr-rPFO (this study) and the best donor to the hydrogenase HYDA1 (Winkler et al., 2009), the involvement of PFO in H₂ production in the alga may be considered very likely, especially in low light or in the absence of light as a strong FDX reductant. As said before, FDX2 can connect anaerobic pyruvate decarboxylation to nitrogen metabolism via nitrite reductase (Terauchi et al., 2009). Via either FDX1 or FDX2, CrPFO could also provide reducing power for amino acid synthesis (via glutamate synthase) and sulfur metabolism (via sulfite reductase) (Winkler et al., 2010) under dark anoxia. In a number of autotrophic bacteria, PFO has also been shown to function as pyruvate synthase (Fuchs, 2011). The equilibrium dynamics of the enzymatic reaction catalyzed by PFO in *C. reinhardtii* remains to be established in further studies.

In conclusion

Chlamydomonas exhibits a substantial repertoire of fermentative enzymes that provides the alga with metabolic plasticity during periods of anoxia, thereby enhancing its survival (Atteia et al., 2006; 2012; Grossman et al., 2007). Our study shows that the photosynthetic alga harbours a pyruvate ferredoxin:oxidoreductase that structurally and functionally relates to homodimeric PFOs, and that uses FDX1 as electron carrier. Studies of the metabolic switches and interplay between the anaerobic metabolic routes in *C. reinhardtii* remain limited. Especially the seemingly redundant capacity for interconversion of pyruvate and acetyl-CoA by both PFL and PFO warrants further study. Expression and regulation studies of PFO and other anaerobic enzymes as well as intra- and extracellular metabolic product analysis under various O₂-excluding conditions should provide more insights into how this enzyme fits into the anaerobic metabolism of green protists.
MATERIALS AND METHODS

Algal strains and culture conditions

C. reinhardtii strain cc124 was obtained from the *Chlamydomonas* culture collection (Duke University). Strain 10-6C (Spreitzer and Mets, 1980) was obtained from the collection of photosynthesis mutants at the Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste (IBPC, Paris). Algae were maintained on Tris-acetate-phosphate (TAP) medium (Harris, 2009) solidified with 1.5% agar (w/v). For strain 10-6C, TAP medium was supplemented with 100mg/L of Arginine (TAP-Arg). For growth on nitrate as sole nitrogen source, ammonium in the TAP-medium was replaced by nitrate (4mM NaNO₃). Liquid cultures were grown at 24°C with constant shaking (125 rpm), in dim light.

Anaerobic induction of cell suspensions

Exponentially growing *C. reinhardtii* cultures were harvested and then resuspended either in TAP medium or in anaerobic induction buffer (AIB) containing 50 mM potassium phosphate (pH 7.0) and 3 mM MgCl₂ (Ghirardi et al., 1997) to a cell concentration of 1-1.5 x10⁷ cells/mL. Cells were then placed in an anaerobic jar containing an Anaerocult®A cartridge (Merck), and incubated under agitation in the dark for 5-6 h, at 24°C. Following anaerobic incubation, the cells were harvested by centrifugation at 2,000 x g for 5 min and flash-frozen. Cell pellets were stored at -20°C until used.

Organelle isolation and partial purification of native CrPFO

Cells (strain 10-6C), grown to late exponential phase, were harvested and then resuspended in one-tenth volume of TAP-Arg. The cell suspension was transferred to a bottle, later placed in a jar containing an Anaerocult®A. After 5 h of anaerobic incubation in the dark, the cells were harvested and used to isolate organelles as described (van Lis et al., 2005). Organelles were flash-frozen, and stored at -20°C.

For partial purification of CrPFO, all steps except ultracentrifugation were carried out in an anaerobic glove box (Jacomex; [O₂] < 5 ppm). Chloroplasts, resuspended in 50 mM Hapes (pH 7.5), supplemented with protease inhibitors (0.1 mM PMSF, 0.5 mM benzamidine and 1 mM aminocaproic acid) to a concentration of 3 mg proteins/mL, were broken by two cycles of freezing (in a freezing ethanol bath) and thawing at room temperature. Fractionation of the chloroplasts into their membrane and soluble constituents was achieved by ultracentrifugation (45,000 rpm for 45 min, 70Ti rotor), at 4°C. Soluble chloroplast proteins were applied to an anion exchange chromatography column (DE52) pre-equilibrated with 50mM Hapes-NaOH pH 7.5 and then eluted by a stepwise NaCl gradient (50 mM steps) in the same buffer. CrPFO was eluted with 100 mM NaCl.
Cloning of the C. reinhardtii Pfo gene

