Automated update, revision and quality control of the *Zea mays* genome annotations using MAKER-P improves the B73 RefGen_v3 gene models and identifies new genes

MeiYee Law1,2,3, Kevin L. Childs6, Michael S. Campbell2, Joshua C. Stein11, Andrew J. Olson11, Carson Holt4,13, Nicholas Panchy5, Jikai Lei7, Dian Jiao8, Carson M. Andorf14, Carolyn J. Lawrence9, Doreen Ware11,12, Shin-Han Shiu5,6, Yanni Sun7, Ning Jiang5,10, Mark Yandell*,2,13

1. The Jackson Laboratory, Bar Harbor, ME 04609 USA
2. Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112 USA
3. Department of Biomedical Informatics, University of Utah, Salt Lake City, UT 84112 USA
4. Ontario Institute for Cancer Research, Toronto, ON M5G 1L7 CANADA
5. Genetics Program, Michigan State University, East Lansing, MI 48824 USA
6. Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
7. Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824 USA
8. University of Texas at Austin, Texas Advanced Computing Center, Austin TX 78758 USA
9. Department of Genetics, Development and Cell Biology and Department of Agronomy, Iowa State University, Ames, IA 50011 USA
10. Department of Horticulture, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824 USA
11. The iPlant Collaborative, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
12. USDA-ARS NAA, Robert W. Holley Center for Agriculture and Health, Tower Road, Ithaca, NY, 14853, USA
13. USTAR Center for Genetic Discovery, University of Utah, Salt Lake City, UT 84112 USA
14. USDA-ARS CICGR, Iowa State University, Ames, IA 50011 USA

* Corresponding Author.

Abstract.

The large size and relative complexity of many plant genomes makes creation, quality control, and dissemination of high quality gene-structure annotations challenging. In response we have developed MAKER-P, a fast and easy-to-use genome annotation engine for plants. Here we report the use of MAKER-P to update and revise the *Zea mays* B73 RefGen_v3 annotation build (5b+) in less than three hours using the iPlant Cyberinfrastructure. MAKER-P identified and annotated 4,466 additional, well-supported protein-coding genes not present in the 5b+ annotation build; added additional untranscribed regions (UTR) to 1,393
5b+ gene models, identified 2,647 5b+ gene models that lack any supporting evidence (despite the use of a large and diverse evidence datasets), identified 102,370 pseudogene fragments, and created an additional 2,522 non-coding gene annotations. We also describe a method for de novo training of MAKER-P for annotation of novel grass genomes. Collectively these results lead to the 6a maize genome annotation and demonstrate the utility of MAKER-P for rapid annotation, management, and quality control of grasses and other difficult-to-annotate plant genomes.

Introduction.

Plant genomes, especially grass genomes, are difficult substrates for genome annotation due to regional and whole-genome duplication events and often contain large numbers of pseudogenes. These factors impact every aspect of gene structure annotation, from revision of existing annotations in light of new data, to annotation of novel plant genomes. These aspects of plant genomes also dramatically lengthen compute times, because the many repeated genes and other sequences result in commensurately more sequence alignments and gene predictions. In many ways, annotation of the maize genome epitomizes these problems.

In 2005 the NSF, USDA, and DOE announced that the ~2.3 Gbp genome of the maize inbred line B73, a major contributor to much of the germplasm used for US grain production, would be sequenced using a BAC-by-BAC approach. The plan was to sequence BACs from a minimal tiling path (MTP) to ~6X coverage, and to further improve only the unique “genic” regions. These sequences would be labeled “Phase 1 HTGS_IMPROVED” at GenBank, and the GenBank record for each BAC was to include information on the improved regions as well as order and orientation, where available, as comments. The Maize Genome Sequencing Consortium (MGSC) planned to release all data via MaizeSequence.org, a project database, with a plan to transition all data into MaizeGDB (Sen et al., 2009) and Gramene (Monaco et al., 2014), a comparative resource for plant genomics (Youens-Clark et al. 2011), at project close.

Not only did the MGSC produce these sequences, they created reference assemblies for each chromosome (the first assembly was named “B73 RefGen_v1”) as well as structural and functional annotations to genes (Liang et al., 2009; Schnable et al., 2009). The published B73 reference genome (RefGen_v1) available from GenBank consisted of 2,048 Mbp in 125,325 sequence contigs (N50 of 40 kb), forming 61,161 scaffolds (N50 of 76 kb) anchored to a high-resolution genetic map (Wei et al., 2009). After predicting transposable elements (TEs), a combination of evidence-based, ab initio approaches and stringent TE filtering resulted in a set of 32,540 high-confidence, predicted protein-encoding genes (the “Filtered Gene Set”). Due to incomplete sampling of the genome, the B73 reference genome is estimated to be missing ~5-10% of genes that are physically present in the B73 genome.
Following the release of the first draft, B73 RefGen_v2 improved v1 by the addition of fosmid reads as well as by integrating genetic and optical map information. For B73 RefGen_v2, ~80% of the maize genome is ordered and oriented, and optical map and genetic map comparisons suggest that only 2-2.5% of the sequences are likely to be misplaced in the assembly (Fusheng Wei, Jeff Glaubitz, and Mike McMullen, personal communication). The set of gene predictions for RefGen_v2 included 110,028 transcript models in the “Working Gene Set” (5a) with a subset of 39,656 high-confidence structures identified as the “Filtered Gene Set” (5b). (Note that here we use the naming conventions imposed by the MaizeSequence.org data generators, though alternate naming conventions have been used in some cases for these datasets – e.g., at Phytozome [http://www.phytozome.net/maize.php] the “Working Gene Set” is called the “unfiltered working set”.)

