Zn Transcription Factors Regulate Oxidative Stress

Corresponding Author:
Ruth Martin
USDA ARS NFSPRC
3450 SW Campus Way
Corvallis, OR 97331
Phone: 541-738-4174
Ruth.Martin@ars.usda.gov

Research Areas:
1. Signaling and Response OR
2. Genes Development and Evolution
Enhanced Oxidative Stress Resistance through Activation of a Zinc Deficiency Transcription Factor in *Brachypodium distachyon*

Kira M. Glover-Cutter, Stephen Alderman, James E. Dombrowski, and Ruth C. Martin

United States Department of Agriculture, Agricultural Research Service, National Forage Seed Production Research Center, 3450 SW Campus Way, Corvallis, OR 97331

Zinc deficiency transcription factor activity moderates oxidative stress resistance.

Key Words: oxidative stress, abiotic stress, *Brachypodium*, BdbZIP10, Zn deficiency
Support for Dr. Kira Glover-Cutter was provided by the USDA ARS Administrator’s Post-Doctoral Research Associate Program.

Corresponding author e-mail: Ruth.Martin@ars.usda.gov.
ABSTRACT
Identification of viable strategies to increase stress resistance of crops will become increasingly important for the goal of global food security as our population increases and our climate changes. Considering that resistance to oxidative stress is oftentimes an indicator of health and longevity in animal systems, characterizing conserved pathways known to increase oxidative stress resistance could prove fruitful for crop improvement strategies. This report argues for the usefulness and practicality of the model organism *Brachypodium distachyon* for identifying and validating stress resistance factors. Specifically, we focus on a zinc deficiency transcription factor, BdbZIP10, and its role in oxidative stress in the model organism *Brachypodium*. When overexpressed, BdbZIP10 protects plants and callus tissue from oxidative stress insults, most likely through distinct and direct activation of protective oxidative stress genes. Increased oxidative stress resistance and cell viability through the overexpression of BdbZIP10 highlight the utility of investigating conserved stress responses between plant and animal systems.
INTRODUCTION

Global food security is dependent on both the availability of arable land as well as its agricultural production potential (Long et al., 2006; Fedoroff et al., 2010; Conforti et al., 2011; Wheeler and von Braun, 2013). Though roughly one-third of all arable land is currently in use, by 2050 estimated increases in agricultural production and yield of over 70% are predicted to be necessary to meet the growing demands for food (Conforti et al., 2011). This corresponds to an annual global increase of an additional one billion tons of cereal, including roughly 300 million tons of wheat (Conforti et al., 2011). To address food security, multiple research strategies are being implemented to identify or create stress-resistant, high-yielding crop varieties, including traditional breeding through germplasm mining of cultivated crops and wild relatives (Witcombe et al., 2008; Redden, 2013), as well as biotechnological approaches including genetic modification (Serageldin, 1999; Long, 2013). To improve upon these strategies, basic research into the mechanisms of abiotic stress resistance will be essential.

In the last decade, the genetically tractable model organism *Brachypodium distachyon* has been introduced as a viable biotechnological model for temperate cereal crops (Draper et al., 2001; Vogel and Bragg, 2009). When compared to *Arabidopsis* as a model system, *Brachypodium distachyon* is similar in that its genome is also relatively small (300 Mbp), and its life cycle entails a short generation time (8-12 weeks) that requires simple growing conditions that can be easily scaled up in the greenhouse (1000 plants/m²) (Draper et al., 2001; Vogel and Bragg, 2009). Further, *Brachypodium* is more closely related to wheat and barley than rice. However, unlike wheat with a complicated genome structure and genome size of greater than 16,000 Mbp, many *Brachypodium distachyon* lines are diploid and more easily transformable (Vogel and Bragg, 2009). Recently the genome, transcriptome, and other interactive bioinformatics tools for *Brachypodium* have been made publically available, thus further adding to the usefulness of *Brachypodium distachyon* as a model system (Genome sequencing and analysis of the model grass *Brachypodium distachyon*, 2010; Brkljacic et al., 2011; Huo et al., 2011; Li et al., 2012). Combined, these tools will allow for systematic analysis of gene function followed by applied research towards cold cereal crop improvement for increased abiotic stress resistance.

Plant abiotic stress exposure from increased soil salinity, temperatures, and drought, results in tissue damage that dramatically alters cellular metabolism (Miller et al., 2008; Cramer...
et al., 2011). This cellular damage releases and produces Reactive Oxygen Species (ROS), which in turn activate the oxidative stress response for either cellular recovery or Programmed Cell Death (PCD) (Gill and Tuteja, 2010). Consistent with this functional link between abiotic stress and oxidative stress, overexpression of many conserved oxidative stress protective factors including GSTs (glutathione S-transferases), SODs (superoxide dismutases), ALDHs (aldehyde dehydrogenases), and thioredoxins increase abiotic stress tolerance (Gill and Tuteja, 2010), though the extent to which overexpression of oxidative stress transcription factors is protective is not clear. In plants, exploration of specific bZIP oxidative stress transcription factors has mostly focused on the TGA bZIP family, which bears some resemblance to the yeast phase II detoxification factor YAP1 (Johnson et al., 2001; Despres et al., 2003). In the animal kingdom, many stress transcription factors are utilized during oxidative stress to activate protective responses (bZIP transcription factors XBP1, ATF4, NRF1-3, and ATF-6) (An and Blackwell, 2003; Harding et al., 2003; Glover-Cutter et al., 2013) with many of these factors playing intersecting roles in related cellular stresses, including protein homeostasis and aging (Henis-Korenblit et al., 2010; Kenyon, 2010; Hetz, 2012).

The intersection of oxidative stress resistance and longevity is a well researched field in the animal kingdom (Tullet et al., 2008; Ristow and Schmeisser, 2011; Calabrese et al., 2012; Gems and Partridge, 2013), with many stress and longevity pathways conserved in the plant kingdom. For example, micro-nutritional depravation of essential nutrients is associated with aging and cognitive decline in animal systems (Chen et al., 2013), and growth and mass decline in plant systems. Specifically, zinc (Zn) deficiency has been linked to Alzheimer’s and Parkinson’s disease in humans and in model systems for these diseases including mouse, C. elegans and Drosophila (Chen et al., 2013; Szewczyk, 2013). For plants, zinc deficiency results in poorer yields due to plant death and necrosis (Assuncao et al., 2010a; Lin and Aarts, 2012). Considering that many soils used for agriculture in developing countries are zinc deficient, and that the majority of animal zinc uptake is through plant consumption and diet (Assuncao et al., 2010a), a better understanding of the zinc deficiency pathway in cereal crops is imperative.

Zinc is essential for many enzymatic activities across the plant and animal kingdoms (Sinclair and Krämer, 2012; Miao et al., 2013). Many abiotic stress factors in plants rely on zinc for function (Miller et al., 2008), and disruption of the zinc deficiency response in mice, yeast, and Drosophila results in decreased resistance to oxidative stress (Higgins et al., 2002; Swindell,
2011). Reciprocally, dietary supplementation of zinc to oxidative stressed cells reverses oxidative stress sensitivity (Ha et al., 2006; Gunther et al., 2012). Zinc deficiency increases the level of cellular ROS, resulting in the activation of zinc transporters for increased influx of intracellular zinc (Gunther et al., 2012). Though this response also activates glutathione synthesis in animals and plants for detoxification of ROS (Cakmak, 2000; Gunther et al., 2012), the precise mechanism for how cells respond to zinc deficiency mediated oxidative stress is not fully understood.