From the \textit{Pfo} gene sequences obtained from the JGI (version assemblies v2.0, v3.0 and v4.0), specific primers were designed. These primers were then used in PCR to obtain the sequence of the \textit{Pfo} coding region and of its flanking regions, using as DNA template a \textit{\lambda}ZAPII phagemid cDNA library (Stratagene) made with mRNAs isolated from cells grown in light with 5\% (v/v) CO\textsubscript{2} (a gift from J. Davies). Among the various PCR products obtained, the longest of 3917 bp (amplified with primers P1 and P2; see Supplemental Table S1) was used as a DNA template to amplify the sequence corresponding to the predicted mature \textit{Pfo} coding region. Because all our attempts to amplify this region failed, we decided to amplify and clone the sequence for the mature CrPFO in two parts. A silent XhoI site was introduced for re-ligating the two pieces after having separately cloned them. We obtained a 5'-end fragment of 598 bp using a forward primer (P3) that includes an NdeI restriction site, and a reverse primer (P4) containing an XhoI site. The 3'-end fragment of 3116 bp was obtained by using a forward primer (P5) containing an XhoI site and reverse primer (P6), containing a HindIII site. The 5'-end fragment was digested with NdeI and XhoI whereas the 3'-end fragment was digested with XhoI, dephosphorylated, and then cut with HindIII. The resulting fragments were ligated for 30 min with the pET24a plasmid (Merck-Novagen) pre-digested with NdeI and HindIII. The sequence of the 3705-bp insert (encoding 1235 amino acids) in the \textit{Pfo}-pET24a construct thus obtained was verified by sequencing at GATC Biotech (Germany). The \textit{C. reinhardtii Pfo-cDNA} sequence has been deposited in Genbank under the accession number FR848330.

Cr-rPFO expression and purification

\textit{Pfo}-pET24a construct was co-transformed with the pRKISC plasmid (Nakamura et al., 1999) into \textit{Escherichia coli} BL21(DE3) strain for expression. Cells were grown overnight at 37°C in autoinducible ZYM5052 medium (Studier, 2005) supplemented with 1 mM Cys, under aerobic conditions. The cells were harvested, washed in 50 mM sodium phosphate (pH 8.0) containing 300 mM NaCl (buffer 1), and flash-frozen. Cell pellets were stored at -20°C until use. Cr-rPFO was purified in N\textsubscript{2}-atmosphere in a glove box. Pellets from a 1 L culture were resuspended in 20 mL of Buffer 1, supplemented with lysozyme (0.5 mg/ml), DNase (crystals) and the protease inhibitors described above. Cells were disrupted by two cycles of freezing and thawing. The soluble fraction, containing Cr-rPFO, was incubated with HIS-Select\textregistered Nickel Affinity Gel (Sigma) in the presence of 30 mM imidazole and 2.5 mM DTT. After a 20 min anaerobic incubation at 4°C, under gentle agitation, the resin was washed with 5 volumes of cold Buffer 1 supplemented with 30 mM imidazole and 2.5 mM DTT. Cr-rPFO was then eluted from the resin with 100 mM imidazole in Buffer 1. The eluted enzyme was immediately passed through a PD10 desalting column (GE Healthcare) pre-equilibrated with 50 mM Tricine, pH 8.0 and finally concentrated to approximately 1.0-1.5 mg/ml. Purified enzyme was stored in liquid N\textsubscript{2}.
van Lis et al.

Production of polyclonal anti-PFO antibodies

Polyclonal antibodies were produced by immunization of a rabbit with a truncated CrPFO (Met350-His1232; Cr-tPFO). Cr-tPfo was amplified by PCR using as template the cDNA library and the primer pair P7 and P8, which contain respectively a BamHI and a HindIII site (Supplemental Table S1), and further cloned into the pET24a vector. E. coli BL21(DE3) cells were transformed with Cr-tPfo-pET24a to produce Cr-tPFO. The protein was then purified under denaturing conditions using HIS-Select® Nickel Affinity Gel, as recommended by the supplier. Antibodies were produced by Eurogentec (Leuven, Belgium).

Expression and purification of recombinant chloroplast ferredoxins FDX1-FDX6

The gene regions coding for C. reinhardtii mature chloroplast ferredoxins FDX1 to FDX6 (Jacobs et al., 2009; Terauchi et al., 2009) were amplified by PCR (including the stop codon) using primers P9-P20 listed in Supplemental Table S1, and cloned into expression vector pET24a. Expression was done in E. coli strain BL21(DE3) as for Cr-rPFO, except that the induction was done at 25°C with 20µM IPTG instead of lactose. E. coli cell pellets from 2L cultures were resuspended in Hepes 50mM, pH 7.5 in the presence of lysozyme, DNase (crystals), and the protease inhibitors, and further broken by French Press. Insoluble material was removed by ultracentrifugation (244,000 x g for 45 min) at 4°C. For all FDXs, the soluble fraction was loaded on a DE52 anion exchange chromatography equilibrated with Hepes 50 mM, pH 7.5; their elution was achieved with NaCl concentrations in the range of 200-300 mM. Using ammonium sulphate precipitation steps at 55%, 75% and 90%, FDX1 precipitated at 90% whereas FDX2 did not. The precipitated FDX1 was dissolved in Tricine 50 mM pH 8.0 and desalted, whereas FDX2 was dialyzed against the same buffer and concentrated. Following DE52 chromatography steps, FDX3, FDX4 and FDX6 were further purified on a DEAE Biogel A and a hydroxyapatite column; all three FDXs eluted at 50 mM sodium phosphate. FDX5, prone to aggregation upon O2 exposure (Jacobs et al., 2009), was purified in a glove box. FDX5-containing cells were broken by two cycles of freezing and thawing. The purification steps for FDX5 included a DE52 column chromatography (elution with 250 mM NaCl), precipitation with NH4SO4 (65% saturation) and DEAE Biogel A column chromatography (BioRad). FDX5 eluted from the latter column with 100 mM NaCl, was then desalted and stored in liquid N2.