In the last year of the project Roche/454 whole genome shotgun (WGS) reads were made available to improve the coverage of the gene space not included in the BAC MTP (and thereby identifying some of the estimated 5-10% of genes that were missed). Improvements for B73 RefGen_v3 included refinements to contig placement supported by recent improvements to the IBM genetic map and inclusion of 1,844 gene space contigs. These 1,844 contigs were produced from a WGS sequencing library to fill in missing gene space both within and between original BAC sequences. In addition, approximately 65,000 full-length cDNAs were aligned to the RefGen_v2 assembly and the new WGS contigs. The new 5b+ annotation build included 251 novel gene models and 213 improved models. The number of protein-coding genes (including all nuclear chromosomes, mitochondrial DNA, chloroplast DNA, and unknown chromosome) actually decreased to 39,475 models due to merging and additional quality control. The annotation consists of 137,208 gene transcripts and 316 short non-coding genes. The maize B73 assemblies and various annotations are represented at Gramene, MaizeGDB, EnsemblPlants, and GenBank.

MaizeGDB, the Maize Genetics and Genomics Database (http://www.maizegdb.org), is the USDA Agricultural Research Service’s long-term model organism database and the maize research community’s data portal. MaizeGDB makes accessible genetic and genomic data and data analysis tools that are used by researchers to investigate basic biological concepts and translate findings into technology that is deployed in farmers’ fields. During the period from 2013 through 2018, the MaizeGDB team is tasked to make accessible high-quality, actively curated and reliable genetic, genomic, and phenotypic data sets. At the root of a high-quality genome lies a well-supported assembly and annotation. For this reason, the deployment of an automated high-quality genome annotation system is of the utmost importance. As we demonstrate here, MAKER-P will fulfill this need.
Updating a genome’s annotations over time is a complex task, and the rapidly changing data landscape can render annotations obsolete almost as they are created. Continuity is another major issue. Many genome projects have annotations that embody years of manual curation and revision. Simply throwing old annotations away and substituting new ones created by another pipeline is hardly desirable. To be truly effective, any revision process must build upon the foundation of existing annotations and provide incremental means to move forward in light of new data.

Next generation sequencing data, especially RNA-seq data, also hold great potential for annotation of novel plant genomes. But again, making use of them is no easy task. For example, using transcriptome data to train gene finders for use on a newly assembled genome can be a difficult, frustrating task, so much so that many genome projects attempt to leverage gene finders trained for other genomes. As we have previously demonstrated in Holt and Yandell (2011), both approaches are challenging and fraught with difficulties, and gene model accuracy suffers when gene finders are trained with unmatched species parameters.

Moreover, gene space is not limited to protein-coding genes, increasingly ncRNA annotations are coming to be considered an essential component of every genome’s annotations. Pseudogenes are also an issue, especially for plant genomes due to frequent whole genome duplication and subsequent degeneration of paralogs (Zou et al., 2009). Consider the rice genome for example, which has ~39,000 annotated protein coding genes and 28,330 pseudogenes (Zou et al., 2009); clearly, means to annotate pseudogenes are needed.

MAKER-P (Campbell et al., 2014) is an easy to use genome annotation pipeline with great software portability, based upon the widely used MAKER genome annotation pipeline (Holt and Yandell, 2011). Designed to address the needs of the plant genomes community, MAKER-P provides means for annotation of novel plant genomes, and for automated revision, quality control, and management of existing genome annotations. MAKER-P also extends MAKER to include means for pseudogene annotation, and non-coding gene finding. MAKER-P provides the plant genomics community early access to new functionalities prior to their later, general release in the MAKER package. Moreover, MAKER-P is dramatically faster than other genome annotation pipelines, allowing it to scale to even the largest plant genomes. MAKER-P is designed to run on Unix-like operating systems including Linux and Apple OS X. It can run on laptop and desktop machines, but also has extensions to take advantage of capabilities offered by high performance computer clusters. Recent work, for example, has shown that the version of MAKER-P available within the iPlant Cyberinfrastructure can re-annotate the entire maize genome in less than three hours (Campbell et al., 2014), and that it can carry out the complete de novo annotation of the 17.83
Gbp draft loblolly pine genome in less than 24 hours (Neale et al., 2014; Wegrzyn et al., 2014).

