Running head: Photosynthesis, ocean acidification and fluctuating light

Kunshan Gao
State Key Laboratory of Marine Environmental Science,
Xiamen University
Daxue Road 182 (HAIYANG-LOU)
Xiamen, Fujian, 361005, China
Tel/Fax: 86-592-218-7963
Email: ksgao@xmu.edu.cn

Research area: Whole Plant and Ecophysiology
Ocean acidification alters the photosynthetic responses of a coccolithophorid to fluctuating UV and visible radiation

Peng Jin¹, Kunshan Gao¹*, Virginia E. Villafañe², Douglas A. Campbell³ and E. Walter Helbling²

¹ State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
² Estación de Fotobiología Playa Unión and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Casilla de Correos N° 15 (9103) Rawson, Chubut, Argentina
³ Biology Department, Mount Allison University, Sackville, New Brunswick, Canada E4L 1G7

* Correspondence: Kunshan Gao, Fax: 86-592-2187963, e-mail: ksgao@xmu.edu.cn.
Footnotes

This study was supported by National Basic Research Program of China (Project No. 2009CB421207 and No. 2011CB200902), National Natural Science Foundation (Projects No. 40930846 and No. 41120164007), Program for Changjiang Scholars and Innovative Research Team (IRT0941) and China-Japan Collaboration Project from MOST (No. S2012GR0290). EWH and VEV were supported by Project No. 111 from the Chinese Ministry of Education. DC’s visit to XMU was supported by MEL’s Visiting Scientist Program.

Experiment station

State Key Laboratory of Marine Environmental Science (Xiamen University).

* Corresponding author

Kunshan Gao

E-mail: ksgao@xmu.edu.cn
ABSTRACT

Mixing of seawater subjects phytoplankton to fluctuations in photosynthetically active radiation (PAR, 400-700nm) and ultraviolet radiation (UVR, 280-400nm). These irradiance fluctuations are now superimposed upon ocean acidification and thinning of the upper mixing layer through stratification, that alters mixing regimes. We therefore examined the photosynthetic carbon fixation and photochemical performance of a coccolithophore, *Gephyrocapsa oceanica* grown under high, future (1000 μatm) and low, current (390 μatm) CO₂ levels, under regimes of fluctuating irradiances with or without UVR. Under both CO₂ levels, fluctuating irradiances, as compared to constant irradiance, led to lower non-photochemical quenching (NPQ) and less UVR-induced inhibition of carbon fixation and PSII electron transport. The cells grown under high CO₂ showed a lower photosynthetic carbon fixation rate, but lower NPQ and less UVB (280-315 nm)-induced inhibition. UVA (315-400 nm) led to less enhancement of the photosynthetic carbon fixation in the high CO₂-grown cells under fluctuating irradiance. Our data suggest that ocean acidification and fast mixing or fluctuation of solar radiation will act synergistically to lower carbon fixation by *G. oceanica*, though ocean acidification may decrease UVB-related photochemical inhibition.
INTRODUCTION

The oceans absorb about 25 million tons of CO₂ per day from the atmosphere (Sabine et al., 2004), leading to acidification of seawater in surface oceans. The pH of oceanic surface seawater will decline by 0.3-0.4 units, reflecting a 100-150% increase in [H⁺], by the year 2100 under “a fossil-fuel intensive” emission scenario (Houghton et al., 2001). This ocean acidification and the associated chemical changes may bring about critical ecological and social consequences (Turley et al., 2010).

Coccolithophores, as a key group of oceanic primary producers, with coccolith scales made of CaCO₃, are important to global carbon cycles (Riebesell and Tortell, 2011). Ocean acidification generally decreases calcification by coccolithophores (Riebesell et al., 2000; Zondervan et al., 2002; Delille et al., 2005; Beaufort et al., 2011) and other calcifying algae (Gao and Zheng, 2010; Sinutok et al., 2011), with responses differing across species or different environmental conditions (Langer et al., 2006, 2009; Iglesias-Rodriguez et al., 2008; Shi et al., 2009; Doney et al., 2009). Algal calcification, in turn, influences the impacts of solar UVR (280-400 nm) on the algae’s photophysiology (Gao et al., 2009; Gao and Zheng, 2010; Guan and Gao, 2010a).

Although the Montreal Protocol has resulted in a slowing of ozone depletion, UVB irradiance (280-315 nm) reaching northern temperate regions increased 10% between 1983 to 2003 (Josefsson, 2006), and a recent observation found an ozone hole above the Arctic (Manney et al., 2011), reflecting ongoing impacts of climate change on ozone depletion. Biologically significant levels of UVR reach as deep as 80 m in pelagic oceans (Smith et al., 1992). In coastal waters or areas with high productivity, UVB irradiance usually penetrates only a few meters due to the attenuation caused by suspended particles and dissolved organic matter (DOM) (Hargreaves, 2003, Tedetti and Sempéré, 2006). UVA and PAR are also attenuated but penetrate to much deeper depths due to their wavelength properties and
intensities. UVA and UVB can both act synergistically with ocean acidification to inhibit algal photosynthetic performance (Gao et al., 2009), and the inhibition caused by UVB could be about 2.5 times of that caused by UVA (Gao and Zheng, 2010); however, an antagonistic effect of UVB and ocean acidification was also found in a diatom (Li et al., 2012).

In parallel, global warming due to increased atmospheric CO$_2$ concentration causes ocean warming, which results in a decrease in the depth of the upper mixing layer (UML) (Sarmiento et al., 2004). Such stratification increases integrated exposures of phytoplankton cells within the UML to solar UV and visible radiation, and decreases upward transport of nutrients from deeper water layers, influencing phytoplankton photophysiology (Beardall et al., 2009; Gao et al., 2012a). Fluctuations of both solar PAR and UVR within the UML affect phytoplankton photosynthetic activity and carbon fixation (Helbling et al., 2003; Villafañe et al., 2007; Guan and Gao, 2008; Dimier et al., 2009). Mixing depths and/or mixing rates in the upper oceans also change in response to increased stratification and/or wind speed due to global climate change (Sarmiento et al., 2004; Boyd et al., 2010).