Protein sample preparation, gel electrophoresis and immunoblotting

Protein concentration was routinely determined using the BCA kit (Pierce), with BSA as standard. When protein concentrations of whole cells were determined, proteins were first precipitated by CHCl3/MeOH (Wessel and Flügge, 1984) and then resuspended in 2% (w/v) SDS. For protein gels, cells or cell fractions were solubilized in the presence of 2.5% SDS (w/v), 1% beta-mercaptoethanol, boiled for 2 min, and then centrifuged for 1 min at 12,000 x g to remove insoluble material. Proteins were separated by SDS-PAGE in a 10% polyacrylamide gel, a 5-12% acrylamide gel containing 6M urea (PFO) or a 12-
18% acrylamide gel (FDXs). Molecular masses were estimated using Prestained protein ladder Plus (Euromedex). On urea/SDS-gel gradient, the 75 kDa and 100 kDa markers comigrate; the 75 kDa protein probably runs anomalously. After electrophoresis, proteins were either stained with Coomassie Brilliant Blue R250 or transferred onto nitrocellulose membranes (Roti®-NC, Roth). Primary antibodies were used at the following dilutions: anti-PFO, 1:5,000; anti-PFL, 1:15,000 (Atteia et al., 2006); anti-ATP2, 1:50,000 (Atteia et al., 2006), anti-LHC, 1:50,000, anti-FDX1, 1:40,000 and anti-FDX2, 1:2,000. Secondary antibody was horseradish peroxidase-conjugated goat anti-rabbit IgG (Sigma), used at 1:10,000. Immunodetection was done by a homemade enhanced chemiluminescence system (Durrant, 1990). Blue native PAGE was prepared as described previously (Schägger, 2001).

Mass spectrometry and bioinformatics analyses

The gel band in the 130 kDa region was manually excised and cut in pieces before being washed by 6 successive 15 min incubations in 25 mM NH₄HCO₃ and in 25mM NH₄HCO₃ containing 50% (v/v) acetonitrile. Gel pieces were then dehydrated with 100 % acetonitrile and incubated for 45 min at 53°C with 10 mM DTT in 25mM NH₄HCO₃ and for 35 min in the dark with 55 mM iodoacetamide in 25mM NH₄HCO₃. Alkylation was stopped by adding 10 mM DTT in 25mM NH₄HCO₃ and mixing for 10 min. Gel pieces were then washed again by incubation in 25 mM NH₄HCO₃. Before dehydration with 100% acetonitrile, 0.15 µg of modified trypsin (Promega, sequencing grade) in 25 mM NH₄HCO₃ was added to the dehydrated gel pieces for an overnight incubation at 37°C. Peptides were then extracted in three sequential extraction steps (15 min each) in 30 µL of 50% acetonitrile, 30 µL of 5% formic acid and finally 30µL of 100% acetonitrile. The pooled supernatants were then dried under vacuum.

The dried extracted peptides were resuspended in 5% acetonitrile and 0.1% trifluoroacetic acid and analyzed by online nanoLC-MS/MS (Ultimate 3000, Dionex and LTQ-Orbitrap Velos pro, Thermo Fischer Scientific). The nanoLC method consisted of a 30-min gradient ranging from 5% to 45% acetonitrile in 0.1% formic acid at a flow rate of 300 nL/min. Peptides were applied to a 300 µm x 5 mm PepMap C18 reverse phase precolumn and then separated on a 75 µm x 250 mm C18 reverse phase column (PepMap, Dionex). MS and MS/MS (Top20) data were acquired using Xcalibur (Thermo Fischer Scientific) and processed automatically using Mascot Daemon software (version 2.3, Matrix Science). Searches against a custom polypeptide sequence database (Nguyen et al., 2011), contaminants databases (34618 sequences in total for these 2 databases) and the corresponding reversed databases were performed using Mascot (version 2.4). ESI-TRAP was chosen as the instrument, trypsin/P as the enzyme and 2 missed cleavages allowed. Precursor and fragment mass error tolerances were set at 10 ppm and 0.6 Da, respectively. Peptide modifications allowed during the search were: carbamidomethyl (C, fixed) acetyl (N-ter, variable), oxidation (M, variable) and deamidation (NQ, variable). The IRMa software (Dupierris et al., 2009) (version 1.30.4) was used to filter the results (FPR < 1% for peptide identification), minimum of 1 unique peptide and of 2 peptide sequences per protein. Proteins hits from the contaminants database were discarded from the list of identified proteins.
Cr-rPFO and ferredoxin-dependent enzymatic assays