Our previous work using the Arabidopsis thaliana genome demonstrated MAKER-P’s effectiveness for management and quality control of existing annotations, and for de novo annotation using this relatively simple plant genome (Campbell et al., 2014). Here we apply MAKER-P to the much less tractable Z. mays genome, using it for analysis and quality control of the 5b+ annotation build; to systematically compare the 5b and 5b+ annotation builds to one another; for revision of the 5b+ annotations in light of 96 different RNA-seq datasets; and for de novo annotation of the Z. mays genome. Also presented is Z. mays genome annotation build 6a which is demonstrably superior to the existing 5b+ build, thereby demonstrating MAKER-P’s utility for management and quality control of the Z. mays genome annotations.

Results and Discussion

Overview of the 5b and 5b+ builds. Our overarching goal in these analyses was to systematically compare the 5b and 5b+ annotation builds to one another using MAKER-P’s management functions, to update and reevaluate the 5b+ annotation build in light of additional RNA-seq evidence, and to determine if MAKER-P was capable of automatically producing an annotation build of comparable quality. Table 1 summarizes the 5b and 5b+ RefGen builds. The A. thaliana TAIR 10 annotations are also included for purposes of comparison. As can be seen, the 5b and 5b+ builds are very similar to one another differing primarily by 251 novel and 213 improved genes in 5b+ (160 novel models in chromosomes 1-10). In addition, a higher percentage of 5b+ models have annotated start and stop codons. In what follows, we present a detailed analysis of the relationship of the 5b+ annotation build to its supporting evidence, subjecting it to a series of quality control analyses. We will also describe three additional annotation builds: a MAKER-P updated version of 5b+; a MAKER-P de novo annotation build; and a new 6a annotation build. The 6a build is a consensus build comprised of the MAKER-P updated 5b+ gene models minus a set of 2,647 poorly supported 5b+ gene models. The 6a annotation build also includes 4,466 additional novel, but well supported gene annotations, derived from the MAKER-P de novo build; 102,370 pseudogene fragments; and an additional 2,522 non-coding RNA (ncRNA) gene-annotations. Each of these annotation datasets is described in detail below.

Use of RNA-seq data. RNA-seq data provide means for independent confirmation and for improvement of genome annotations. MAKER-P (Campbell et al., 2014), like its parent pipeline MAKER2 (Holt and Yandell, 2011), provides integrated means for employing RNA-seq data for de novo annotation, for revising existing annotation datasets in light of new RNA-seq data, and for quality control purposes. MAKER-P uses these data to add additional UTR and exon
sequence to existing gene models, and for creation of new gene models where none previously existed (Holt and Yandell, 2011).

Extensive RNA-seq resources exist for *Z. mays*, and our goal here was twofold: to use these data for purposes of quality control, and to determine if MAKER-P could employ them to improve the quality of the 5b+ annotations. For these analyses we used 96 different RNA-seq datasets downloaded from the SRA repository (Benson et al., 2013). The datasets are derived from various maize genotypes, developmental stages and plant tissues. The datasets are composed of various read lengths, ranging from single end 35 bp to 2 x 100 bp (see Supp. Table 1 for details). Assembly of these data using Trinity (Grabherr et al., 2011) (see Methods) produced 5,116,586 different transcripts, all of which were used in the analyses described below.

After assembly with Trinity, we ranked the RNA-seq datasets according to their number of assembled transcripts, our assumption being that datasets with the most transcripts would have the greatest value for annotation and quality control. We also sought to determine if there was a constant or perhaps diminishing benefit of using ever-greater numbers of RNA-seq datasets in the annotation process. Table 2 documents the power of pooling ever-larger numbers of RNA-seq datasets for discovery and QC purposes. Column 2 of Table 2 tallies the number of all 5b+ annotations on maize Chromosome 5 that were overlapped, at least by 1 bp, by one or more transcripts using top 1, 5, 10, 15, 20 and finally all 96 transcript assemblies. The third column tallies the percentage of 5b+ annotations encoding a protein with Pfam domain (Finn et al., 2014) but without transcript support, as annotations containing known protein domains are less likely to be false-positives. As can be seen, the number of additional confirmed annotations begins to plateau beyond 10 transcript assemblies with only modest improvements thereafter. These results provide two important facts: first they place an approximate upper bound on the expected percentage of gene models that can be confirmed using the available RNA-seq data: about 91%; second, they provide some guidance as to the minimum number of transcript assemblies to employ in quality control and future re-annotation efforts. Properties of RNA-seq datasets such as read depth and heterogeneity make generalizations for other genomes and their RNA-seq datasets problematic, but for these data it appears that it would be advisable to use at least 10 of the RNA-seq datasets. In the interest of performing as near exhaustive analysis as possible, we employed all available *Z. mays* RNA-seq transcript assemblies as well as an additional 136,673 maize EST and full-length cDNA sequences from NCBI and 33,635 non-maize SwissProt plant protein sequences in the analyses that follow.