In yeast, Drosophila, and mammals, the zinc deficiency response is controlled by zinc finger transcription factors ZAP1 (Eide, 2009), dMTF-1 (Zhang et al., 2001), and MTF-1 (Gunther et al., 2012), respectively. MTF-1 is auto-regulated and activated during multiple stresses including hypoxia and oxidative stress, in addition to zinc deficiency. MTF-1 can both positively and negatively regulate gene expression (Zhang et al., 2001), and most likely requires co-factors such as SP1 or MDT15. Both ZAP1 and MTF-1 have defined DNA binding motifs (Eide, 2009; Gunther et al., 2012), though direct binding and genome-wide identification of targets during multiple stresses have not been fully determined.

In plants, using Arabidopsis as a model, two functionally redundant and highly homologous transcription factors have been identified that regulate the zinc deficiency response, AtbZIP19 and AtbZIP23 (Assuncao et al., 2010b). Unlike the zinc finger transcription factors ZAP1 and MTF-1, Arabidopsis bZIP19/bZIP23 use a basic leucine zipper (bZIP) domain to bind to DNA and potentially dimerize with other bZIP transcription factors. AtbZIP19 and AtbZIP23 and their primary zinc response targets are most likely conserved in cereals based on sequence homology (Assuncao et al., 2010b). However, the connection between zinc homeostasis and oxidative stress resistance, and the potential role of these transcription factors in mediating oxidative stress has yet to be investigated in plants.

Highlighting the utility of stress studies in animal systems, we have identified a new oxidative stress Brachypodium bZIP transcription factor (BdbZIP10) that is highly homologous to AtZIP19/23. Through characterization of oxidative stress resistance reporter genes in Brachypodium, we determined that overexpression of BdbZIP10 activates a protective transcriptional response that results in enhanced oxidative stress resistance and increased viability. Thus, germplasm screening for endogenous hyper-activation of this zinc deficiency
pathway or genetic engineering of this pathway may be a viable direction for increased stress resistance in commercial cereal crops.
RESULTS AND DISCUSSION

Identification of Oxidative Stress Transcriptional Reporters in *Brachypodium*

To investigate the oxidative stress resistance potential in *Brachypodium distachyon (Bd)*, conserved stress factors were first selected to assess the oxidative stress response. Transcriptional reporters were selected from publications of oxidative stress induced gene expression datasets from multiple species followed by homolog identification using bioinformatics to compare predicted Bd protein sequences to *Arabidopsis thaliana, C. elegans,* and *H. sapiens* protein sequences (using BLASTP, CLUSTALW, and ALIGN) (Desikan et al., 2001; Harding et al., 2003; Abercrombie et al., 2008; Oliveira et al., 2009). For this study, six conserved detoxification factors (GST24, CSD2, GPX6, GSC1, SOD1, MSD1), two conserved stress recovery factors (ASN1, SIRT1), and one plant specific anti-necrosis factor (LSD1) were selected as transcriptional reporters for assessment of stress resistance in *Brachypodium* (Table S1).

To validate the transcriptional response of our candidate reporter genes, we performed quantitative reverse transcriptase PCR (QRT-PCR) after treatment with three distinct oxidative stress stimuli—arsenite (Hei et al., 1998; Abercrombie et al., 2008), copper sulfate (Gaetke and Chow, 2003), and paraquat (Mittler, 2002). The highly conserved detoxification factors *BdGST24* (glutathione S-transferase (Board and Menon, 2013)), *BdCSD2* (Cu/Zn superoxide dismutase (Kliebenstein et al., 1998; Alscher et al., 2002; Chu et al., 2005)), *BdGSC1* (glutathione S-conjugate transporting GTPase (Lu et al., 1997)), *BdGPX6* (glutathione peroxidase (Brigelius-Flohe and Maiorino, 2013)), *BdSOD1* (superoxide dismutase (Kliebenstein et al., 1998; Alscher et al., 2002)), and *BdMSD1* (Mn superoxide dismutase (Kliebenstein et al., 1998; Alscher et al., 2002)) were transcriptionally upregulated to various levels in *Brachypodium* leaf or callus tissue under conditions of oxidative stress through sodium arsenite treatment (Fig. 1A, soil application), heavy metal copper sulfate treatment (Fig. 1B, leaf float), or paraquat treatment (Fig. 1C, leaf float, Fig. 1D, callus submersion). Consistent with observations of tailored transcriptional responses for specific stress stimuli (Reichert and Menzel, 2005; Oliveira et al., 2009; Sahu et al., 2013), each oxidative insult resulted in a specific pattern of induction among the detoxification genes (Figs. 1A-D).

In addition to these canonical oxidative stress reporters, we identified conserved transcriptional reporters representative of cellular health and recovery efforts such as *BdASN1*
(asparagine synthetase), *BdSIRT1* (sirtuin 1), and *BdLSD1* (lesion stimulating disease 1). Asparagine synthetase initiates cellular recovery through asparagine synthesis, with expression upregulated during conditions of reduced translation such as Endoplasmic Reticulum (ER) stress (Balasubramanian et al., 2013), amino acid starvation (Richards and Kilberg, 2006), and oxidative stress in various organisms (Abercrombie et al., 2008). As expected, transcription of *BdASN1* was mildly induced when exposed to the oxidative stressor arsenite under our conditions (Fig. 1A), and strongly induced with copper sulfate (Fig. 1B) and paraquat (Fig. 1C, D).

The deacetyltransferase SirT1 has been implicated in proactive roles for oxidative stress resistance (Michan and Sinclair, 2007) and lifespan (Houtkooper et al., 2012) in animals, though these observations have yet to be validated in a plant system. Similar to published observations in mouse cardiac tissue (Alcendor et al., 2007), *BdSIRT1* expression was upregulated after treatment with paraquat in both leaf (Fig. 1C) and callus tissue (Fig. 1D). Additionally, copper sulfate treatment resulted in a roughly 10-fold increase in *BdSIRT1* transcript levels (Fig. 1B). However, increased expression of *BdSIRT1* after arsenite exposure was not observed under our conditions (Fig. 1A).

Prolonged oxidative stress will eventually result in programmed cell death (PCD) and plant necrosis. To monitor this pathway under our oxidative stress conditions, we chose to focus on the expression of the anti-PCD factor, *BdLSD1*. LSD1 is a constitutively and ubiquitously expressed ROS regulated factor that is transcriptionally upregulated during oxidative stress (Van Breusegem and Dat, 2006). As expected, transcript levels of *BdLSD1* were increased with sodium arsenite, copper sulfate, and paraquat treatments (Fig. 1A-D). In sum, the identified detoxification response and cellular protective factors in Fig. 1 were sufficiently induced with oxidative stress and can thus serve as endogenous transcriptional reporters for oxidative stress resistance in the model organism *Brachypodium distachyon*.

Conserved Bd Zn Deficiency Transcription Factor is Induced with Oxidative Stress

In *Arabidopsis*, two transcription factors regulate the response to Zn deficiency, AtZIP23 and AtZIP19 (Assuncao et al., 2010b). To determine the *Brachypodium* homolog(s), bioinformatic analysis followed by analysis of transcription during Zn stress was performed. First, forward and reverse BLASTP analysis identified the top *Brachypodium* candidate,
Bradi1g30140.1 (Gramene BdbZIP10), as a possible Zn deficiency transcription factor homolog. To supplement this BLASTP analysis, we performed CLUSTALW analysis (Fig. 2A), which revealed a high degree of protein sequence conservation including the two sequential conserved N-terminal histidine-rich motifs specific for Zn deficiency bZIP transcription factors across plant species (Assuncao et al., 2010b). Similar to our CLUSTALW result, ALIGN analysis revealed 47.7% and 43.9% sequence identity to AtZIP23 and AtZIP19, respectively. Further, consistent with activity during Zn stress, Zn deficiency activated transcriptional expression of BdbZIP10 and predicted BdbZIP10 targets BdZIP3 (ZIP metal transporter), and BdNAS4 (metal homeostasis gene, nicotianamine synthase), similar to Arabidopsis expression analysis of AtZIP19 and AtZIP23 (Assuncao et al., 2010b). As expected, Zn deficiency did not activate the housekeeping gene BdEF1 (Fig. 2B). Taken together, these results suggest that BdbZIP10 is homologous to Zn deficiency transcription factors AtZIP23 and AtZIP19.