All assays were performed in a N2-atmosphere in a glove box at 25°C, using a Varian Cary50 spectrophotometer with a probe of 1 cm optical length. Standard assay mixture (1ml) for Cr-rPFO activity measurements contained 25 mM potassium phosphate (pH 7.0), 0.1 mM CoASH, 5 mM sodium pyruvate, 0.2 mM TPP and 1 mM MgCl₂. The reaction was started by addition of the enzyme (~2-4 µg protein). For the pH dependency curve, 25 mM potassium phosphate was used, with increments of 0.5 pH unit from pH 5.0 to pH 9.0. The rate of BV reduction was determined at 600 nm (ε = 7.4 mM⁻¹cm⁻¹), the rate of reduction of MV was determined at 604 nm (ε =13.9 mM⁻¹cm⁻¹), and of MB at 600 nm (ε = 30.6 mM⁻¹cm⁻¹). Specific activity was defined as µmol pyruvate decarboxylated min⁻¹mg⁻¹ protein, at 25°C. One catalytic unit (U) corresponds to 1 µmol pyruvate decarboxylated min⁻¹mg⁻¹ protein.

Cr-rPFO activity in the presence of FDX was assessed in a coupled assay, whereby the reduction of horse heart cyt c by reduced ferredoxin was followed spectrophotometrically at 550 nm (ε= 20 mM⁻¹cm⁻¹). The assay buffer was as described above except that the artificial electron acceptor was replaced by 20 µM ferredoxin and 50 µM cyt c. To determine the amount of FDX present, absorption spectra of FDXs in the reaction mixture were recorded prior to adding cyt c and Cr-rPFO. Km values were calculated with the help of the program Hyper32 for hyperbolic regression analysis (available at http://homepage.ntlworld.com/john.easterby/hyper32.html).

EPR spectroscopy

Purified Cr-rPFO was transferred into EPR tubes in the anaerobic glove box where they were also frozen and sealed. Additions of dithionite, pyruvate and/or CoASH were done prior to transfer into the tubes. EPR spectra were acquired on a Bruker ElecSys X-band spectrometer (Bruker, Karlsruhe/Germany) fitted with a liquid He cryostat and temperature control system (Oxford Instruments, Oxon/UK).

Modelling of CrPFO

Using the crystal structure of DaPFO (protein data bank 2C42) as the basis, the amino acid sequence of CrPFO was used to construct a predicted 3D structure with SwissModel. This structure was overlaid with that of DaPFO using PDB viewer. The resulting image was then imported into the program POV-Rey for an enhanced depth view of the structures.

Acknowledgements. The authors thank Sabeeha Merchant for the gift of antibodies against FDX1 and FDX2, Olivier Vallon for antibodies against the LHC proteins, Alessandro Aliverti for the gift of the spinach Fd1 expression construct and Florence Chaspoul for the ICP-MS measurements. We also thank Profs. William F. Martin and Samuel I. Beale for helpful comments on the manuscript. Financial support was from “Agence Nationale pour la Recherche” (ANR-11-BIOE-004-03, project AlgoH2) (AA, CB and RvL) and the CNRS.
LITERATURE CITED

Akhmanova A, Voncken FG, Hosea KM, Harhangi H, Keltjens JT, op den Camp HJ, Vogels GD,
Hackstein JHP (1999) A hydrogenosome with pyruvate formate-lyase: anaerobic chyrid fungi use an
alternative route for pyruvate catabolism. Mol Microbiol 32: 1103-1114

Pyruvate formate-lyase and a novel route of eukaryotic ATP-synthesis in *Chlamydomonas*

W, Garin J, Joyard J, Rolland N (2009) A proteomic survey of *Chlamydomonas reinhardtii*
mitochondria sheds new light on the metabolic plasticity of the organelle and on the nature of the
alpha-proteobacterial mitochondrial ancestor. Mol Biol Evol 26: 1533-1548

photosynthetic eukaryotes. Biochem Biophys Acta doi. 10.1016/j.bbabio.2012.08.002

Blamey JM, Adams MW (1993) Purification and characterization of pyruvate ferredoxin oxidoreductase
from the hyperthermophilic archaeon *Pyrococcus furiosus*. Biochim Biophys Acta 1161: 19-27