Accuracy of intron-exon structures. MAKER-P provides automated means to assess the accuracy of a genome’s annotations in the context of the evidence used to produce them (Campbell et al., 2014). To do so, it uses a performance measure called Annotation Edit Distance (AED) (for review, see Yandell and Ence, 2012). AED measures the goodness of fit of an annotation to the evidence.
supporting it. AED is a number between 0 and 1, with an AED of zero denoting perfect concordance with the available evidence, and a value of one indicating a complete absence of support for the annotated gene model. AED can be calculated relative to any specific sort of evidence: EST and protein alignments, \textit{ab initio} gene predictions, or RNA-seq data. In each case, the AED score provides a measure of an annotation's congruency with a particular type or types of evidence. By plotting the cumulative distribution function (CDF) of AED across all annotations, a genome-wide perspective can be obtained of how well the annotations reflect the EST, protein, and RNA-seq evidence. Importantly, this can be done even in the absence of a gold-standard set of reference annotations. AED also makes it possible to compare the annotations of different genomes to one another, making possible many novel sorts of cross-genome quality control analyses (Eilbeck et al., 2009; Holt and Yandell, 2011; Yandell and Ence, 2012). See Yandell and Ence, 2012 for additional information on AED.

The top panel of Figure 1 presents AED CFD curves for the 5b and 5b+ annotation builds. For reference purposes, also included is the \textit{A. thaliana} TAIR 10 annotation build, presented in previous publication (Campbell et al., 2014). The bottom Panel of Figure 1 summarizes the same AED CFD curves as stack plots, wherein the AED data has been binned into quartiles. In previous work, we have advocated that an AED CDF curve wherein > 90% of genome annotations have an AED score of less than 0.5 is evidence that that genome is well annotated (Yandell and Ence, 2012). The \textit{A. thaliana}, Human and Mouse genome annotations, for example all satisfy this criterion (Eilbeck et al., 2009; Holt and Yandell, 2011; Campbell et al., 2014). As can be seen ~ 90% of \textit{Z. mays} annotations have AED scores of less than 0.5, indicating that \textit{Z. mays} is a relatively well annotated genome, but less so compared to the \textit{A. thaliana} TAIR 10 reference annotations. Thus Figure 1 serves to highlight an essential point regarding the maize genome annotations. Despite the complexity of the maize genome, the quality of its existing gene-models as measured by their congruency with the available evidence is reasonably high, but nowhere near that of \textit{A. thaliana}. Figure 1 also makes it clear that the 5b+ and 5b builds are of very similar quality as judged by AED. This result taken together with the data presented in Table 1, which demonstrate the similarity of the two builds with regards to gene numbers, lengths, exons, and intron content, makes it clear that two datasets are globally very similar to one another. Also presented in Figure 1 is an AED curve and stack plot for the 160 new gene models present in the 5b+ build. These new genes on average are less well supported.

\textbf{AED and gene category.} Closer inspection of Figure 1 reveals that the \textit{Z. mays} 5b and 5b+ annotation builds, as well as the Arabidopsis TAIR 10 build contain a significant fraction of gene models with very little or no evidence supporting them. These models with an AED score of 1 or nearly so, produce the sudden ‘ramp’ present on the far right hand end of their AED curves. These models are shown in purple in the stack plots.
The TAIR 10 annotation for *A. thaliana* can be used to better understand this ‘ramp’. TAIR employs a five-star ranking system for quality control of its genome annotations (The Arabidopsis Information Resource, 2009). In the TAIR schema, the best-supported transcripts are afforded five stars or four stars, with less supported annotations assigned three, two, and one-star status. Annotations with no support are assigned to the ‘no-star’ category. In previous work (Campbell et al., 2014) we cross-validated MAKER-P’s AED and TAIR10’s star rating. For 5-star TAIR10 transcripts, 94% have AED scores of less than 0.5, whereas only 33% of 1-star transcripts have an AED less than 0.5. All of the 604 TAIR 10 ‘no-star’ annotations have AED’s of 1, indicating that they have no evidence support.

In order to better understand the characteristics of the poorly supported gene models in the *Z. mays* v3 build, we divided the 5b+ *Z. mays* annotations into 5 categories, based upon the following categories of homologous relationships: Syntelogs, Orthologs, Conserved, Species-specific, and ‘Other’. We term Syntelogs as those gene annotations with syntenic orthologs in rice and/or sorghum. We classified as Orthologs those models with an ortholog in rice and/or sorghum that is not syntenic. Conserved are those gene models that are identified in a multi-species tree but where no orthologous relationships were found. Species-specific are those annotations encoding proteins with one or more paralogs in maize, but not found elsewhere; and by Others, we mean gene models not meeting any of the above criteria. The results of this process are shown in Figure 2. As can be seen, the overall level of support and the congruency of the 5b+ gene models’ intron-exon structures with their supporting evidence differs in a consistent fashion across the categories. Syntelogs, for example, are characterized by much lower (better) AED scores than are the other categories. The 160 new genes in the current 5b+ build are distributed across these 5 categories as follows: 68 in the Syntelog category, 23 in Ortholog, 11 in Conserved, 3 in Species-specific and 55 in the Other category.