Before testing whether transgenic activation of the Zn deficiency response elicits oxidative stress resistance, we first investigated the possibility that Zn deficiency activates oxidative stress in Brachypodium, similar to observations in animal systems. Consistent with a tailored response to oxidative stress, ASN1, CSD2, SIRT1, GPX6, and LSD1 transcripts were significantly increased with Zn deficiency, whereas oxidative stress reporters GST24, SOD1, and GSC1 were not induced (Fig. 3A). Activation of these oxidative stress reporters during Zn deficiency suggests activation of a transcription factor(s) capable of orchestrating the oxidative stress response during both zinc and oxidative stress.

Many stress transcription factors are transcriptionally induced with their respective stressors (Estruch, 2000). To test whether BdbZIP10 transcript levels increase with oxidative stress similar to induction during Zn deficiency, we performed QRT-PCR after treatment with sodium arsenite, copper sulfate, and paraquat. Each of these oxidative stress conditions significantly increased transcript levels of BdbZIP10 (Fig. 3B), suggesting that this transcription factor may be involved with the oxidative stress response in Brachypodium.

BdbZIP10 Overexpression Enhances Transcription of Protective Response Factors

To determine whether constitutive overexpression of BdbZIP10 activates transcription of oxidative stress resistance genes, two vectors containing full-length BdbZIP10 coding sequences driven by the constitutive maize Ubi1 promoter were constructed, with one containing a C-
terminal GFP tag. Agrobacterium-mediated transformation was used to introduce these genes into Brachypodium calli, creating multiple plant lines and callus lines selected for overexpressed BdbZIP10 (BdbZIP10o/e) or BdbZIP10::GFP (BdbZIP10::GFPo/e) (Fig. 4). Gene expression changes were analyzed using RNA extracted from leaf tissue of these transgenic lines using quantitative RT-PCR (n > 3). Both BdbZIP10o/e and BdbZIP10::GFPo/e plants exhibited similar transcriptional profiles from our selected reporter genes (Fig. 4A). As expected, oxidative stress reporter genes were not activated in callus transformed with GFP alone (Fig. S1A). For BdbZIP10 overexpressing plant lines, of the six detoxification reporter genes, BdCSD2, BdGPX6, BdSOD1, and BdMSD1 were upregulated when BdbZIP10 is overexpressed, with BdCSD2 and BdGPX6 showing greater expression in the BdbZIP10::GFP lines. The protective factor BdASN1 was also upregulated in both overexpressing lines. However, the detoxification factor BdGSC1 and the plant anti-necrosis factor BdLSD1 were not induced with BdbZIP10 overexpression in BdbZIP10o/e and BdbZIP10::GFPo/e plants. On the other hand, BdSIRT1 transcript levels were increased to a lesser extent than other oxidative stress resistance reporters in BdbZIP10o/e, though this increase was not detectable in our BdbZIP10::GFPo/e plants. Although differences in the degree of expression of these reporter genes exist between the two BdbZIP10 overexpressing transgenic lines, the general observation of enhanced oxidative stress reporter gene transcription in the absence of zinc or oxidative stress strongly implicates BdbZIP10 as a cross-functional stress transcription factor.

Of note, BdbZIP10 transgenic plants did not exhibit stressed phenotypes and developed similar to wild-type plants (Fig. S1B), suggesting that overexpression of BdbZIP10 did not simply elicit oxidative stress. Additionally, though overexpression of BdbZIP10 activated expression of its predicted zinc deficiency target reporter BdZIP3 (Assuncao et al., 2010b) (Fig. 4B), overexpression did not activate other zinc deficiency pathway components such as BdZIP5 and BdNAS4 (Fig. 4B). These observations, together with similar oxidative stress gene induction patterns of plants transformed with two independent BdbZIP10 constructs (BdbZIP10o/e and BdbZIP10::GFPo/e), strongly suggest that BdbZIP10 regulates expression of oxidative stress resistance genes in Brachypodium.

To further characterize the extent of the transcriptional stress response of overexpressing BdbZIP10, we examined the expression of our oxidative stress resistance reporter genes after treatment with an oxidative stressor. Of the three oxidative stressors tested, paraquat treatment
initiated the most robust and consistent induction for each of our reporters (Fig. 1C and D). Wild type and BdbZIP10o/e plants were treated with pararquat, and QRT-PCR was performed. To focus on the effects of BdbZIP10 overexpression, results were then normalized to wild-type paraquat treated expression levels (Fig. 5). Of the six detoxification reporters, transcript levels of four factors were significantly increased with BdbZIP10 overexpression (BdGPX6, BdGSC1, BdSOD1, and BdMSD1). Of the three cellular protective reporter genes, both BdASN1 and plant specific BdLSD1 transcripts levels increased with paraquat treatment of BdbZIP10o/e plants compared to paraquat treated wild-type plants. These results differ slightly from untreated conditions, where GSC1 and LSD1 transcriptional induction was not observed with BdbZIP10 overexpression (Fig. 4A). Possible explanations for these differences include additional stress based signals for transcriptional activation of LSD1 and GSC1, or perhaps this indicates that BdbZIP10 indirectly activates their respective transcription through an unknown stress factor specific to paraquat stress.

To further explore potential transcriptional activation of cellular protective pathways in BdbZIP10o/e plants, we also focused on transcriptional activation of the autophagy pathway, which has been associated with enhanced longevity in animals (Madeo et al., 2010) and oxidative stress in plants (Pérez-Pérez et al., 2012). BdATG8, the plant homolog of mammalian LC3, is upregulated in transgenic BdbZIP10o/e plants (Fig. 5). Consistent with the role of ATG8 during abiotic stress (Xiong et al., 2007) as well as its transcriptional induction under heat stress (Zhou et al., 2013), paraquat treatment in BdbZIP10o/e plants significantly increased BdATG8 levels above that of wild-type treated plants (Fig. 5). Taken together, transcriptional activation of oxidative stress resistance and cellular protective reporters by overexpression of BdbZIP10 both in the absence and presence of oxidative stress strongly suggest that the Zn deficiency transcription factor homolog in Brachypodium, BdbZIP10, influences oxidative stress resistance—potentially directly as a transcription factor.

BdbZIP10 Localizes to the Nucleus with Oxidative Stress

If BdbZIP10 acts as a transcription factor, detection of this protein in the nucleus should be possible given its nuclear localization signal (Fig. 2A). We next investigated whether BdbZIP10 localized to the nucleus using fluorescence microscopy. BdbZIP10::GFPo/e callus tissue was homogenized and examined under Nomarski light, and the nucleus was detected with
4',6-diamidino-2-phenylindole (DAPI) staining and UV light (Fig. 6A, first two panels) (Zink et al., 2003; Hunt et al., 2013). Consistent with its potential role as a transcription factor, BdbZIP10::GFP localized to the nucleus at detectable levels (Fig. 6A, third panel). Further, GFP intensity visually increased with oxidative stress by paraquat treatment (Fig. 6A, fourth panel, and quantification by ImageJ in Fig. 6B).