Phytoplankton responses to fluctuating solar radiation vary, particularly if considered in combination with other environmental factors, due to antagonistic or synergistic interactions. Fluctuation of solar radiation on cloudy days led to higher primary production in the presence of UVA (315-400 nm) as compared to presence of UVA on sunny days (Gao et al., 2007). Algal acclimation to fluctuating irradiance can lead to differences in growth rates and cellular pigment content compared to the cells acclimated to constant irradiance (van de Poll et al., 2007, 2010). On the other hand, mixing rate in the UML is strongly controlled by wind (Denman and Gargett, 1983; MacIntyre, 1993), which may increase due to global warming (Toggweiler and Russeu, 2008). Therefore, changes in mixing rate and stratification may interact with ocean acidification to affect the photo-physiology of phytoplankton. Nevertheless, to our knowledge, nothing has yet been documented on the combined impacts
of fluctuation of PAR or UVR and ocean acidification on the photosynthetic performance of coccolithophores.

Under this scenario, we expect that photosynthesis of coccolithophores will respond differentially to fluctuating PAR, with or without UVR, when grown under ocean acidification conditions, since the balance of high PAR or UVR-induced damage and the counteracting repair could differ under elevated CO₂ or acidity. To test these interactions, we grew *Gephyrocapsa oceanica* Kamptner, which is widely distributed in temperate and tropical waters (Okabe, 1997), under current and ocean acidification conditions and examined its photochemical activity and photosynthesis under different combinations of fluctuating PAR and UVR.

RESULTS

Carbonate system

The carbonate system in the high CO₂ (HC, 1000 μatm) growth treatment differed significantly from the low CO₂ (LC, 390 μatm) growth treatment (Table 1). Within a CO₂ treatment the carbonate system was stable within 5%, across rounds of culture dilution with fresh media, showing that the biological activities in the dilute cultures had no significant influence upon the carbonate system, in comparison to the media composition and the CO₂ bubbling regime.

Light absorption spectra and photochemical performance

The mean chl *a*-specific absorption coefficient (\(\tilde{a}\)) for the PAR irradiance spectrum supplied by the solar simulator was 0.0184 (sd ± 0.002) in the HC grown cells and 0.0177 (sd ± 0.003) m² mg chl \(^{-1}\) in the LC grown cells, with no significant difference between treatments \((p = 0.580)\) (Fig. 2).

The absETR values of HC- and LC-grown cells at the static light level of 276 μmol
photons m\(^{-2}\) s\(^{-1}\) are shown as examples of constant irradiance treatments in Figs. 3A and B. absETR also remained steady over the course of the 120 min exposure period for the other constant irradiance treatment levels (data not shown). Figs 3C and D show the contrasting results under fluctuating irradiances. Compared to the steady values (3-4 mol e\(^{-}\) g chl \(a\) \(^{-1}\) h\(^{-1}\)) of absETR under constant radiation levels the absETR in the rotating system fluctuated from 0.5 to 9 mol e\(^{-}\) g chl \(a\) \(^{-1}\) h\(^{-1}\), tracking the changes of light (Fig. 3).

The cumulative absolute electron transport (absETR) of HC- and LC-grown *G.oceanica* cells over 2 h incubations under the constant (static system) irradiances between 33 to 552 \(\mu\)mol photons m\(^{-2}\) s\(^{-1}\) increased almost linearly with the increase in PAR, regardless of the CO\(_2\) level or the presence of UVR (Figs. 4A and B). The cumulative absETR in the static system were significantly lower, by up to 30\%, in the HC- than in the LC-grown cells across all PAR levels, except for the highest PAR of 552 \(\mu\)mol photons m\(^{-2}\) s\(^{-1}\), at which no significant difference was found between HC and LC (Figs. 4A and B, Table 2). The cells exposed to fluctuating irradiance had cumulative absETR of 6.0-6.5 mol e\(^{-}\) g chl \(a\) \(^{-1}\) over the 2 h incubation, a value close to that measured under constant irradiance of 276 \(\mu\)mol photons m\(^{-2}\) s\(^{-1}\) (labeled "Constant" in Figs. 4C and D) in the static system (Fig. 4). There were no significant differences in the cumulative absETR under fluctuating radiation between HC- and LC-grown cells (Three-way ANOVA, post hoc Duncan test, \(p = 0.136\)) (Figs. 4C and D).

When UVR-induced inhibition was assessed (Table 3), the presence of UVB caused 8\% inhibition of absETR at 276 \(p = 0.001\) and 10\% inhibition at 552 \(\mu\)mol photons m\(^{-2}\) s\(^{-1}\) \(p = 0.032\) in the LC-grown cells. In contrast, UVB led to stimulation of absETR in the HC-grown cells at 276 \(p = 0.001\) and 552 \(\mu\)mol photons m\(^{-2}\) s\(^{-1}\) \(p = 0.032\), showing an antagonistic effect of UVB and the ocean acidification treatment of high CO\(_2\) and low pH (Table. 3).

The PSII effective absorption cross section measured under illumination (\(\sigma_{PSII}'\)) was initially lower in the HC than in the LC-grown cells, and further decreased over the 2 h
incubations in both the static and fluctuating (mixing) irradiance treatments (Fig. 5). σ_{PSII}' under the PAB treatment were higher than under P (at 552 μmol photons m$^{-2}$ s$^{-1}$) by 12% for the HC ($p = 0.011$) (Fig. 5A) and by 25% for the LC ($p = 0.010$) (Fig 5B) grown cells. In contrast, the cells exposed to fluctuating radiation did not show significant differences in σ_{PSII}' among the different radiation treatments regardless of the fluctuating radiation frequency (Two-way ANOVA, post hoc Duncan test, HC: $p = 0.79$, LC: $p = 0.09$) (Figs. 5C and D). Interestingly, under fluctuating irradiance the σ_{PSII}' values were higher under the HC than under the LC-grown cells (Three-way ANOVA, post hoc Duncan test, $p < 0.001$), opposite to the cells exposed to constant radiation.