Poorly supported annotations in 5b+. Of the five categories, presented in Figure 2, ‘Other’ is clearly the most problematic. Over 30% of these annotations have AED scores of greater than 0.75. By comparison, less than 1% of Syntelogs fall into this AED quartile. Given that the ‘Other’ category comprises almost 4% of the 5b+ annotation build, the question naturally arises as to whether these are real maize genes, but inaccurately annotated, or false positives, *i.e.* not actually protein coding genes. Our analyses call into question a considerable portion of genes in the ‘Other’ category, as well as unsupported annotations present in the other categories. Using our evidence datasets (see Methods), a total of 3,141 (8%) of the 5b+ annotations have no supporting experimental evidence, *e.g.* RNA-seq, protein, EST or encode Pfam domains. The results from Table 2 suggest that we should expect around 3% of the 5b+ annotations with protein support or containing a domain to lack transcript support. Although there may have been support for these annotations in prior annotation builds, 3,141 5b+ models have no support—transcript, protein, or domain in our analysis. These facts suggest that these 3,141 5b+ annotations should be considered...
questionable and in turn that the 5b+ gene build contains 36,014 supported gene models.

MAKER-P updates to the 5b+ build. MAKER-P has the capacity to automatically revise an annotation build using new evidence (Campbell et al., 2014). This functionality is especially useful for updating annotations in light of new RNA-seq data. When run in update mode, MAKER-P revises the intron-exon structures of a reference annotation dataset, adding additional 5'- and 3'-exons and UTRs to the reference annotations as suggested by the new evidence; reference annotations are split and merged in order to improve their fit to the supporting evidence; and new gene models are created in regions of the genome where experimental evidence supports the existence of a gene but where the reference build has no annotation. Importantly, when run in update mode, MAKER-P will not delete a reference gene model, even when MAKER-P fails to find evidence to support it.

The MAKER-P revision process for 5b+ merged 31 annotations, slightly decreasing the 5b+ gene set from 39,155 (nuclear Chromosomes 1-10 only) to 38,783 annotations [See Table 1 for additional details]. Figure 3 illustrates the impact of revision upon the *Z. mays* chromosome 10 5b+ gene models. Points along the diagonal line denote models unchanged by the revision process. Note that with MAKER-P revision, AED only improves, and never worsens. This is because MAKER-P defaults to the original reference annotation whenever it is unable to improve upon it. Note too that most changes are to those models having the lowest (best) AED scores in the reference set. This is because it is often the best-annotated models that have the richest supporting evidence: with 96 different RNA-seq datasets and 5,116,586 different assembled transcripts, highly expressed genes are often overlapped by such a superabundance of evidence, some supportive, some not, that human annotators are simply stymied. MAKER-P in contrast is able to effectively revise the gene models regardless of the complexity or quantity of evidence. For more on this point see (Campbell et al., 2014).

Figure 4 presents the AED CDF curves for the MAKER-P update in the context of both the 5b+ annotations, as well as a MAKER-P *de novo* annotation build (discussed below). As can be seen, revision of the 5b+ build by MAKER-P shifts its AED CDF curve towards lower AEDs, indicating that the revision process has brought the 5b+ build into still better congruence with the available evidence. Note however that the AED ‘ramp’ at the right hand side of the curve is unaffected; this is because the MAKER-P revision process has retained every gene model in the 5b+ build for which there was no supporting evidence. As shown, overall the MAKER-P revised gene models have the highest proportion of genes with AEDs of less than 0.2. Table 1 summarizes the global differences between the 5b+ build and the MAKER-P 5b+-updated build. As can be seen, the MAKER-P revised models on average have more exons (5.0 vs. 4.8), contain additional UTR sequence (515 vs. 422 bases of UTR), and the percentage of
genes having any UTR at all increases from 81% to 85%. Collectively these facts demonstrate the power of MAKER-P’s update functionality to revise and improve even high quality *Z. mays* 5b+ gene models.

The **MAKER-P de novo annotations**. We also generated a MAKER-P *de novo* annotation build for the *Z. mays* genome, using the same evidence datasets as the analyses presented in **Table 1** and **Figures 1-4** (see **Methods** for details). Our goal here was to twofold: (1) to measure the performance of MAKER-P on the *Z. mays* genome by comparing its annotations to the 5b+ annotation build in order to gain an indication of what to expect when using MAKER-P on other difficult to annotate plant genomes; and (2) to determine if MAKER-P might identify additional *Z. mays* genes absent from the 5b+ annotation build.

Training MAKER-P. Given sufficient training data, *i.e.* gold standard gene models, *ab initio* gene predictors can deliver very accurate gene models (Guigó et al., 2006; Yandell and Ence, 2012). However for novel genomes, no training data is usually available. In previous work (Campbell et al., 2014; Holt and Yandell, 2011), we described a procedure whereby MAKER-P can be used to train Augustus (Stanke and Waack, 2003; Stanke et al., 2008) and SNAP (Korf, 2004), two widely-used *ab initio* gene finders. This training process uses RNA-seq data and ESTs in lieu of a preexistent gold standard set of gene-models. These data are aligned to the genome using the splice aware aligner Exonerate (http://www.ebi.ac.uk/~guy/exonerate/), and an automatically identified post processed subset of high quality alignments are used for gene finder training.