To further verify nuclear localization of BdbZIP10::GFP, cryocut leaf sections of mature leaf tissue that was treated with either paraquat (Fig. 6C, panel 5 & 6) or copper sulfate (Fig. 6C, panels 7 & 8) were analyzed by microscopy. Nuclear localization of BdbZIP10::GFP was consistently observed in leaf sections from both oxidative stress treatments. Importantly, this localization was not simply a function of the GFP tag, as transgenic plants expressing GFP alone did not show a significant amount of nuclear localization. These results strongly suggest that the BdbZIP10 protein may function as a transcription factor similar to bZIP domain family members across species (Jakoby et al., 2002). Also, similar to many bZIP transcription factors in animals, BdbZIP10 is localized in the nucleus with stress, and thus primed for transcriptional activity during oxidative stress (Ameri and Harris, 2008; Ma, 2013).

BdbZIP10 Localizes to the Site of Transcription

Our observation of nuclear localized BdbZIP10::GFP strongly suggests that this protein acts as a transcription factor. As many transcription factors can be captured at the site of transcription by chromatin immunoprecipitation (ChIP), we first tested whether BdbZIP10 could be found at the site of transcription of *BdZIP4*, a known transcriptional target of BdbZIP10 *Arabidopsis* homologs AtZIP19/23, by quantitative PCR (Q-PCR). As predicted, BdbZIP10::GFP localized along the *BdZIP4* gene locus at levels well above the wild-type control background (Fig. 7A).

Given the degree and variety of oxidative stress reporter gene induction with BdbZIP10 overexpression (Figs. 4 and 5), we next investigated whether BdbZIP10 could be found at the site of transcription of a common oxidative stress reporter gene. Specifically, we tested whether BdbZIP10 could be found at the gene locus of *BdASN1*. *Arabidopsis* ASN is upregulated with both Zn deficiency (van de Mortel et al., 2006) and oxidative stress (Abercrombie et al., 2008), and its mammalian homolog (ASNS) is directly regulated by the bZIP nutrient/ER/oxidative stress transcription factor ATF4 (Ameri and Harris, 2008; Han et al., 2013). Though *BdASN1*
does not contain the Zn Deficiency Response Element (ZDRE) associated with AtZIP23/19 binding, like the reporter *BdZIP4* (Assuncao et al., 2010b), the promoter region of *BdASN1* does contain both Box A and Box G elements typical for plant bZIP DNA binding motifs (Izawa et al., 1993) (Fig. 7B).

ChIP analysis by Q-PCR along the *BdASN1* gene revealed significant BdbZIP10::GFP recruitment around the promoter region compared to downstream regions (+1504, representative of background signal) and wild-type extracts (light gray versus white bars, Fig. 7C). Upon treatment with the oxidative stressor paraquat, recruitment density of BdbZIP10::GFP increased, suggesting selective recruitment at the site of transcription (Fig. 7C, black bars). This observation of increased BdbZIP10::GFP signal near the *BdASN1* promoter by ChIP is consistent with our fluorescence microscopy observation of enhanced BdbZIP10::GFP nuclear localization with stress (Fig. 6). Combined with our *BdASN1* transcriptional induction data from BdbZIP10o/e plants (Figs. 4 and 5), these results implicate BdbZIP10 as a transcription factor with the potential to directly regulate oxidative stress response genes.

BdbZIP10 Enhances Oxidative Stress Resistance and Survival

Considering the transcription factor potential of BdbZIP10 (Fig. 7) and the increased transcription levels of protective genes with *BdbZIP10* overexpression (Figs. 4 and 5), we next determined whether transgenic overexpression of *BdbZIP10* has a biological effect on oxidative stress resistance of *Brachypodium*. While there is no phenotypic difference observed between paraquat treated and non-treated wild-type and BdbZIP10 overexpressing plants (Fig. S1C), treatment of cut leaf tissue from BdbZIP10 overexpressing plants showed a marked reduction in paraquat induced leaf bleaching compared to wild-type plants (Fig. S1D).

To further determine whether differences in cell viability exist between wild-type and BdbZIP10o/e plants, fluorescein diacetate staining (FDA) was used to stain living *Brachypodium* callus. Cell permeable FDA staining identifies viability by utilizing the non-specific esterase activity of living cells, which hydrolyzes the non-fluorescent FDA to form green fluorescent fluorescein (Schwab and Hulskamp, 2008). Both BdbZIP10o/e and BdbZIP10::GFPo/e callus lines exhibited considerably higher levels of FDA staining with paraquat treatment (Fig. 8A) that were quantified using ImageJ software (Fig. 8B). These results are consistent with a protective effect of increased stress resistance and survival with *BdbZIP10* overexpression.
Though FDA has been used to reliably identify viable tissue, auto-hydrolysis in the absence of living cells has been reported (Clarke et al., 2001; Boyd et al., 2008). To address this possibility and to further verify increased cell viability of BdbZIP10o/e tissue during oxidative stress, we treated callus tissue with paraquat and visualized cell viability by MTT (dimethylthiazol) staining (Fig. 8C). Callus tissues undergoing paraquat induced oxidative stress treatment showed a marked reduction in live tissue staining (reddish-brown) in wild-type cells (Fig. 8C top two wells). In contrast, paraquat treatment had very little effect on cell viability measured by MTT staining in BdbZIP10o/e callus (Fig. 8C, bottom well). Both FDA and MTT cell viability results strongly implicate BdbZIP10 as a stress resistance factor during oxidative stress.

Having determined that BdbZIP10 regulates transcription of detoxification and protective factors with known roles in oxidative stress resistance (Figs. 4 and 5), we next investigated whether cell viability of BdbZIP10 overexpression correlated with decreased levels of cellular ROS. To measure changes in the levels of ROS, we first focused on visualizing H2O2 accumulation in leaf tissue by DAB (3,3’-diaminobenzadine) staining, which polymerizes as a red/brown polymer with peroxidase activity (Thordal-Christensen et al., 1997; Fryer et al., 2002). Whereas paraquat treatment of wild-type control leaf cuts resulted in characteristic brown DAB staining, this staining was greatly reduced in leaves overexpressing BdbZIP10 (Fig. 8D). Similar observations were seen with callus tissue, with overexpressing BdbZIP10 homogenized callus showing less DAB staining after paraquat treatment compared to wild-type control callus tissue (Fig. 8E). These observations suggest that overexpression of BdbZIP10 results in reduced accumulation of hydrogen peroxide (H2O2) during oxidative stress.

To further confirm reduction in the levels of ROS in BdbZIP10o/e tissue during oxidative stress, we measured levels of superoxide by the reduction of NBT (nitro-blue tetrazolium). Leaves were treated with either paraquat or copper sulfate (Fig. 8F), incubated with NBT, followed by extraction, solubilization, and detection of formazan at 570 nm (Piddington et al., 2001). When normalized to leaf mass, extracts of BdbZIP10o/e leaf samples showed a marked reduction in signal compared to wild type controls, consistent with decreased production of ROS during oxidative stress. Taken together, these results suggest that BdbZIP10 acts as a stress resistance transcription factor, making this factor a viable candidate for either transgenic
manipulation for increased stress resistance, or as a transcription node for screening germplasm for commercial cereal crops.