The non-photochemical quenching (NPQ) increased with time under constant PAR levels, as shown at 552 μmol photons m$^{-2}$ s$^{-1}$ (Figs. 6A and B), with similar increasing trends with time under the other the irradiances (data not shown). LC-growth (Three-way ANOVA, post hoc Duncan test, $p < 0.001$) and presence of UVR (Three-way ANOVA, post hoc Duncan test, $p < 0.001$) led to higher NPQ under the static irradiance conditions (Figs. 6A and B). Presence of UVA increased NPQ by 49% in the HC cells, by 30% in the LC-grown cells. UVB increased NPQ by 24% in HC-grown cells and by 19% in the LC-grown cells. Under fluctuating radiation, HC treatment led to significantly lower (Two-way ANOVA, post hoc Duncan test, $p < 0.001$) NPQ under PAB treatment (Figs. 6C and D). Similarly, UVR led to significantly (Three-way ANOVA, post hoc Duncan test, $p < 0.001$) higher NPQ regardless of the CO$_2$ treatments under fluctuating irradiance (Figs. 6C and D). Nevertheless, the NPQ was lower under the fluctuating than under the constant irradiance even in cells exposed to similar integrate light doses.

Photosynthetic carbon fixation rates under static and fluctuating irradiance:

Photosynthetic carbon fixation versus irradiance (P vs E) curves in the static irradiance system under the P, PA and PAB treatments for the HC and LC-grown cells are shown in Fig.
7. P_B^{max} of the HC-grown cells did not vary significantly across the three radiation treatments. In the LC-grown cells, however, P_B^{max} was significantly higher in the P treatment as compared to the PA treatment ($p = 0.030$), with the PAB treatment lower yet ($p = 0.043$). P_B^{max} in the HC cells was lower by 20.8% ($p = 0.01$) under P and by 22.1% ($p = 0.012$) under PA than in the LC cells, respectively. Interestingly, under PAB there was no significant different in P_B^{max} between the HC and LC cells, because PAB inhibited P_B^{max} under LC but not under HC.

In order to compare the photosynthetic carbon fixation over 2 h incubations under constant and fluctuating radiation, we integrated the values over the different irradiances for each curve in Fig 7 and compared them to those under fluctuating irradiance (Fig. 8). This cumulative carbon fixation had higher values in the static than in the rotating conditions regardless of CO$_2$ growth levels or irradiance treatments (Three-way ANOVA, post hoc Duncan test, $p < 0.001$). In the static system the cumulative carbon fixation under the P treatment was significantly lower in the HC than in the LC-grown cells ($p < 0.001$). There were no significant differences when comparing the PA or the PAB treatments in HC from that in LC (PAB: $p = 0.445$; PA: $p = 0.105$), again, because PA and PAB inhibited LC cells more than HC cells. At the shortest cycle time of radiation fluctuation, HC-grown cells showed the lowest cumulative carbon fixation, being about 44% ~ 51% lower than the static conditions and 18% ~ 36% lower than the LC-grown ones at the faster circulation (Figs. 8A and B), but had higher by 11% ~ 45% cumulative carbon fixation at the slower circulations (30 and 40 min). As to the effects of the different UVR wavebands, UVB brought about less inhibition in the HC than in the LC cells, and UVA generated less enhancement of the carbon fixation in the HC than in the LC cells (Figs. 8C and D). On average, UVB resulted in about 22% less inhibition and UVA in about 71% stimulation of the carbon fixation under the HC compared to that in the LC.
When the light response patterns of absETR (Figs. 4A and B) were compared to that of photosynthetic carbon fixation rates in the static system (Figs. 7A and B), carbon fixation rate increased faster than absETR with increasing light levels, though both reached saturation at ≥ 276 μmol photons m$^{-2}$ s$^{-1}$ (Fig. 9).

DISCUSSION

The coccolithophorid *Gephyrocapsa oceanica* grown under ocean acidification conditions showed differential photosynthetic responses to fluctuating irradiance with or without UVR. Ocean acidification led to less UVB-induced inhibition of photosynthetic carbon fixation and lower NPQ (Fig. 6 and 8). The effect of mixing, mimicked by the fluctuating radiation regimes, decreased the effects of ocean acidification on NPQ, so that the differences between the HC and LC-grown cells became insignificant. UVR-induced inhibition of the absolute electron transport rate (absETR) also decreased under the mixing condition (Table 3). Changes in the fluctuation of solar radiation regime thus have a greater influence on the short-term photosynthetic performance of the coccolithophorid than the chemical change induced by ocean acidification (high CO$_2$) during growth.

The *G. oceanica* cells grown under high CO$_2$ concentration become more prone to high irradiance stress, indicating a disruption in their balance between photo-damage and repair, compared to cells grown under lower pCO$_2$ (Fig. 8). Dimier et al. (2009) suggested that the costs for maintenance and repair associated with highly fluctuating radiation would be higher than under less fluctuating radiation conditions. Nevertheless, our results showed little change in the cumulative absolute electron transport rate (absETR) from PSII, regardless of the fluctuation rate or radiation treatments (Fig. 4C, D).

There are several mechanisms that could alter the coupling of the PSII function, estimated using variable chlorophyll fluorescence (Fig. 4) (Genty et al., 1989; Suggett et al.,
2009), with photosynthetic carbon fixation (Figs. 8, 9). It is only under ideal conditions that there is a strong linear correlation between PSII photochemistry and photosynthetic carbon fixation (Genty et al., 1989), though in situ photochemical yield showed a good correlation with primary productivity (Kolber and Falkowski, 1993; Suggett et al., 2001). Increased carbon loss by photorespiration or respiration was found under high irradiance in high-CO$_2$ acclimated phytoplankton (Gao et al., 2012b; Yang and Gao, 2012). An increase in the water-water cycle (Asada et al., 1999) could also drain electrons from PSII without contributing to carbon fixation. Calcification increases with increased photosynthetic carbon fixation in coccolithophores (Trimborn et al., 2007), and requires additional energy, therefore, it could also contribute to additional electron drain uncoupled from carbon fixation (Xu and Gao, 2012).