Grass genomes are generally repeat rich and harbor the results of multiple polyploidization events, making them difficult substrates for annotation. It seemed likely that these same features of grass genomes might negatively impact the effectiveness of MAKER-P’s gene-finder training procedures. *Z. mays* thus provides an opportunity to examine this problem. The genome is typical of grass genomes; there is a preexisting ‘gold standard’ of reference annotations (e.g. the conserved Syntelog of 5b+ build); and there exists a plethora of *Z. mays* RNA-seq and EST data. Equally important, the popular and very accurate gene finder Augustus (Stanke and Waack, 2003; Stanke et al., 2008) comes pretrained for *Z. mays*, providing opportunity to benchmark the performance of a version of Augustus trained by MAKER-P using *Z. mays* RNA-seq and EST data, to one trained by the authors of Augustus using the *Z. mays* reference annotations. **Supp. Figure 1** shows the AED CDF curves for these two versions of Augustus. As expected, the version trained by the Augustus group using the 5b gene models is more accurate than the MAKER-P version trained using the noisy RNA-seq and EST data, but not greatly so. The MAKER-P trained version of Augustus for example calls about 5% more genes, and 87%, as opposed to 91% of its models have an AED of less than 0.5, indicating that the intron-exon structures of the MAKER-P trained version of Augustus are nearly as accurate. These results demonstrate that MAKER-P’s training procedure is effective even
for difficult to annotate grass genomes. We used the MAKER-P trained version of Augustus for the de novo annotation run described below.

MAKER-P de novo results. AED Curves and stack plots comparing the MAKER-P de novo build to the 5b+ and updated 5b+ build are presented in Figure 4. As can be seen, overall its models are nearly as congruent with the evidence as the updated 5b+ build. Figure 5 summarizes the intersections between the 5b+ build and the MAKER-P gene set, broken down by gene category. As shown there is almost perfect agreement among the Syntelog gene set, with less, but still considerable congruence for the Ortholog and Conserved categories. However, of the 5401 models comprising the 5b+ ‘Other’ category, only 1347 have supporting evidence and are also called by MAKER-P, again suggest that many of 5b+ genes belonging to the ‘Other’ category should be considered provisional.

Table 1 summarizes the relevant statistics of the MAKER-P de novo gene models. Globally, the MAKER-P de novo build is quite similar to the 5b+, but differs in three regards: (1) fewer of its gene models contain UTRs; (2) its gene models are shorter; and (3) it contains 5,045 additional annotations that do not overlap 5b+ gene models. Point 2 is largely a consequence of the additional gene models not present in the 5b+ build. The 5,045 additional gene models tend to be short and are predominantly single exon genes. In these respects they are quite similar to the majority of 5b+ genes in the ‘Other’ category. But they differ in one vital regard: every MAKER-P gene is supported by transcript, protein, and/or domain evidence, whereas the majority of the 5b+ ‘Other’ genes are supported only by ab initio gene predictions, a point we return to in our Conclusions section. Collectively, analyses presented in Figures 4, 5 and Table 1, indicate that globally the MAKER-P de novo build is slightly inferior as regards protein-coding genes to the curated 5b+ build, but not dramatically so, demonstrating that MAKER-P is capable of producing a high quality de novo gene build for a grass genome, one that is a suitable starting point for further manual and automated curation. Moreover, as we document below, the MAKER-P de novo build has no unsupported models, and contains additional pseudogene, ncRNA and well-supported protein coding gene models not present in the curated 5b+ build.

Non protein-coding genes. MAKER-P’s annotations are not limited to protein-coding genes alone. The MAKER-P toolkit provides a process for annotation of pseudogenes. The ability to annotate and identify pseudogenes is particularly important for grass genomes given their abundance. MAKER-P also provides means for Identification of known and novel classes of ncRNAs.

Pseudogenes. In total, 102,370 putative partial or complete pseudogenes were identified in Z. mays with MAKER-P. These pseudogenes have a mean length of 191 bp, similar to what was found in A. thaliana and rice (Campbell et al., 2014; Zou et al., 2009b), with a significant positive skew, indicating that the majority of
pseudogenes were on the shorter end of the spectrum. This can be a consequence for the inability to connect pseudo-exons of a pseudogene together. Nonetheless, the same MAKER-P pipeline identified only 4,204 pseudogenes in A. thaliana, far less than what we have recovered in maize. One explanation is that gene deletion rate was higher in the A. thaliana lineage, consistent with the finding that genome size differences between A. thaliana (150 Mbp) and A. lyrata (207 Mbp) is due to extensive DNA loss (Hu et al., 2011). Another possibility is that pseudogenes were generated or retained at a greater rate in the Z. mays lineage. This is consistent with a much more recent whole genome duplication in the maize lineage (~11 million years ago, mya, (Gaut and Doebley, 1997)) compared to that in A. thaliana (α genome duplication, ~50 mya, (Bowers et al., 2003)). In addition, in maize there is an over-abundance of Helitrons carrying gene fragments (Du et al., 2009; Yang and Bennetzen, 2009). Among 272 manually annotated Helitrons, 94% of them carry captured sequences from 376 genes (Du et al., 2009). There is also evidence suggesting that >20,000 gene fragments in the B73 genome are transduplicated and reshuffled due to Helitron activities (Yang and Bennetzen, 2009). Together with the suggestion that Helitrons are involved in exon shuffling (Feschotte and Wessler, 2001), these findings are consistent with the possibility that Helitrons have contributed significantly to the high pseudogene fragment number observed.