CONCLUSION

BdbZIP10 is the *Brachypodium* Zinc Deficiency Transcription Factor

Though the structure and mode of activation for zinc deficiency transcription factors vary between the plant and animal kingdoms, the nutritional requirement for zinc as a micronutrient is universal (Frassinetti et al., 2006). We have demonstrated that the *Brachypodium distachyon* zinc deficiency factor is BdbZIP10 by sequence homology (Fig. 2A), by its induction under zinc deficient conditions (Fig. 2B), and by functional analysis through activation of specific zinc responsive reporter genes (Fig. 2B, 4B, 7A). Like other stress transcription factors, BdbZIP10 localizes to the nucleus with stress (Figs. 6 and 7), possibly due to posttranslational modifications enhancing stability or directing subcellular localization (An and Blackwell, 2003; Hetz, 2012). Further supporting evidence that BdbZIP10 acts as a stress transcription factor include the activation of stress responsive genes (Figs. 4 and 5) and the observation that BdbZIP10 can be found at gene loci by ChIP (Fig. 7).

Zinc deficiency and oxidative stress are tightly correlated in both plant and animal systems (Cakmak, 2000; Higgins et al., 2002; Swindell, 2011). Reduced levels of zinc or loss of zinc deficiency factors results in increased ROS, decreased oxidative stress resistance, and reduced viability. However, little is known about the protective effect of enhanced modulation of the zinc deficiency pathway. In *Drosophila*, the viability of parkin mutants (model for Parkinson’s disease) is extended and ROS levels reduced with exogenous overexpression of dMTF-1. Overexpression of dMTF-1 also extends *Drosophila* lifespan (Saini et al., 2011). Similarly, we now demonstrate in the *Brachypodium* plant model that overexpression of *BdbZIP10* activates protective genes involved in oxidative stress resistance (Figs. 4 and 5). Most importantly, over-expression of *BdbZIP10* enhances oxidative stress resistance and improves plant cell viability during oxidative stress (Fig. 8A-C), most likely through the reduction of ROS (Fig. 8D-F).

Though overexpression of *Brachypodium* and *Drosophila* zinc transcription factors is beneficial for these organisms, an overabundance of the heavy metal zinc is itself lethal (Lin and
Aarts, 2012). Given the toxicity and growth effects of too much zinc, we do not believe that the mechanism of action of \textit{BdbZIP10} overexpression is solely the result of enhanced activation of the zinc deficiency pathway increasing zinc levels in the plant, as these plants develop normally and show no signs of toxic insults (Fig. S1B). Additionally, transcriptional analysis reveals that only a select subset of zinc responsive genes are activated with \textit{BdbZIP10} overexpression (Fig. 4B). Future studies identifying genome-wide direct gene targets of BdbZIP10 will be important in teasing out the mechanism of this enhanced resistance to oxidative stress.

Considering that abiotic stress results in oxidative stress, and that enhanced oxidative resistance increases viability from yeast to mammalian systems (Gems and Partridge, 2013), we propose a systematic analysis of conserved oxidative stress resistant pathways using the monocot model organism \textit{Brachypodium} to select viable strategies for stress resistant crop identification through germplasm screening and/or genetic modification. To this end we have identified protective oxidative stress reporter genes for assessment of the oxidative stress response (Fig. 1). In this report, we focused on the zinc deficiency pathway as a potential mediator of oxidative stress. We report BdbZIP10 as a viable candidate for further investigation for abiotic and biotic stress resistance in forage grasses and temperate cereals.
MATERIALS AND METHODS

Brachypodium Growing Conditions

Mature seeds of *Brachypodium distachyon* (Bd21-3 or seeds from transformed plants) were planted in Sunshine Growing Mix (Sun Gro Horticulture Inc., Bellevue, WA). Plants were fertilized once with Osmocote Plus 15-9-12 slow release fertilizer. Pots were placed in a cold chamber (4 °C with 8 h of fluorescent light for 5 d) for seed stratification. Plants were then grown either under greenhouse conditions with supplemental light (high-pressure sodium lamps, 400 or 430W; Philips Lighting Somerset, NJ) to provide 16 h light with 20 °C d/17 °C night (these are the settings, but much warmer during the summer) or in a growth chamber with 20 h light/4 h dark cycles at 24 °C d and 18 °C night in a Conviron PGV36 walk-in growth chamber (Conviron, Winnipeg, Canada). Plants were grown for at least four weeks post-germination before leaf tissue was extracted for RNA, ChIP, and ROS analysis.

Stress Assays

Approximately six- to eight-week old (Lehmann et al., 2012; Martin et al., 2012), potted *Brachypodium* plants measuring on average 15-20 cm in height, arranged four plants per 500 ml pot, were treated with sodium arsenite, copper sulfate, or paraquat. For arsenite treatments, 100 mL of 5 mM arsenite (Sigma) was added directly to the pot at the roots using modified protocols (Dombrowski et al., 2008; Lehmann et al., 2012) and leaf tissue was extracted after 1 h of treatment. Paraquat and copper sulfate treatments used a modified version of existing leaf toxicity protocols (Zhang et al., 2006; Wan et al., 2009). For copper sulfate treatment, 3- to 4-inch leaves were harvested and submerged in a dilution of either 250 μM (gene expression stress assays) or 1 mM (nuclear localization and cell assays) under continuous light for either 48 h (gene expression assays) or 5 days (cell assays and nuclear localization). For paraquat leaf treatment, 3- to 4-inch leaves were harvested and submerged in fresh dilutions of either 160 μM (gene expression stress assays) or 320 μM (nuclear localization and cell viability assays) under continuous light for up to 24 h (gene expression assays), 72 h (cell assays), or up to 5 d (nuclear localization assays), unless otherwise indicated. For paraquat treatment of callus tissue, callus was briefly homogenized (Ultra-Turrax T25, setting 4) and nutated in 160 μM (gene expression assays, 8 hr) or 320 μM paraquat (cell assays, 24 hours) diluted in PBS, unless otherwise indicated.
For zinc deficiency studies, plants were grown under greenhouse conditions as above, in moistened hydroton clay balls, and nutrients were supplied daily as a modified Hoagland’s medium (Yordem et al., 2011) (Full strength Yordem’s medium: 1mM KH$_2$PO$_4$; 3.75 mM KOAc; 5 mM Ca(NO$_3$)$_2$; 1.25 mM KNO$_3$; 2 mM MgSO$_4$; 3.75 mM NH$_4$OAc; 46 μM H$_3$BO$_3$; 9.1 μM MnCl$_2$; 0.77 μM ZnSO$_4$; 0.32 μM CuSO$_4$; 0.83 μM H$_2$Mo$_4$; 100 μM FeSO$_4$; 100 μM EDTA). Plants were watered with ½ strength Yordem’s medium for the first week, and then full strength Yordem’s medium with or without zinc for control or zinc deficient plants, respectively. Leaf tissue samples for RNA extraction were collected after applying full strength Yordem’s medium with/without zinc for 15 d.

Vector Construction

RNA was extracted from leaf tissue stressed with arsenite (5 mM, 1h), paraquat (160 μM, 24 h), and copper sulfate (250 μM, 48h), DNase treated with TurboDNase (Ambion), and cDNA was synthesized by RT-PCR (5 μg RNA, Superscript III) (please see RNA extraction method for more detail). cDNAs were collected and diluted five-fold for PCR cloning. BdbZIP10 nomenclature (protein name, Gene ID (Bradi1g30140), and nucleotide sequence) was obtained through the transcription factor database collected in www.grassius.org. Primers were designed using the Clonetech web design for In-Fusion cloning (Clonetech, Madison, WI) into a modified pART (Gleave, 1992) (without and with C-terminal GFP tag) driven by the ZmUbi1 promoter (Figure S1E) (Wang et al., 1997; Wang et al., 1998; Murray et al., 2004). Forward primer 5’CGACTCTAGAGGATCCATGGACGACGGGGACC and reverse primer 5’ATGAATTCGAGCTCGGTACCCTACTTCTTTGCATTGGAAACA were used for insert amplification of the coding region of BdbZIP10 from stress Bd cDNA. Clonetech In-Fusion vector preparation was performed according to manufacturer’s instructions, and the vector was transformed into competent DH5α cells. Plasmid was purified using Qiagen midiprep columns, sequenced to verify the construct, and then transformed into Agrobacterium AGL1 (Lazo et al., 1991).