Fluctuating radiation limited or countered the effect of UVB on the absETR and photosynthetic carbon fixation regardless of the growth CO$_2$ levels. Fluctuation of irradiances from the low to high and then back to low levels provided the cells the chance to be exposed to low irradiance and the time to acclimate to the changes of light levels. Therefore, repair can reverse photo-damage more effectively under fluctuating than under constant radiation levels, since the repair rate is generally reaches saturation under low irradiance levels (Edelman and Mattoo, 2008), and can even be inhibited under continuous high irradiance (Takahashi and Murata, 2008). Faster mixing or fluctuation of solar radiation led to less UVR-induced inhibition of photosynthetic carbon fixation of coastal phytoplankton assemblages in the South China Sea (Helbling et al., 2003). In this study, and for the first time, we demonstrated that coccolithophore cells grown under high CO$_2$ exhibited less UVB-induced inhibition compared to the cells grown at the low CO$_2$ level, implying antagonistic effects of ocean acidification and UVB under both fluctuating and constant irradiances. Such an antagonistic effect was also found in the diatom *Phaeodactylum tricornutum* (Li et al., 2012). Different
UVR wavelengths differentially affect periplasmic protein synthesis (Wu and Gao, 2009), so that under moderate levels of solar radiation, with PAR of about 170 W m\(^{-2}\), similar to the levels used in the present work, UVA and UVB influenced periplasmic proteins to different extents. Under high CO\(_2\), such differential effects might diverge further since the redox poising at the membrane surface differs at different pH levels. UVA under moderate or low levels of solar radiation stimulated photosynthetic carbon fixation (Gao et al., 2007) or O\(_2\) evolution (Gao and Xu, 2008). In the present study, UVB led to less inhibition and UVA to less stimulation of C-fixation under high CO\(_2\) (Fig. 8C and D), showing that the photobiological influences of different UV wavebands will differ under ocean acidification (high CO\(_2\)/low pH).

The cells of *G. oceanica* grown under high CO\(_2\) conditions calcify less (data not shown), in agreement with Riebesell et al. (2000). Calcification associated with higher NPQ contributes to photoprotection in another coccolithophorid *Emiliania huxleyi* (Xu and Gao, 2012). In the present study, NPQ was lower in the HC-grown cells than in the LC-grown cells (Fig. 6). Stronger calcification in the LC-grown cells may have drained additional energy, and correlated with higher induction of NPQ (Raven and Crawfurd, 2012). NPQ was much lower in the cells exposed to fluctuating irradiance than under constant irradiance (Fig. 6). UVR led to higher NPQ values in the HC or LC-grown cells, likely through a combination of inhibition of the photosystems, with UV-stimulated synthesis of xanthophyll pigments that mediate NPQ (Laurion and Roy, 2009; van de Poll et al., 2010).

Many phytoplankton species modulate the functional antenna size to enable acclimation and growth over a wide range of irradiance, as a photo-acclimation strategy, which may differ in different species (Six et al., 2007; Wu et al., 2011). In the present study, increased \(\sigma_{PSII}'\) (Fig. 5) correlated well with decreased NPQ (Fig. 6) in the HC-grown cells under constant high irradiance, indicating an increase in operational light harvesting (Gorbunov et al., 2001;
Levy et al., 2004). Since optical absorption did not change between the CO$_2$ treatments (Fig. 2), such a functional absorption change reflects a re-configuration of the antenna under the high CO$_2$ level. Decreased calcification in coccolithophore has been recently shown to couple with decreased NPQ (Xu and Gao, 2012). Similarly, the HC-grown cells, with less calcification (data not shown) in the present study thus increased their effective σ_{PSII} without a parallel increase in pigment content (Fig. 5).

Our study demonstrated that progressive ocean acidification, when combined with fast mixing, will decrease photosynthetic carbon fixation rate, non-photochemical quenching, and UVR-induced inhibition in the coccolithophorid. However, increased stratification with ocean warming may expose the calcifying algae to increased integrated exposure to solar radiation. Ocean acidification may mitigate UVR-inhibition of photosynthesis, but UVR also decreases the calcification of most coccolithophores, lowering the UVR screening function of the coccolith layer (Gao et al., 2009). Therefore, calcifying phytoplankton responses to ocean acidification and UVR will depend upon the interactions of multiple stressors (Beardall et al., 2009; Boyd et al., 2010, Gao et al., 2012a), with mixing rate and the resulting fluctuation of irradiances primarily influenced by wind speed.

MATERIALS AND METHODS

Culture conditions

Gephyrocapsa oceanica (NIES-1318), obtained from the National Institute for Environmental Studies (NIES, Japan), was grown in natural seawater obtained from the South China Sea and enriched with Aquil medium (110 μM - N, 10 μM – P, with trace metals and vitamins at a salinity of 35) (Morel et al., 1979). When the cells reached exponential growth phase they were used to initiate cultures under high (HC, $pCO_2 = 1000$ μatm) or low (LC, $pCO_2 = 390$ μatm) pCO_2. These cultures (HC and LC) were maintained in exponential growth
phase for 10-20 generations before being used in the experiments. To maintain a stable carbonate system in the semi-continuous cultures, the cell density was maintained within a range of 1.5 - 3.5 × 10^4 cells mL^{-1}. The cultures either under HC or LC were diluted every 24 h with freshly prepared medium equilibrated with the target CO₂ level (Gattuso et al., 2010), so that the cell concentration after dilution was maintained at 1.5 × 10^4 cells mL^{-1}. As the specific growth rates differed under different conditions, the renewed amount of the medium differed. The high and low pCO₂ cultures were maintained in tightly closed polycarbonate bottles that were completely filled with culture media, without any gas headspace, to prevent CO₂ gas exchange. Since the cell suspension density was low, and the medium was diluted every day, the phytoplankton biomass drew down less than 5% of the total dissolved inorganic carbon (DIC) in the culture medium (Zondervan et al., 2002) between media renewal cycles. The carbonate system was thus maintained with daily variation in pHNBS less than 0.06 across medium renewal cycles, within the acceptable range for manipulating carbonate chemistry in ocean acidification studies (Gattuso et al., 2010). The cultures were maintained under a photon flux density of 100 μmol photons m⁻² s⁻¹ (12:12 light: dark cycle) in a plant growth chamber (GXZ, Ruihua, Wuhan, China) at a constant temperature of 20 °C.

Estimation of changes of the carbonate system in the cultures

The pH in the cultures was measured daily with a pH meter (Benchtop pH510, OAKTON) that was calibrated with National Bureau of Standards (NBS) buffer solution (Hanna). Other related parameters of the carbonate chemistry were estimated according to known values of pH, salinity, nutrients and pCO₂ using the software CO₂SYS (Lewis and Wallace, 1998). The equilibrium constants (K₁ and K₂) of carbonic acid dissociation (Roy et al., 1993) were used for all calculations.

Experimental set-up
Due to the space constraints under the solar simulator (see below), experiments to determine photosynthetic performance under different radiation/fluctuating regimes were carried out separately for the high and low CO$_2$-grown cells, but using cells after similar acclimation periods of 10-20 generations under both CO$_2$ conditions. Samples from either high or low CO$_2$ treatments (final cell density of 2.5×10^4 cells mL$^{-1}$) were dispensed in 35-ml quartz tubes for measurements of carbon fixation and fluorescence parameters (see below).