Blamey JM, Adams MW (1994) Characterization of an ancestral type of pyruvate ferredoxin
oxidoreductase from the hyperthermophilic bacterium, *Thermotoga maritima*. Biochemistry 33: 1000-
1007

reduction in *Escherichia coli*. CoA-acylating pyruvate:flavodoxin and NADPH:flavodoxin
oxidoreductases participating in the activation of pyruvate formate-lyase. Eur J Biochem 123: 563-569

and sequence alignments of pyruvate:ferredoxin oxidoreductase from the methanogenic archaeon
Methanosarcina barkeri (strain Fusaro). Eur J Biochem 237: 35-44

Benning C, Pellegrini M, Merchant SS (2011) Systems biology approach in *Chlamydomonas*
reveals connections between copper nutrition and multiple metabolic steps. Plant Cell 23: 1273-1292

Catalanotti C, Dubini A, Subramanian V, Yang W, Magneschi L, Mus F, Seibert M, Posewitz MC,
lacking pyruvate formate lyase and both pyruvate formate lyase and alcohol dehydrogenase. Plant
Cell 24: 692-707

Flexibility of thiamine diphosphate revealed by kinetic crystallographic studies of the reaction of
pyruvate-ferredoxin oxidoreductase with pyruvate. Structure. 14: 217-224
van Lis et al.

van Lis et al.

van Lis et al.

Meinecke B, Bertram J, Gottschalk G (1989) Purification and characterization of the pyruvate-ferredoxin oxidoreductase from *Clostridium acetobutylicum*. Arch Microbiol 152: 244-250

van Lis et al.

FIGURE LEGENDS

Figure 1. Schematic representation and predicted structure of *C. reinhardtii* PFO. A, top) The monomer of the homodimeric *Da*PFO has been described as being composed of 7 domains (I-VII). Domains I, II and IV are involved in dimer formation and domain VII confers O₂ stability to the enzyme via disulfide bond formation (Pieulle et al., 1995; Chabrière et al., 1999). A, bottom) As compared to bacterial and eukaryotic PFOs, the algal enzyme exhibits an extension at its N-terminus which likely serves as intracellular targeting peptide. The C-terminal extension of *Cr*PFO differs from that of *Da*PFO in both length and amino acid composition, in particular in their content of Histidine and Cysteine residues. Anava: *Anabaena variabilis* (cyanobacterium), Chlil: *Chlorobium limicola* (chlorobacteria), Chlre: *C. reinhardtii* (photosynthetic eukaryote); Cloac: *Clostridium acetobutylicum* (firmicute); Desaf, *D. africanus* (deltaproteobacterium); Triva, *T. vaginalis* (heterotrophic eukaryote). B) Overlay of the predicted structure of a *Cr*PFO monomer (light green) (Pro96-His1292) with the use of the *Da*PFO monomer (yellow) as template shown in interaction with another *Da*PFO monomer (blue) to form the typical PFO homodimer. The 2.3 Å crystal structure of *Da*PFO has revealed the arrangement of the three [4Fe-4S] clusters (orange) and the TPP cofactor (dark green) within the enzyme (Chabrière et al., 1999; Charon et al., 1999). TPP is deeply buried in the protein and its closest cluster (or proximal cluster) is approximately 13Å away. The other two clusters are arranged successively up to the surface of the dimer, with cluster to cluster distances of about 12-15 Å. In *Da*PFO, the C-terminus (domain VII) extends over the other monomer (Chabrière et al., 1999).

Figure 2. Subcellular localization of PFO in *C. reinhardtii*. A) Analysis of chloroplasts (Cp) and mitochondria (Mt) isolated from cells (strain 10-6C) incubated in anaerobic TAP medium, in the dark (Ce). Proteins (30µg) were separated on urea/SDS-PAGE, and transferred onto a nitrocellulose membrane. The nitrocellulose membrane was then stained with Ponceau Red. Immunoblots show the distribution of light harvesting complex proteins (LHC), the beta subunit of mitochondrial ATPase (ATP2) and *Cr*PFO in whole cells and isolated organelles. B) *Cr*PFO intracellular sorting as predicted by PredAlgo (Tardif et al., 2012).

Figure 3. Identification of chloroplast *Cr*PFO by mass spectrometry. A) Proteins in a chloroplast fraction enriched in *Cr*PFO were separated on urea/SDS-PAGE. Proteins were either stained with Coomassie brilliant blue (CBB) or transferred to nitrocellulose for immunoblot analysis with antibodies against PFO or PFL. The gel piece in which tryptic peptides for *Cr*PFO and PFL were identified is indicated. B) *Cr*PFO N-terminal sequence with identified semi-tryptic peptides. The N-terminal residue of each of the identified semi-tryptic peptides is boxed in dark grey. The complete list of (semi)-tryptic peptides is given in Supplemental Table S2.
Figure 4. Purification of Cr-rPFO on HIS-Select®Nickel Affinity Gel. Left panel: SDS-PAGE (10% acrylamide gel) analysis of the purification of Cr-rPFO from E. coli cells. The gel was stained with Coomassie Brilliant Blue. Lane 1, E. coli cells expressing Cr-rPFO; lane 2, E. coli soluble fraction; lane 3, proteins that do not bind on the HIS-Select resin; lane 4, wash with 30 mM imidazole; lane 5, Cr-rPFO elution with 100 mM imidazole (6 µg). Right panel: Cr-rPFO (40 µg) analyzed by blue native PAGE (5-15% acrylamide gel) run under a N₂ atmosphere. CBB, gel lane stained with Coomassie Brilliant Blue; NBT, gel lane stained for PFO activity in an assay mixture containing 10 mM Nitroblue Blue Tetrazolium as electron acceptor.