Brachypodium Transformations

Bd21-3 transformations for GFP, BdbZIP10, and BdbZIP10::GFP were performed as previously described (Draper et al., 2001; Vogel et al., 2006; Vogel and Hill, 2008). The
A complete protocol for embryogenic tissue development from immature seeds and transformation of the embryogenic callus is available at:

Brachypodium pw.usda.gov/files/BrachyTransformProtocol_Feb2009.pdf (Vogel and Hill, 2008). Briefly, after seed dissection, embryogenic callus tissue was subcultured for ~6 weeks before transformation with Agrobacterium. For transformation, callus tissue was suspended in Agrobacterium AGL1 (Lazo et al., 1991) containing the plasmids of interest for up to 15 min, the liquid was removed, and the calli were placed on dry Whatman filter paper in the dark for 3 days. Transformed callus was selected on CIM media containing 40 mg/L hygromycin and 150 mg/L Timentin following the protocol described in the above linked pdf. Transformed callus was moved to regeneration media after between 3 to 5 weeks and grown in light chamber conditions of 16 h light, 8 h dark cycles at 28 °C. Shoots were transferred to magenta boxes and placed in the light chamber. Plantlets were transferred to soil and placed under a plastic wrap for about a week to help acclimate the plants, which were then grown in the greenhouse or in growth chambers as described above. Experiments were performed with at least 3 T0 or 3 T1 BdbZIP10 overexpressing lines.

RNA Extraction and Quantification

RNA extraction was performed as previously described (Martin et al., 2013). Briefly, 1- to 3-inch leaf pieces were homogenized in Trizol (Ultra-Turrax T25, setting 4) for 30 s followed by quick freezing at -80 °C. Samples were then thawed, debris removed by centrifugation, and RNA extraction completed using the manufacturer’s recommended conditions (Trizol, Invitrogen). Extracted RNA was then treated with DNase per manufacturer’s recommended conditions (Turbo DNase, Ambion) and at least 1 ug of cDNA was synthesized using Superscript III Reverse Transcriptase kit (Invitrogen, manufacturer’s conditions).

Chromatin Immunoprecipitation

Extracts from control (wild-type) or BdbZIP10::GFPo/e plants were prepared using a modified protocol from Ricardi et al. (2010). Diced leaf tissue (1-5 g) was immersed in 37 ml of 1% formaldehyde in Extraction Buffer 1 (0.44 M sucrose, 10 mM Tris pH 8.0, 5 mM β-mercaptoethanol, 0.1 mM PMSF [phenylmethylsulfonyl fluoride]) and vacuum infiltrated for 15 min (100 in Hg), followed by 5 min vacuum infiltration after addition of 2.5 mL 2 M glycine.
Leaf tissue was then washed twice with ice water, quick-frozen in liquid nitrogen, ground to a fine frozen powder with a mortar and pestle and resuspended in Extraction Buffer 1. The solution was then filtered through 4 layers of miracloth, and centrifuged at 2,880 x g for 20 min. The pellet was resuspended in Extraction Buffer 2 (0.25 M sucrose, 10 mM Tris pH 8.0, 10 mM MgCl2, 1% TritonX 100, 0.1 mM PMSF, 5 mM β-mercaptoethanol) and incubated on ice for 10 min. The suspension was then centrifuged at 2,100 x g for 20 min, followed by resuspension of the pellet in Extraction Buffer 2 minus Triton-X, and then centrifuged at 2,100 x g for 20 min. The pellet was suspended in radioimmunoprecipitation assay buffer (RIPA), sonicated 5 X 15 s intervals at 20% amplitude, treated with Micrococcal Nuclease (Roche) at 37 °C for 10 min, and then quick frozen at -80 °C. Samples were then prepared for immunoprecipitation with GFP antibody (Abcam ab290) as previously described (Glover-Cutter et al., 2008).

Quantitative PCR

Quantification of both cDNA and ChIP samples was performed using BioRad Real Time PCR detection system using primers designed with Roche LightCycler Probe Design Software 2.0, as described previously (Glover-Cutter et al., 2008; Martin et al., 2012; Martin et al., 2013). For RT analysis, BdUBC18 and/or BdEF1 were used as normalization housekeeping control genes (Hong et al., 2008). Where indicated, RT values were graphed in log(10) scale and denoted as ‘mRNA Fold Induction (log)’. For ChIP analysis, amplicons from the upstream intergenic region, promoter, 5’, and middle of the gene were chosen based on probability score and delta G values for optimized QPCR, with the middle of the amplicon given as the name for each primer pair. IP values were normalized to input values for each condition and presented as % ChIP of the maximal signal value as described previously (Glover-Cutter et al., 2008).

Light Microscopy

Nuclear localization analysis of BdbZIP10 was performed using light microscopy, annotated visually from n ≥ 3 independent experiments, similar to previously described transcription factors (An and Blackwell, 2003; Sun et al., 2013). Either homogenized callus tissue or leaf cuts were used for light microscopy analysis. For callus tissue, approximately 5 μL of homogenized liquid was mounted and examined with an Olympus BH-2 microscope with Nomarski differential interference contrast lighting for cellular definition and details. Leaf
tissues samples were macerated on a glass slide in a drop of water and covered with a cover glass. DAPI stained calli were examined with an Olympus BH-2 Microscope with UV light and Chroma 11000v3 UV filter cube (Ex 350 nm). Samples for GFP localization were examined with a BP490 filter (Ex 490 nm). Images were captured at 125X or 250X magnification using a Moticam 2500 digital camera (Motic Instruments, Inc., Richmond B.C., Canada) connected to an HP laptop running Motic Images Plus software v. 2.0. The software ImageJ was used to roughly estimate GFP intensity.

Biological Analysis for Viability and ROS Accumulation

Cell viability assays for oxidative stress resistance included staining of live tissue with FDA (Widholm, 1972) or MTT (Mosmann, 1983). After paraquat treatment, callus tissue was incubated with 0.1μg/mL of FDA diluted in PBS (Cold Spring Harbor Protocols) and photographed on a UV light box. For MTT treatment, homogenized callus was incubated with 0.5 mg/mL MTT diluted in PBS for 4 h in 24-well plates and scanned for visual observation of red dye accumulation. ROS was either visualized through H2O2 accumulation by DAB staining after vacuum infiltration of DAB (in H2O, pH 3.8) (Sunkar, 2010), or by NBT metabolism after NBT vacuum infiltration (0.06% NBT, 10 mM NaN3, 50 mM KH2PO4) (Sunkar, 2010). Briefly, leaf tissues from equivalent developmental stages and leaf positions were vacuum infiltrated at 100 inches of mercury for five 1-min intervals and cut into approximately 1-inch leaf segments. DAB samples were then incubated in the dark for 6 h, briefly air dried, and observed for brown staining characteristic of DAB accumulation and photographed. NBT samples were incubated in the light for one h, followed by ethanol extraction and quantification of formazan by spectrophotometric analysis at 570 nm (Piddington et al., 2001).