To better understand what kinds of duplicates tend to become pseudogenes, MapMan (Thimm et al., 2004) annotations were assigned to pseudogenes based on the maize protein sequences used to identify them. As a result, 54.6% pseudogenes have ≥1 MapMan annotations. The Fisher Exact test was used to identify MapMan annotations associated with over- and under-represented numbers of pseudogenes (Figure 6). Over-represented terms include stress, protein degradation (via ubiquitin), and secondary metabolism (unspecified) which are also known to be over-represented in A. thaliana (Zou et al., 2009). Similarly the Argonaute gene family involved in small RNA biogenesis has 43 annotated, presumably functional members and 127 pseudogenes (Figure 6). Argonaute genes are important for viral defense in plants (Qu et al., 2008). In addition, genes involved in external stimulus response tend to not only experience lineage-specific duplication (Hanada et al., 2008) but also pseudogenize at a higher rate (Zou et al., 2009). Taken together, the significant over-representation of Argonaute pseudogenes may be the products of viral defense genes that were no longer useful. We also found that most transcriptional regulators are among the under-represented class of pseudogene, except Homeobox (HB) and AP2/EREBP families (Figure 6). The under-representation of transcription factor pseudogenes is consistent with higher retention rates among plant transcription factor duplicates (Schnable et al., 2009), particularly those derived from whole genome duplications (Blanc and Wolfe, 2004; Seoighe and Gehring, 2004; Shiu et al., 2005). Therefore, in spite of differences in the number of pseudogenes identified, pseudogenization of duplicates in A. thaliana and Z. mays follow similar trends.
ncRNA genes. The MAKER-P tool kit identified 2,192 total tRNA genes. Of these annotated tRNA genes, 1,398 decode the standard amino acids, 4 decode selenocysteine, 7 of them are possible suppressor tRNAs, 12 are undetermined, and 771 appear to have been pseudogenized (See Table 3). Ultimately these data contain slight differences from tRNA analyses of previous maize genome assemblies in maize secondary to changes in the v3 assembly (http://lowelab.ucsc.edu/GtRNAdb/Zmays/Zmays-stats.html). Using 12 small-RNA-seq experiments MAKER-P tool kit also identified 183 miRNAs. As mentioned previously (Campbell et al., 2014) the number of miRNAs predicted by the MAKER-P tool kit is dependent on the small-RNA evidence, thus this number represents a lower bound of miRNAs in the v3 assembly. Most of the predicted mature miRNAs are of length 21, which is the typical plant miRNA length. Of the 183 predictions, 87 of them overlap with the existing 5b+ annotation of miRNAs and others are novel predictions. The discrepancy mainly stems from the different methods used for miRNA annotation by MAKER-P and the existing Z. mays miRNA identification method (Zhang et al., 2009). While the miRNA prediction pipeline miR-PREFeR of MAKER-P follows the criteria for plant miRNA annotation (Meyers et al., 2008), 5b+ miRNA annotations were created by aligning genomic sequence against miRBase (Griffiths-Jones et al., 2008) sequences using BLASTN (Altschul et al., 1990). Thus, the reliability of 5b+ miRNA annotation heavily relies on the quality of miRBase collections. Although the underlying annotations in miRBase are generally experimentally determined or experimentally verified, errors have been detected in miRBase annotations (Kozomara and Griffiths-Jones, 2014). In addition, many 5b+ miRNA annotations lack expression evidence in our 12 small-RNA-seq samples. Finally, the homology search-based annotation method we adopted may miss miRNAs that are specific to Z. Mays. Using the same small-RNA-seq datasets, the MAKER-P toolkit identified 727 snoRNAs with AEDs less than 0.5. The GFF file containing the tRNA, miRNA, and snoRNA predictions can be found in the supplemental online materials.