Three radiation treatments were implemented: **PAB**, tubes covered with a 295 nm cut off filter (Ultraphan, Digefra, Munich, Germany) so that cells were exposed to PAR + UVA + UVB, receiving irradiances above 295 nm, a short-wavelength cut-off that excludes the lowest 15 nm of the UVB range; **PA**, tubes covered with Folex 320 filters, so that cells were exposed to PAR + UVA, receiving irradiances above 320 nm; and **P**, tubes covered with 395 cut off foil (UV Opak, Digefra, Munich, Germany), so that the cells received PAR alone. Triplicate samples were used for each irradiance condition for carbon incorporation and fluorescence parameters and the incubations lasted for 2 hs.

The tubes (both for carbon and fluorescence measurements) were put in either one of the following two systems: 1) Cells exposed to a fixed irradiance during the whole incubation period, and 2) A rotating system, with the cells exposed to fluctuating irradiance (Fig. 1). The rotating device was similar to that described in Helbling et al., (2003) in which changes of solar irradiance due to mixing within the upper mixed layer (UML) were mimicked. The samples were attached to a horizontal wheel, beneath a second wheel with increasing layers of neutral density screen arranged in sectors (i.e., pie-like pieces) that rotated by means of a stepper motor, thus varying the irradiance to which the cells were exposed. The layer containing the screens had 10 circular sectors of 36° going clockwise from none (simulating 100% radiation) to four screens (simulating 6% radiation) and then stepwise back to none,
thus performing one complete cycle with 10 discrete steps of irradiance; 100%, 50%, 25%, 12.5%, 6%- 6%, 12.5%, 25%, 50% and back to 100% (Fig. 1).

We used 4 different cycling speeds to impose different rates of irradiance fluctuation, with one cycle simulating cells going from the surface (100%) to the bottom of the stimulated UML (6%) back to the surface (100%) from 10 to 40 min, by applying 12 to 3 cycles over the 2 h incubation period. We chose the irradiance level at the bottom of the UML as 6% based on previous measurements carried out in a time-series station, the South East Asia Time-series Study (SEATS, 19°N, 118.5°E) of South China Sea (Chen et al., 2006). Both systems were placed at 95 cm from the solar simulator (Sol 1200W, Dr. Hönle, Martinsried, Germany) under irradiances of 120 W m$^{-2}$ (552 μmol photons m$^{-2}$ s$^{-1}$) PAR, 32.3 W m$^{-2}$ UVA, and 1.525 W m$^{-2}$ UVB, at the 100 % irradiance level. The mean PAR levels under the 4 different cycling speeds were the same, at 213 μmol photons m$^{-2}$ s$^{-1}$. The whole setup containing the tubes was then placed in a water bath at 20 ± 0.1 °C controlled with a circulating cooler (CTP-3000, Eyela, Tokyo, Japan).

Incubations under different fluctuation regimes were done on different days but under a solar simulator and with cells acclimated to high and low CO$_2$ for 10-20 generations, in this way we ensured that the irradiance received by the cells was consistent day after day and thus our data were comparable. The reader should be aware that our system using neutral density screens does not completely mimic the differential spectral attenuation of solar radiation in the water column, and thus under the neutral density screens the UVB:UVA:PAR ratios are a bit higher than the ones at the corresponding water column depths for equivalent PAR levels.

Measurements and analyses

Radiation measurements

A broadband ELDONET filter radiometer (Real Time Computer, Möhrendorf, Germany, that has channels for PAR, UVA and UVB and is calibrated yearly, was used to measure the
irradiances under the solar simulator.

Determination of photosynthetic rates

Samples for determination of photosynthetic rates were analyzed following the technique described in Holm-Hansen and Helbling (1995). The samples were inoculated with 50µL - 2.5 µCi (0.0925 MBq) of NaH\(^{14}\)CO\(_3\) (ICN Radiochemicals). After the incubation, samples were immediately filtered onto Whatman GF/F glass fiber filters (25 mm) under dim light, put into 20 mL scintillation vials, exposed to HCl fumes overnight and dried (45 °C) to remove the non-incorporated inorganic carbon. Then, 3mL of scintillation cocktail (Hisafe 3, Perkin-Elmer) was added to each vial and the assimilated radiocarbon was counted using a liquid scintillation counter (Tri-Carb 2800TR, Perkin-Elmer).

Determination of cell numbers and chlorophyll-a content

During the pre-acclimation period, cells were grown semi-continuously by removing and adding fresh medium every day at the end of the light period. Cell numbers were measured every 24h before and after renewal of medium, using a particle counter (Z2, Beckman instruments, Florida, US). Chlorophyll a (Chl a) content was determined by filtering 200 mL of the cultures onto Whatman GF/F filters (25 mm), extracting overnight in absolute methanol, centrifuging (10 min at 6000×g), measuring the absorbance of the supernatant over a scan between 200-800 nm and calculating the concentration of the photosynthetic pigment following the equation of Porra (2002).

Determination of absorption spectrum

The cells were filtered on GF/F glass fiber filters (1.3 × 10^7 cells cm\(^{-2}\)) and scanned from 400 to 700 nm with a dual beam PE Lambda 950 spectrophotometer (Perkin Elmer, USA) equipped with an integrating sphere (150 mm diameter). The chl a-specific absorption coefficient, a*, was calculated according to Cleveland and Weidemann, (1993) and Anning et al., (2000), and \(\bar{a}^*\), the mean chl a-specific absorption coefficient, was weighted against the
irradiances of the solar simulator following the method described by Dubinsky et al., (1984).

\[\bar{a}^* = \int_{400}^{700} a^*(\lambda) E(\lambda) d(\lambda) \]

where \(E(\lambda) \) is the spectral output of the light source, \(d(\lambda) \) is the first derivative of absorbed irradiance with respect to \(\lambda \).