Supplemental Material

Supplemental Figure 1. Overexpression of BdbZIP10 and GFP only control reveals best phenotype with leaf float. A, GFP only transgenic callus tissue does not activate endogenous ZIP10 or other oxidative stress reporters. B, Control (wild-type) and BdbZIP10o/e plantlets do not display obvious phenotype under non-treated conditions. C, Paraquat spray application to leaves and soil do not show obvious oxidative stress senescence. Control and BdbZIP10::GFPo/e plants have a similar phenotype during maturity. D, Leaf floats of paraquat treatment display
characteristic bleaching phenotype, especially at exposed cut end (Note reduction in bleaching with BdbZIP10o/e). E. Vector construction for BdbZIP10 and BdbZIP10::GFP transgenic plants.

Table S1. Primers used for QPCR and RTQPCR.
ACKNOWLEDGEMENTS

Special thanks are extended to Thomas Lockwood (USDA-ARS, Corvallis Oregon) for his assistance in *Brachypodium* transformation and general lab and ordering assistance, to Dr. John Vogel (USDA ARS, Albany CA) for his generous gift of *Brachypodium distachyon* seeds, to Dr. Ming-Bo Wang and Dr. Richard Brettell (CSIRO, Canberra Australia) for providing the pVec8 plasmid, and to Dr. Steve Strauss (Oregon State University, Corvallis, OR) for providing the pArt vector. Experimental methods performed in this research complied with current laws and regulations of the U.S.A. The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the United States Department of Agriculture or the Agricultural Research Service of any product or service to the exclusion of others that may be suitable. Relevance to ARS National Programs. NP215: Rangeland, Pasture and Forages: Component "Plant Resources". NP302: Plant Biological and Molecular Processes: Component "Biological Processes that Determine Plant Productivity and Quality.”
LITERATURE CITED

Assuncao AG, Schat H, Aarts MG (2010a) Regulation of the adaptation to zinc deficiency in plants. Plant Signal Behav 5: 1553-1555

Long SP (2013) We need winners in the race to increase photosynthesis in rice, whether from conventional breeding, biotechnology, or both. Plant Cell Environ 37: 19-21

Ma Q (2013) Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 53: 401-426

Thordal-Christensen H, Zhang ZG, Wei YD, Collinge DB (1997) Subcellular localization of H$_2$O$_2$ in plants. H$_2$O$_2$ accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J 11: 1187-1194

FIGURE LEGENDS

Figure 1. Identification of oxidative stress induced reporter genes in *Brachypodium*. A, Quantitative RT-PCR (QRT-PCR) analysis of leaf tissue after treatment with 5 mM arsenite for 1 h. B, QRT-PCR analysis of leaf tissue after treatment with 250 μM copper sulfate for 48 h. C, QRT-PCR analysis of leaf tissue after treatment with 160 μM paraquat for 24 h. D, QRT-PCR analysis of callus tissue after 160 μM paraquat treatment for 8 h. Values are plotted as increases in mRNA fold induction in log scale after normalization to control (non-treated) samples with n ≥ 3. Error bars represent the SEM, *** p ≤ .001, ** p ≤ .01, * p ≤ .05 by Student’s t-test.

Figure 2. Identification of the Zn deficiency transcription factor in *Brachypodium*. A, CLUSTALW aligned sequences of *Arabidopsis* Zn deficiency transcription factors AtbZIP19/23 with BLASTP identified *Brachypodium* protein, Bradi1g30140.1 (BdbZIP10, using Gramene numbering system). Note the conserved histidines characteristic of Zn deficiency bZIP transcription factors in the N-terminus (boxed), in addition to the basic leucine zipper domain (grey highlight), and the predicted nuclear localization signals (dotted box). * indicates single fully conserved residue, : conservation of strong groups, . conservation of weak groups, - no consensus (SDSC Workbench). B, QRT-PCR analysis of transcript levels after 15 days without Zn. Values are plotted as increases in mRNA fold induction after normalization to control (non-treated) samples with n ≥ 3. Error bars represent the SEM, *** p ≤ .001, ** p ≤ .01, * p ≤ .05 by Student’s t-test.

Figure 3. Zn deficiency activates the oxidative stress pathway in *Brachypodium*. A, QRT-PCR analysis of oxidative stress reporter genes after 15 days of Zn deficiency. B, QRT-PCR analysis of BdbZIP10 transcript levels after treatment with copper sulfate (250 μM, 48 h), arsenite (5 mM, 1 h), and paraquat (160 μM, 24 h) normalized to control samples (non-treated). Values are plotted as increases in mRNA fold induction after normalization to control (non-treated) samples with n ≥ 3. Error bars represent the SEM, *** p ≤ .001, ** p ≤ .01, * p ≤ .05 by Student’s t-test.

Figure 4. Overexpression of BdbZIP10 activates expression of protective oxidative stress genes. A, QRT-PCR analysis of oxidative stress protective reporter genes in plants overexpressing
BdbZIP10 (BdbZIP10o/e) (leaf tissue), graphed in log scale after normalization to control (wild-type) sample transcript levels. B, QRT-PCR analysis of zinc deficiency response genes in BdbZIP10o/e leaf tissue, normalized to wild type transcript levels. Error bars represent the SEM, *** p ≤ .001, ** p ≤ .01, * p ≤ .05 by Student’s t-test, with n ≥ 3.

Figure 5. Oxidative stress genes are primed for enhanced induction in BdbZIP10 overexpressing plants (BdbZIP10o/e). QRT-PCR analysis of oxidative stress reporter genes in BdbZIP10o/e leaf tissue normalized to wild type levels after parallel paraquat treatment (160 μM, 24 h) graphed in log scale. Error bars represent the SEM, *** p ≤ .001, ** p ≤ .01, * p ≤ .05 by Student’s t-test, with n ≥ 3.

Figure 6. BdbZIP10 is localized to the nucleus. A, Fluorescence micrographs of BdbZIP10::GFPo/e callus tissue, Nomarski differential interference contrast image (Panel 1), DAPI staining for nuclei (Panel 2), GFP fluorescence under normal (non-treated, Panel 3) and oxidative stress conditions with paraquat (Para, Panel 4, 320 μM paraquat for 24 h). B, Image J quantification of fluorescence in Panels 3 and 4. Error bars represent SEM. C, Fluorescence micrographs of leaf tissue from plants transformed with GFP alone or BdbZIP10::GFP after oxidative stress treatment with paraquat (Para, Panels 5 and 6) and copper sulfate (CuSO4, Panels 7 and 8). Arrows indicate predicted nuclei structures, scale bar estimate of 6 μm.

Figure 7. BdbZIP10::GFP localizes to distinct gene loci. A, ChIP analysis by quantitative PCR of the predicted BdbZIP10 reporter BdZIP4. Gray bars represent amplification signal from control (wild-type) extract and black bars represent amplification signal from BdbZIP10::GFPo/e extract. Amplicons are indicated on the gene map with exons denoted as black boxes. B, Sequence of BdASN1 with predicted bZIP binding domains marked in bold italics and bold italics-underlined. The beginning of the 5’ UTR is boxed in grey, and the ATG start site is underlined. C, ChIP analysis by quantitative PCR of the BdASN1 gene locus before and after induction of oxidative stress with paraquat treatment. Control samples are marked white (non-treated) or striped (paraquat treated), and BdbZIP10::GFPo/e samples are represented with gray (non-treated) or black (paraquat treated) columns. Note the enhanced recruitment of GFP signal
with paraquat treatment. Error bars represent the SEM, ** p ≤ .001, * p ≤ .01, * p ≤ .05 by Student’s t-test, with n ≥ 3.