Figure 5. UV/visible spectra of purified Cr-rPFO. The spectra were recorded in an anaerobic cuvette containing 10 µM of enzyme in 100 mM Glycine buffer at pH 10.5, in order to assure full reduction by dithionite. Cr-rPFO as purified (solid line), Cr-rPFO after reduction by dithionite (dotted line).

Figure 6. Selected EPR spectra of Cr-rPFO. Top panel: Spectra recorded on only slightly reduced enzyme (dotted line), on a sample that was treated with an excess of dithionite (dashed line) and on enzyme reduced by its substrates pyruvate and CoASH. Bottom panel: Redox difference spectra (substrate-reduced minus excess dithionite-reduced as continuous line; excess dithionite-reduced weakly-reduced as dashed line) normalized to approximately equivalent signal amplitudes to facilitate comparison. The dotted line corresponds to the spectrum of weakly-reduced enzyme as in the top panel. The spectra show gz, gy and gx-lines in the spectral range typical for iron-sulfur clusters, that is, around 2.05 (peaks), 1.92-1.94 (derivatives) and 1.85-1.92 (troughs). The pronounced shift of the gx-troughs and, to a lesser extent, the shifts of the gy-lines evidence the presence of at least three different spectral species. The satellite gz-peaks at 2.08 in the higher reduction states are most probably due to paramagnetic interaction between adjacent clusters. Inset: TPP radical signal. Cr-rPFO (20µM) in 50 mM Tricine pH 8.0, 0.1 mM TPP and 0.1 mM MgCl₂ was reduced by 10 mM pyruvate (5 min at room temperature). Instrument settings: temperature, 15K; microwave frequency, 9.44GHz; microwave power, 6.3 mW; modulation amplitude 1.6mT.

Figure 7. Efficiency of the different chloroplast FDXs as electron acceptors from Cr-rPFO. PFO decarboxylase activity was assayed in presence of 20 µM of each FDX and their reduction rate was measured as cyt c reduction at 550 nm. The values for the FDXs were corrected for direct reduction of cyt c by Cr-rPFO. Inset: FDX contents were evaluated by the absorption signal at 420 nm of the oxidized [2Fe-2S] cluster.

Figure 8. Cellular levels of CrPFO, FDX1 and FDX2 under different conditions. Proteins in extracts from strains cc124 and 10-6C (25 µg) were separated on SDS-PAGE and transferred to nitrocellulose membrane for immunoblot analysis with α-PFO, α-FDX1 and α-FDX2. Lane 1, TAP light aerobic; lane 2,
van Lis et al.

dark anaerobiosis in AIB medium; lane 3, dark anaerobiosis in TAP medium; lane 4, TAP-NO3 light aerobic; 5, dark anaerobiosis in TAP-NO3. a, b, c, for FDXs 200, 40, 5 ng of control ferredoxin; b, for PFO 40 ng of control Cr-rPFO protein. Immunodetection limits for recombinant proteins are of 40 ng for both FDX1 and FDX2, and of 5 ng for CrPFO (not shown).

Supplemental Data

Supplemental Fig. S1
Amino acid sequence of CrPFO (CCA61743)

Supplemental Fig. S2
Multiple sequence alignment of homodimeric PFOs from different bacterial and eukaryote sources

Supplemental Fig. S3
CrPFO sequence with the tryptic peptides identified by mass spectrometry

Supplemental Table S1
Primers used to generate Pfo-cDNA and protein expression constructs.

Supplemental Table S2
Proteins identified by mass spectrometry in the 130 kDa gel band that contained immunodetected CrPFO

Supplemental Table S3
Reduction rate of horse heart cyt c by the different FDXs, reduced either enzymatically by Cr-rPFO in the pyruvate decarboxylase reaction assay or chemically by dithionite.
van Lis et al.

TABLES

Table I. Electron acceptor specificity of *Cr*-rPFO. The assay contained 25 mM potassium phosphate buffer (pH 7.0), 0.1 mM CoASH, 5mM pyruvate, 0.2 mM TPP and 1 mM MgCl₂ and 2-4 µg of *Cr*-rPFO per mL. Measurements were carried out at 25°C.