Evaluation of photochemical performance

The chl \(a \) fluorescence parameters effective photochemical quantum yield (\(\Phi_{PSII} \)) and effective absorption cross-section of PSII (\(\sigma_{PSII}' \)) were determined in the light exposed cells using a Fluorescence Induction and Relaxation device (FIRe) (Satlantic, Halifax, NS Canada) to apply a single saturating turn-over flash (80 \(\mu \)s, \(5 \times 10^4 \mu \)mol photons m\(^{-2} \) s\(^{-1} \)). \(\Phi_{PSII} \) and \(\sigma_{PSII}' \) were measured from samples taken at the beginning of the incubations and then every 20 min in each radiation condition in the fixed system, also in the rotating system.

The absolute electron transport rate (absETR, expressed in mol e\(^-\) g chl \(a \)\(^{-1} \) h\(^{-1} \)) was estimated as:

\[\text{absETR} = \Phi_{PSII} \times \text{PAR} \times (\bar{a}^*/2) \]

where \(\Phi_{PSII} \) represents the effective quantum yield of PSII at the PAR (in \(\mu \)mol photons m\(^{-2} \) s\(^{-1} \)) level to which the cells were exposed. The mean chl \(a \)-specific absorption coefficient (\(\bar{a}^* \)) of phytoplankton was divided by 2 assuming that half of the absorbed light is distributed to PSII (Dimier et al., 2009). In order to compare the absETR with photosynthetic carbon fixation, the absETR estimates derived from the photosynthetic yield and the corresponding radiation levels were integrated over the 2 h exposure for the fluctuating and constant irradiance treatments.

Non-photochemical quenching (NPQ) was calculated as \(\text{NPQ} = (F_m - F_m')/F_m' \)

where \(F_m \) represents the maximum fluorescence yield after the samples were “dark”-adapted under dim light (10 \(\mu \)mol photons m\(^{-2} \) s\(^{-1} \)) for 10 min, and \(F_m' \) is the instant maximal...
fluorescence under the light.

Data analysis

Three, two and one-way ANOVA were used to establish differences and interactions among the treatments ($p = 0.05$). When necessary, the post hoc Duncan test was used to determine the differences between individual means. Photosynthesis versus irradiance (P vs E) curves obtained from the fixed system were fitted as $y = x / (ax^2 + bx + c)$ (Eilers and Petters, 1988), where y is the photosynthetic rate, x is the PAR irradiance (μmol photons m$^{-2}$ s$^{-1}$), a, b and c are the adjustment parameters. Relative inhibition of photosynthetic carbon fixation or the Φ_{PSII} caused by UVR was assessed as follows:

$$\text{UVB inhibition} = \left\{ \frac{(YP - YPAB) - (YP - YPA)}{YP} \right\} \times 100\%,$$

$$\text{UVA inhibition} = \frac{(YP - YPA)}{YP} \times 100\%,$$

where YP, YPA and $YPAB$ indicates Φ_{PSII} or photosynthetic carbon fixation rates under the P, PA or PAB treatments, respectively.
LITERATURE CITED

GB2023

Hargreaves BR (2003) Water column optics and penetration of UVR. In Helbling EW and

Laurion I, Roy S (2009) Growth and photoprotection in three dinoflagellates (including two
strains of *Alexandrium tamarense*) and one diatom exposed to four weeks of natural and enhanced ultraviolet-B radiation. *J Phycol* **45**: 16-33

Van de Poll WH, Buma AGJ, Visser RJW, Janknegt PJ, Villafañe VE, Helbling EW (2010) Xanthophyll cycle activity and photosynthesis of *Dunaliella tertiolecta* (Chlorophyceae) and *Thalassiosira weissflogii* (Bacillariophyceae) during fluctuating solar radiation. Phycologia **49:** 249-259

Villafañe VE, Gao K, Li P, Li G, Helbling EW (2007) Vertical mixing within the epilimnion modulates UVR-induced photoinhibition in tropical freshwater phytoplankton from southern China. Freshwater Biol **52:** 1260-1270

Yang G, Gao K (2012) Physiological responses of the marine diatom *Thalassiosira pseudonana* to increased pCO$_2$ and seawater acidity. Mar Environ Res **79:** 142-151,

Figure legends

Fig. 1: Schematic of the cycling device used to impose fluctuations in simulated solar irradiance, ranging from 100% to 50%, 25%, and 12.5% and then to 6%, then from 6% back to 12.5%, 25%, 50% and 100% during one cycle. The irradiances at 100% levels were PAR 120 (552 μmol photons m⁻² s⁻¹), UVA 32.3 and UVB 1.525 W m⁻². The rate of irradiance fluctuation was controlled by the cycling rate.

Fig. 2: Chl a-specific absorption coefficient, a*, as a function of the wavelength, of the *Gephyrocapsa oceanica* cells grown under high (HC, 1000 μatm) and low (LC, 390 μatm) pCO₂.

Fig. 3: Absolute electron transport rate (absETR, mol e⁻ g chl a⁻¹ h⁻¹) in high (HC) and low (LC) pCO₂ grown cells, as a function of incubation time. (A) absETR under HC and (B) under LC with constant PAR of 276 μmol photons m⁻² s⁻¹. AbsETR under fluctuating radiation for the HC (C) and LC (D) cells at 40 min per cycle (Fig. 1). Vertical lines represent standard deviations of triplicate incubations.

Fig. 4: Cumulative absolute electron transport (absETR, mol e⁻ g chl a⁻¹ over two hours) for high (HC) and low (LC) pCO₂ grown cells under three radiation treatments in static (A, B) and rotating (C, D) systems. The values of static samples under 276 μmol photons m⁻² s⁻¹ are shown as “Constant” for comparison. Vertical lines represent standard deviations of triplicate incubations.

Fig. 5: Changes of effective absorption cross-section of PSII (σₚₛₛ, A² quanta⁻¹) for both static (A, B) and rotating systems (C, D), and for high (HC) and low (LC) pCO₂ grown cells
under three radiation treatments within the simulated upper mixed layer over 2 h incubation period. The values of static samples under 276 μmol photons m$^{-2}$ s$^{-1}$ are shown as “Constant” for comparison. The values are means and standard deviations (n = 3).

Fig. 6: Non-photochemical quenching (NPQ) of high (HC) and low (LC) pCO$_2$ grown cells under 100% light levels of 552 μmol photons m$^{-2}$ s$^{-1}$ with PAR (A) and PAB (B) treatment in static system. NPQ under 4 different rotating speeds of 10, 20, 30 and 40 min under PAR (C) and PAB (D) treatments in the rotating system, with maximum irradiance set to 552 μmol photons m$^{-2}$ s$^{-1}$. The values are means and standard deviations (n = 3).