Figure 8. Overexpression of BdbZIP10 increases oxidative stress resistance. A, Cell viability analysis by FDA (fluorescein diacetate staining) after treatment of homogenized callus tissue with paraquat (320 μM, 24 h). Fluorescence of live tissue is visualized under UV lighting. Note the high levels of fluorescence during oxidative stress in BdbZIP10o/e and BdbZIP10::GFPo/e cells compared to the control cells treated with paraquat (Para). B, Image J quantification of fluorescence observed in A, with error bars represented as SEM. C, Representations of cell viability by MTT (dimethylthiazol) staining of live callus tissue after treatment with paraquat (320 μM, 24 h; Para). D, E, DAB (3,3’-diaminobenzadine) staining of H2O2 after paraquat treatment (320 μM paraquat) comparing wild-type control leaf (D) or callus (E) tissue to BdbZIP10o/e leaf tissue. Note the reduction in staining in BdbZIP10o/e leaves and calli. F, Quantification of ROS (reactive oxygen species) levels using NBT staining and thiazol measurement by spectrometer absorbance at 570 nm. Leaf tissue exposed to either paraquat (black bars) or copper sulfate (gray bars) normalized to leaf mass for either control (wild-type, non-treated), control oxidative stress (Control, OS; wild type treated), or oxidative stress treated BdbZIP10o/e leaf replicates are plotted.
Figure 1. Identification of oxidative stress induced reporter genes in *Brachypodium*. A, Quantitative RT-PCR (QRT-PCR) analysis of leaf tissue after treatment with 5 mM arsenite for 1 h. B, QRT-PCR analysis of leaf tissue after treatment with 250 µM copper sulfate for 48 h. C, QRT-PCR analysis of leaf tissue after treatment with 160 µM paraquat for 24 h. D, QRT-PCR analysis of callus tissue after 160 µM paraquat treatment for 8 h. Values are plotted as increases in mRNA fold induction in log scale after normalization to control (non-treated) samples with n ≥ 3. Error bars represent the SEM, *** p ≤ .001, ** p ≤ .01, * p ≤ .05 by Student’s t-test.
Figure 2. Identification of the Zn deficiency transcription factor in *Brachypodium*. A, CLUSTALW aligned sequences of *Arabidopsis* Zn deficiency transcription factors AtbZIP19/23 with BLASTP identified *Brachypodium* protein, Bradi1g30140.1 (BdbZIP10, using Grassius TF numbering system). Note the conserved histidines characteristic of Zn deficiency bZIP transcription factors in the N-terminus (boxed), in addition to the basic leucine zipper domain (gray highlight), and the predicted nuclear localization signals (dotted box). * indicates single fully conserved residue, : conservation of strong groups, . conservation of weak groups, - no consensus (SDSC Workbench). B, QRT-PCR analysis of transcript levels after 15 days without Zn. Values are plotted as increases in mRNA fold induction after normalization to control (non-treated) samples with n ≥ 3. Error bars represent the SEM, *** p ≤ .001, ** p ≤ .01, * p ≤ .05 by Student’s t-test.
Figure 3. Zn deficiency activates the oxidative stress pathway in *Brachypodium*. A, QRT-PCR analysis of oxidative stress reporter genes after 15 days of Zn deficiency. B, QRT-PCR analysis of *BdbZIP10* transcript levels after treatment with copper sulfate (250 µM, 48 h), arsenite (5 mM, 1 h), and paraquat (160 µM, 24 h) normalized to control samples (non-treated). Values are plotted as increases in mRNA fold induction after normalization to control (non-treated) samples with n ≥ 3. Error bars represent the SEM, *** p ≤ .001, ** p ≤ .01, * p ≤ .05 by Student’s t-test.
Figure 4. Overexpression of *BdbZIP10* activates expression of protective oxidative stress genes. A, QRT-PCR analysis of oxidative stress protective reporter genes in plants overexpressing *BdbZIP10* (BdbZIP10o/e) (leaf tissue), graphed in log scale after normalization to control (wild-type) sample transcript levels. B, QRT-PCR analysis of zinc deficiency response genes in BdbZIP10o/e leaf tissue, normalized to wild type transcript levels. Error bars represent the SEM, *** p ≤ .001, ** p ≤ .01, * p ≤ .05 by Student's t-test, with n ≥ 3.
Figure 5. Oxidative stress genes are primed for enhanced induction in BdbZIP10 overexpressing plants (BdbZIP10o/e). QRT-PCR analysis of oxidative stress reporter genes in BdbZIP10o/e leaf tissue normalized to wild type levels after parallel paraquat treatment (160 µM, 24 h) graphed in log scale. Error bars represent the SEM, *** p \leq .001, ** p \leq .01, * p \leq .05 by Student’s t-test, with n ≥ 3.
Figure 6. BdbZIP10 is localized to the nucleus. A, Fluorescence micrographs of BdbZIP10::GFPo/e callus tissue, Nomarski differential interference contrast image (Panel 1), DAPI staining for nuclei (Panel 2), GFP fluorescence under normal (non-treated, Panel 3) and oxidative stress conditions with paraquat (Para, Panel 4, 320 µM paraquat for 24 h). B, Image J quantification of fluorescence in Panels 3 and 4. Error bars represent SEM. C, Fluorescence micrographs of leaf tissue from plants transformed with GFP alone or BdbZIP10::GFP after oxidative stress treatment with paraquat (Para, Panels 5 and 6) and copper sulfate (CuSO4, Panels 7 and 8). Arrows indicate predicted nuclei structures, scalebar estimate of 6 µm.
Figure 7. BdbZIP10::GFP localizes to distinct gene loci. A, ChIP analysis by quantitative PCR of the predicted BdbZIP10 reporter BdbZIP4. Gray bars represent amplification signal from control (wild-type) extract and black bars represent amplification signal from BdbZIP10::GFPo/e extract. Amplicons are indicated on the gene map with exons denoted as black boxes. B, Sequence of BdASN1 with predicted bZIP binding domains marked in bold italics and bold italics-underlined. The beginning of the 5' UTR is boxed in grey, and the ATG start site is underlined. C, ChIP analysis by quantitative PCR of the BdASN1 gene locus before and after induction of oxidative stress with paraquat treatment. Control samples are marked white (non-treated) or striped (paraquat treated), and BdZIP10::GFPo/e samples are represented with gray (non-treated) or black (paraquat treated) columns. Note the enhanced recruitment of GFP signal with paraquat treatment. Error bars represent the SEM, *** p ≤ .001, ** p ≤ .01, * p ≤ .05 by Student's t- test, with n ≥ 3.
Figure 8. Overexpression of BdbZIP10 increases oxidative stress resistance. A, Cell viability analysis by FDA (fluorescein diacetate) staining after treatment of homogenized callus tissue with paraquat (320 µM, 24 h). Fluorescence of live tissue is visualized under UV lighting. Note the high levels of fluorescence during oxidative stress in BdbZIP10o/e and BdbZIP10::GFPo/e cells compared to the control cells treated with paraquat (Para). B, Image J quantification of fluorescence observed in A, with error bars represented as SEM. C, Representations of cell viability by MTT (dimethylthiazol) staining of live callus tissue after treatment with paraquat (Para). D, E, DAB (3,3′-diaminobenzadine) staining of H₂O₂ after paraquat treatment (320 µM paraquat) comparing wild-type control leaf (D) or callus (E) tissue to BdbZIP10o/e leaf tissue. Note the reduction in staining in BdbZIP10o/e leaves and calli. F, Quantification of ROS (reactive oxygen species) levels using NBT staining and thiazol measurement by spectrometer absorbance at 570 nm. Leaf tissue exposed to either paraquat (black bars) or copper sulfate (grey bars) normalized to leaf mass for either control (wild-type, non-treated), control oxidative stress (Control, OS; wild-type treated), or oxidative stress treated BdbZIP10o/e leaf replicates are plotted.