<table>
<thead>
<tr>
<th>Electron acceptor</th>
<th>Pyruvate oxidation (µmol min⁻¹mg⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzylviologen (1 mM)</td>
<td>12.0</td>
</tr>
<tr>
<td>Methylviologen (1 mM)</td>
<td>3.7</td>
</tr>
<tr>
<td>Methylene blue (0.5 mM)</td>
<td>4.7</td>
</tr>
<tr>
<td>FMN (0.2 mM)</td>
<td>2.3</td>
</tr>
<tr>
<td>NAD/NADP (0.2 mM)</td>
<td>0.0</td>
</tr>
<tr>
<td>Cyt c (50 µM)</td>
<td>0.4</td>
</tr>
<tr>
<td>C. reinhardtii FDX1 (20 µM)</td>
<td>6.3</td>
</tr>
<tr>
<td>Spinach Fd1 (20 µM)</td>
<td>4.5</td>
</tr>
</tbody>
</table>
Table II. Apparent Km values for CoASH and pyruvate. The Km values were determined using 1 mM BV as electron acceptor. The Km for pyruvate was measured with 10µM CoASH; the Km for CoASH was measured with 5 mM pyruvate.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>K_m (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoASH</td>
<td>5.2 ± 1.3</td>
</tr>
<tr>
<td>Pyruvate</td>
<td>160 ± 3.4</td>
</tr>
</tbody>
</table>
Table III. Effect of diverse constituents of the assay on Cr-rPFO decarboxylase activity. The complete reaction mixture was as in Table I, using 1 mM BV as electron acceptor.

<table>
<thead>
<tr>
<th>Reaction mixture</th>
<th>Pyruvate oxidation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>complete</td>
<td>100</td>
</tr>
<tr>
<td>- CoASH</td>
<td>0</td>
</tr>
<tr>
<td>- pyruvate</td>
<td>0</td>
</tr>
<tr>
<td>- TPP</td>
<td>2.5</td>
</tr>
<tr>
<td>- MgCl₂</td>
<td>56.6</td>
</tr>
<tr>
<td>+ DTT (2.5 mM)</td>
<td>100</td>
</tr>
<tr>
<td>+ NaCl (300 mM)</td>
<td>18</td>
</tr>
<tr>
<td>+ Imidazole (30 mM)</td>
<td>100</td>
</tr>
<tr>
<td>+ Cr-rPFO + air 1 hr 4°C</td>
<td>17.4</td>
</tr>
</tbody>
</table>
Table IV. Apparent Km values for FDX1 and FDX2. The Km was determined using 50 µM cyt c in a coupled assay with ferredoxin.

<table>
<thead>
<tr>
<th>Electron acceptor</th>
<th>K_m (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDX1</td>
<td>4.6 ± 0.6</td>
</tr>
<tr>
<td>FDX2</td>
<td>3.7 ± 0.9</td>
</tr>
</tbody>
</table>
Figure 1. Schematic representation and predicted structure of *C. reinhardtii* PFO. A, top) The monomer of the homodimeric *Da*PFO has been described as being composed of 7 domains (I-VII). Domains I, II and IV are involved in dimer formation and domain VII confers O₂ stability to the enzyme via disulfide bond formation (Pieulle et al., 1995; Chabrière et al., 1999). A, bottom) As compared to bacterial and eukaryotic PFOs, the algal enzyme exhibits an extension at its N-terminus which likely serves as intracellular targeting peptide. The C-terminal extension of *Cr*PFO differs from that of *Da*PFO in both length and amino acid composition, in particular in their content of Histidine and Cysteine residues. Anava: *Anabaena variabilis* (cyanobacterium), Chlli: *Chlorobium limicola* (chlorobacteria), Chlre: *C. reinhardtii* (photosynthetic eukaryote); Cloac: *Clostridium acetobutylicum* (firmicute); Desaf, *D. africanus* (deltaproteobacterium); Triva, *T. vaginalis* (heterotrophic eukaryote). B) Overlay of the predicted structure of a *Cr*PFO monomer (light green) (Pro96-His1292) with the use of the *Da*PFO monomer (yellow) as template shown in interaction with another *Da*PFO monomer (blue) to form the typical PFO homodimer. The 2.3 Å crystal structure of *Da*PFO has revealed the arrangement of the three [4Fe-4S] clusters (orange) and the TPP cofactor (dark green) within the enzyme (Chabrière et al., 1999; Charon et al., 1999). TPP is deeply buried in the protein and its closest cluster (or proximal cluster) is approximately 13Å away. The other two clusters are arranged successively up to the surface of the dimer, with cluster to cluster distances of about 12-15 Å. In *Da*PFO, the C-terminus (domain VII) extends over the other monomer (Chabrière et al., 1999).
Figure 2. Subcellular localization of PFO in *C. reinhardtii*. A) Analysis of chloroplasts (Cp) and mitochondria (Mt) isolated from cells (strain 10-6C) incubated in anaerobic TAP medium, in the dark (Ce). Proteins (30µg) were separated on urea/SDS-PAGE, and transferred onto a nitrocellulose membrane. The nitrocellulose membrane was then stained with Ponceau Red. Immunoblots show the distribution of light harvesting complex proteins (LHC), the beta subunit of mitochondrial ATPase (ATP2) and CrPFO in whole cells and isolated organelles.