Fig. 7: Photosynthetic carbon fixation rates (μg C (μg chl a)$^{-1}$ h$^{-1}$) in *Gephyrocapsa oceanica* grown at high (HC) and low (LC) pCO$_2$ levels as a function of PAR under different radiation treatments over 2 h incubation period. Inhibition of photosynthetic rates induced by UVA or UVB of high (C) or low (D) pCO$_2$ grown cells derived from data plotted in the upper panels. Vertical lines represent standard deviations of triplicate incubations.

Fig. 8: Cumulative carbon fixation as a function of the cycling rate (minutes per cycle, over the 120 min treatment period) for A) high (HC) and B) low (LC) pCO$_2$ grown cells under three radiation treatments within the simulated upper mixed layer. The values of static samples are shown as “Constant” for comparison. UVR-inhibition of cumulative carbon fixation in high (C) or low (D) pCO$_2$ grown cells was derived from data plotted in the upper panel. The values are means and standard deviations (n = 3).

Fig. 9: Relative cumulative carbon fixation (left label, Solid) and absETR (right label, Open) in *Gephyrocapsa oceanica* grown at high (HC) (A) and low (LC) (B) pCO$_2$ levels as a
function of PAR under different radiation treatments over 2 h incubation. Vertical lines represent standard deviations of triplicate incubations.
Table 1. Parameters of the seawater carbonate system under the high (1000 μatm, HC) and low (390 μatm, LC) pCO₂ levels before and after the partial renewal of the medium in semi-continuous cultures of *Gephyrocapsa oceanica*. pH, pCO₂, salinity, nutrient concentration, and temperature were used to derive the other parameters using CO₂ system analyzing software (CO2SYS). Data are the means ± SD of 24 measurements; the superscripts represent a significant difference between HC and LC cultures. There were no significant changes in the seawater carbonate system before and after media renewal.

<table>
<thead>
<tr>
<th></th>
<th>pCO₂ (μatm)</th>
<th>pHNBS</th>
<th>DIC (µmol L⁻¹)</th>
<th>HCO₃⁻ (µmol L⁻¹)</th>
<th>CO₃²⁻ (µmol L⁻¹)</th>
<th>CO₂ (µmol L⁻¹)</th>
<th>Total alkalinity (µmol L⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC-before renewal</td>
<td>389 ± 11ᵃ</td>
<td>8.17 ± 0.01ᵃ</td>
<td>1929 ± 31ᵃ</td>
<td>1730 ± 25ᵃ</td>
<td>186 ± 8ᵃ</td>
<td>12.6</td>
<td>2188 ± 40ᵃ</td>
</tr>
<tr>
<td>LC-after renewal</td>
<td>402 ± 16ᵃ</td>
<td>8.15 ± 0.01ᵃ</td>
<td>1915 ± 60ᵃ</td>
<td>1724 ± 52ᵃ</td>
<td>178 ± 10ᵃ</td>
<td>13.1</td>
<td>2163 ± 70ᵃ</td>
</tr>
<tr>
<td>HC-before renewal</td>
<td>984 ± 18ᵇ</td>
<td>7.81 ± 0.01ᵇ</td>
<td>2090 ± 28ᵇ</td>
<td>1963 ± 25ᵇ</td>
<td>95 ± 3.3ᵇ</td>
<td>31.8</td>
<td>2196 ± 32ᵃ</td>
</tr>
<tr>
<td>HC-after renewal</td>
<td>1006 ± 21ᵇ</td>
<td>7.81 ± 0.01ᵇ</td>
<td>2077 ± 36ᵇ</td>
<td>1952 ± 32ᵇ</td>
<td>92 ± 4ᵇ</td>
<td>32.5</td>
<td>2282 ± 109ᵃ</td>
</tr>
</tbody>
</table>
Table 2. Significance levels of the differences in the absETR between and HC- and LC-grown *Gephyrocapsa oceanica* cells when exposed to different constant light levels under P, PA and PAB treatments.

<table>
<thead>
<tr>
<th>Constant PAR levels (μmol photons m(^{-2}) s(^{-1}))</th>
<th>Irradiance treatment</th>
<th>p value</th>
<th>Percent differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 PAB</td>
<td>< 0.001</td>
<td>14.0%</td>
<td></td>
</tr>
<tr>
<td>33 PA</td>
<td>< 0.001</td>
<td>14.0%</td>
<td></td>
</tr>
<tr>
<td>33 P</td>
<td>< 0.001</td>
<td>12.3%</td>
<td></td>
</tr>
<tr>
<td>69 PAB</td>
<td>< 0.001</td>
<td>14.0%</td>
<td></td>
</tr>
<tr>
<td>69 PA</td>
<td>0.001</td>
<td>12.5%</td>
<td></td>
</tr>
<tr>
<td>69 P</td>
<td>0.001</td>
<td>14.8%</td>
<td></td>
</tr>
<tr>
<td>69 PAB</td>
<td>< 0.001</td>
<td>20.5%</td>
<td></td>
</tr>
<tr>
<td>138 P</td>
<td>< 0.001</td>
<td>23.7%</td>
<td></td>
</tr>
<tr>
<td>138 PAB</td>
<td>< 0.001</td>
<td>19.9%</td>
<td></td>
</tr>
<tr>
<td>138 PAB</td>
<td>< 0.001</td>
<td>16.9%</td>
<td></td>
</tr>
<tr>
<td>276 P</td>
<td>< 0.001</td>
<td>32.7%</td>
<td></td>
</tr>
<tr>
<td>276 PAB</td>
<td>0.001</td>
<td>23.9%</td>
<td></td>
</tr>
<tr>
<td>276 PAB</td>
<td>0.160</td>
<td>5.8%</td>
<td></td>
</tr>
<tr>
<td>552 P</td>
<td>0.056</td>
<td>14.2%</td>
<td></td>
</tr>
<tr>
<td>552 P</td>
<td>0.100</td>
<td>2.4%</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Ultraviolet-A and Ultraviolet-B-induced inhibition of cumulative absolute electron transport (absETR) of high (HC) and low (LC) pCO₂ grown cells in static and rotating systems. Ultraviolet-A and Ultraviolet-B-induced inhibition was calculated by the equations as described in Materials and Methods. *P* values of UVA and UVB-induced inhibition were derived from the comparisons of P with PA treatments, and PA with PAB treatments, respectively.