B) CrPFO intracellular sorting as predicted by PredAlgo (Tardif et al., 2012).
Figure 3. Identification of chloroplast \(CrPFO \) by mass spectrometry. A) Proteins in a chloroplast fraction enriched in \(CrPFO \) were separated on urea/SDS-PAGE. Proteins were either stained with Coomassie brilliant blue (CBB) or transferred to nitrocellulose for immunoblot analysis with antibodies against PFO or PFL. The gel piece in which tryptic peptides for \(CrPFO \) and PFL were identified is indicated. B) \(CrPFO \) N-terminal sequence with identified semi-tryptic peptides. The N-terminal residue of each of the identified semi-tryptic peptides is boxed in dark grey. The complete list of (semi)-tryptic peptides is given in Supplemental Table S2.
Figure 4. Purification of Cr-rPFO on HIS-Select® Nickel Affinity Gel. Left panel: SDS-PAGE (10% acrylamide gel) analysis of the purification of Cr-rPFO from E. coli cells. The gel was stained with Coomassie Brilliant Blue. Lane 1, E. coli cells expressing Cr-rPFO; lane 2, E. coli soluble fraction; lane 3, proteins that do not bind on the HIS-Select resin; lane 4, wash with 30 mM imidazole; lane 5, Cr-rPFO elution with 100 mM imidazole (6 µg).

Right panel: Cr-rPFO (40 µg) analyzed by blue native PAGE (5-15% acrylamide gel) run under a N2 atmosphere. CBB, gel lane stained with Coomassie Brilliant Blue; NBT, gel lane stained for PFO activity in an assay mixture containing 10 mM Nitroblue Blue Tetrazolium as electron acceptor.
Figure 5. UV/visible spectra of purified Cr-rPFO. The spectra were recorded in an anaerobic cuvette containing 10 µM of enzyme in 100 mM Glycine buffer at pH 10.5, in order to assure full reduction by dithionite. Cr-rPFO as purified (solid line), Cr-rPFO after reduction by dithionite (dotted line).
Figure 6. Selected EPR spectra of *Cr-rPFO*. Top panel: Spectra recorded on only slightly reduced enzyme (dotted line), on a sample that was treated with an excess of dithionite (dashed line) and on enzyme reduced by its substrates pyruvate and CoASH. Bottom panel: Redox difference spectra (substrate-reduced minus excess dithionite-reduced as continuous line; excess dithionite-reduced minus weakly-reduced as dashed line) normalized to approximately equivalent signal amplitudes to facilitate comparison. The dotted line corresponds to the spectrum of weakly-reduced enzyme as in the top panel. The spectra show gz, gy and gx-lines in the spectral range typical for iron-sulfur clusters, that is, around 2.05 (peaks), 1.92-1.94 (derivatives) and 1.85-1.92 (troughs). The pronounced shift of the gx-troughs and, to a lesser extent, the shifts of the gy-lines evidence the presence of at least three different spectral species. The satellite gz-peaks at 2.08 in the higher reduction states are most probably due to paramagnetic interaction between adjacent clusters. Inset: TPP radical signal. *Cr-rPFO* (20µM) in 50 mM Tricine pH 8.0, 0.1 mM TPP and 0.1 mM MgCl2 was reduced by 10 mM pyruvate (5 min at room temperature). Instrument settings: temperature, 15K; microwave frequency, 9.44GHz; microwave power, 6.3 mW; modulation amplitude 1.6mT.
Figure 7. Efficiency of the different chloroplast FDXs as electron acceptors from Cr-rPFO. PFO decarboxylase activity was assayed in presence of 20 µM of each FDX and their reduction rate was measured as cyt c reduction at 550 nm. The values for the FDXs were corrected for direct reduction of cyt c by Cr-rPFO. Inset: FDX contents were evaluated by the absorption signal at 420 nm of the oxidized [2Fe-2S] cluster.
Figure 8. Cellular levels of CrPFO, FDX1 and FDX2 under different conditions. Proteins in extracts from strains cc124 and 10-6C (25 µg) were separated on SDS-PAGE and transferred to nitrocellulose membrane for immunoblot analysis with a-PFO, a-FDX1 and a-FDX2. Lane 1, TAP light aerobic; lane 2, dark anaerobiosis in AIB medium; lane 3, dark anaerobiosis in TAP medium; lane 4, TAP-NO3- light aerobic; 5, dark anaerobiosis in TAP-NO3-. a, b, c, for FDXs 200, 40, 5 ng of control ferredoxin; b, for PFO 40 ng of control Cr-rPFO protein. Immunodetection limits for recombinant proteins are of 40 ng for both FDX1 and FDX2, and of 5 ng for CrPFO (not shown).