<table>
<thead>
<tr>
<th>Incubation system</th>
<th>CO₂ treatment</th>
<th>PAR levels (μmol photons m⁻² s⁻¹) or cycle time (min)</th>
<th>Irradiance treatment</th>
<th>p value</th>
<th>Inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed system</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HC</td>
<td>33</td>
<td>UV A 0.002</td>
<td>3.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UVB 0.007</td>
<td>UV A 0.874</td>
<td>0.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>69</td>
<td>UV B 0.077</td>
<td>2.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UV A 0.002</td>
<td>UV A 0.001</td>
<td>4.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>138</td>
<td>UV A < 0.001</td>
<td>10.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>276</td>
<td>UV B 0.001</td>
<td>-3.7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>552</td>
<td>UV A < 0.001</td>
<td>19.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UV B 0.032</td>
<td>UV A 0.130</td>
<td>-6.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>UV B 0.102</td>
<td>1.7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UV A 0.091</td>
<td>UV A 0.258</td>
<td>2.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC</td>
<td>138</td>
<td>UV B < 0.001</td>
<td>4.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>276</td>
<td>UV A 0.185</td>
<td>3.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>552</td>
<td>UV B 0.001</td>
<td>7.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UV A 0.008</td>
<td>UV B 0.027</td>
<td>9.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>UV A < 0.001</td>
<td>16.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UV B 0.248</td>
<td>UV A 0.026</td>
<td>-2.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>UV B 0.669</td>
<td>-6.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UV A 0.006</td>
<td>UV B < 0.001</td>
<td>5.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>UV A 0.006</td>
<td>1.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UV B < 0.001</td>
<td>UV A 0.03</td>
<td>3.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotating system</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HC</td>
<td>10</td>
<td>UV A < 0.001</td>
<td>16.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UV B 0.248</td>
<td>UV A 0.026</td>
<td>-2.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>UV B 0.669</td>
<td>-6.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UV A 0.006</td>
<td>UV B < 0.001</td>
<td>5.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>UV A 0.006</td>
<td>1.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UV B < 0.001</td>
<td>UV A 0.03</td>
<td>3.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC</td>
<td>UVB</td>
<td>UVA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.169</td>
<td>< 0.001</td>
<td>3.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.728</td>
<td>0.025</td>
<td>0.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>< 0.001</td>
<td>0.002</td>
<td>5.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>0.007</td>
<td>0.010</td>
<td>7.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>0.741</td>
<td>-0.5%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 1: Schematic of the cycling device used to impose fluctuations in simulated solar irradiance, ranging from 100% to 50%, 25%, and 12.5% and then to 6%, then from 6% back to 12.5%, 25%, 50% and 100% during one cycle. The irradiances at 100% levels were PAR 120 (552 μmol photons m⁻² s⁻¹), UVA 32.3 and UVB 1.525 W m⁻². The rate of irradiance fluctuation was controlled by the cycling rate.
Fig. 2: Chl a-specific absorption coefficient, a^*, as a function of the wavelength, of the *Gephyrocapsa oceanica* cells grown under high (HC, 1000 μatm) and low (LC, 390 μatm) pCO$_2$.
Fig. 3: Absolute electron transport rate (absETR, mol e⁻ g chl a⁻¹ h⁻¹) in high (HC) and low (LC) pCO₂ grown cells, as a function of incubation time. (A) absETR under HC and (B) under LC with constant PAR of 276 µmol photons m⁻² s⁻¹. AbsETR under fluctuating radiation for the HC (C) and LC (D) cells at 40 min per cycle (Fig. 1). Vertical lines represent standard deviations of triplicate incubations.
Fig. 4

Fig. 4: Cumulative absolute electron transport (absETR, mol e⁻ g chl a⁻¹ over two hours) for high (HC) and low (LC) pCO₂ grown cells under three radiation treatments in static (A, B) and rotating (C, D) systems. The values of static samples under 276 μmol photons m⁻² s⁻¹ are shown as “Constant” for comparison. Vertical lines represent standard deviations of triplicate incubations.
Fig. 5

Fig. 5: Changes of effective absorption cross-section of PSII (σ_{PSII}, A^2 quanta$^{-1}$) for both static (A, B) and rotating systems (C, D), and for high (HC) and low (LC) pCO$_2$ grown cells under three radiation treatments within the simulated upper mixed layer over 2 h incubation period. The values of static samples under 276 μmol photons m$^{-2}$ s$^{-1}$ are shown as “Constant” for comparison. The values are means and standard deviations (n = 3).
Fig. 6: Non-photochemical quenching (NPQ) of high (HC) and low (LC) pCO₂ grown cells under 100% light levels of 552 μmol photons m⁻² s⁻¹ with PAR (A) and PAB (B) treatment in static system. NPQ under 4 different rotating speeds of 10, 20, 30 and 40 min under PAR (C) and PAB (D) treatments in the rotating system, with maximum irradiance set to 552 μmol photons m⁻² s⁻¹. The values are means and standard deviations (n = 3).
Fig. 7: Photosynthetic carbon fixation rates (μg C (μg chla)\(^{-1}\) h\(^{-1}\)) in *Gephyrocapsa oceanica* grown at high (HC) and low (LC) pCO\(_2\) levels as a function of PAR under different radiation treatments over 2 h incubation period. Inhibition of photosynthetic rates induced by UVA or UVB of high (C) or low (D) pCO\(_2\) grown cells derived from data plotted in the upper panels. Vertical lines represent standard deviations of triplicate incubations.
Fig. 8: Cumulative carbon fixation as a function of the cycling rate (minutes per cycle, over the 120 min treatment period) for A) high (HC) and B) low (LC) pCO$_2$ grown cells under three radiation treatments within the simulated upper mixed layer. The values of static samples are shown as “Constant” for comparison. UVR-inhibition of cumulative carbon fixation in high (C) or low (D) pCO$_2$ grown cells was derived from data plotted in the upper panel. The values are means and standard deviations ($n = 3$).
Fig. 9: Relative cumulative carbon fixation (left label, Solid) and absETR (right label, Open) in *Gephyrocapsa oceanica* grown at high (HC) (A) and low (LC) (B) pCO$_2$ levels as a function of PAR under different radiation treatments over 2 h incubation. Vertical lines represent standard deviations of triplicate incubations.