The 6a gene annotation build. Table 1 also provides a summary of an annotation build termed 6a. Our goal in creating the 6a build was to provide the maize community with a single annotation build comprising the best-possible annotated gene models drawn from the 5b+, 5b+-updated and MAKER-P de novo annotation builds. Thus, the 6a build is a synthetic dataset comprised of the MAKER-P updated 5b+ gene models, which contain additional 5' and 3' exons and UTR sequences, together with additional novel, but well supported genes derived from the MAKER-P de novo build. We also excluded from 5b+ 2,647 5b+ gene models for which we could find no supporting evidence, and 249 models that overlapped with our predicted ncRNA models. These gene models are included in a separate file (see Supp. Table 2) under the title provisional v3 gene models.
The 44,200 MAKER-P *de novo* protein-coding genes (see Table 1 and Figure 5) comprised the starting point for our attempt to identify a core set of additional high-quality gene models for inclusion in the 6a build. To identify these models we first removed any unique MAKER-P *de novo* gene models that resided within transposons, as these might represent gene fragments carried by transposons; this reduced the number by about 10%. We then broke the remaining MAKER-P unique protein-coding gene models into two classes: (1) multi exon models with at least one splice site perfectly confirmed by RNA-seq or EST alignments, and (2) single exon models that encode a domain and have annotated start and stop codons. Our reasoning was that models supported by spliced transcript data and having canonical splice-sites were reasonable candidates for additional genes. We also enforced an additional criterion on these genes: they must have at least one coding exon predicted by a gene-finder. With regards to the unique MAKER-P single-exon gene models, because single exon genes are often spuriously overlapped by transcript data, we did not consider transcript support as proof of a single-exon gene’s existence. Thus, enforcing the additional criteria that these single exon genes encode a known domain, their single exon be predicted by a gene finder, and that they have annotated start and stop codons should diminish the proportion of the models that comprise a common form of false positive annotation: random open reading frames fortuitously overlapped by RNA-seq data from noisy transcription data. Likewise the requirement for a start and stop codon should avoid false positives where the supposed single-exon gene consists of portions of a pseudogene with a partial open reading frame encoding a remnant portion of a protein domain. Of course none of these criteria can guarantee that every one of the additional novel genes is truly a new *Z. mays* protein-coding gene, but what is true is that each of the novel gene models identified in the analysis meets a stringent set of criteria for inclusion in the 6a build. Certainly they are better candidates than the 2,647 provisional gene models we identified in our analyses of the 5b+ build, none of which meet any of these criteria; hence, replacing those provisional models with these additional MAKER-P derived novels models seems reasonable.

Table 4 summarizes the results of this analysis. In total 4,049 of the novel MAKER-P gene models encode multi-exon transcripts with at least one confirmed splice site. Note that the average number of exons is 4.9, and 45% of these putative genes encode a Pfam domain. Thus, although they are shorter than the average 5b+ annotation (2,836 vs. 4,014), many are sizable, multi-exon gene models that contain domains. All 417 of the single exon models encode a domain, have transcript support and have annotated start and stop codons. In addition, all of the new models have gene-finder support. Figure 7 presents AED stack plots for the 6a build, and various portions thereof. Also included for reference purposes are the 5b+ reference build, and the subset of models we identified as provisional, and thus, are not included in the 6a build. As can be seen from inspection of Tables 1, 3 and 4, the 6a build contains more supported gene models, more models with 5' and 3' UTRs, its gene models have longer UTRs compared to the original 5b+ build, contain more exons, and encode
longer proteins. The 6a models are also more congruent with the available evidence as judged by AED. Also included are additional 3,006 ncRNA genes and 102,370 pseudogene annotations not present in the 5b+ build.

Conclusions

We have carried out systematic analyses of the *Zea mays* 5b+ annotation build using MAKER-P’s management and quality control functions. This work has allowed us to reevaluate the 5b+ annotation build in light of additional RNA-seq evidence, and to update the 5b+ build using these same data. We have also compared MAKER-P *de novo* annotations to those of the 5b+ reference build in order to gain an indication of what to expect when using MAKER-P on other difficult to annotate plant genomes. These same analyses have identified additional *Z. mays* genes absent from the 5b+ annotation build.

As we have shown, MAKER-P can further improve an existing genome annotation build. The MAKER-P 5b+-update, for example, contains every model present in the 5b+ build, but adds additional exons and UTR sequence. It also contains a number of gene splits and merges where suggested by RNA-seq data. The result is an updated 5b+ build that is demonstrably in better sync with the available evidence. Importantly these results also show how using MAKER-P for management of a genome’s annotations does not necessitate a switch from one pipeline’s annotations to another. MAKER-P can improve an existing community annotation resource without introducing any break in continuity, i.e. the existing models are kept, but brought forward incrementally to reflect additional evidence.

Our *de novo* training results demonstrate that MAKER-P can also be used to train a widely used gene finder such as Augustus for employment on novel plant genomes, and that the resulting performance is a close match to that obtained using a gold standard training set. This is important because previous work by our group and others has made it clear that attempts to leverage gene finders trained from other genomes rarely produce accurate gene predictions. Our analysis of the MAKER-P *de novo* annotations demonstrates that, although the MAKER-P *de novo* models are slightly inferior as regards the accuracy of its intron-exon structures, it is demonstrably superior in its relationship to the available evidence, i.e. the average model is more congruent with its overlapping evidence, and importantly every one of its annotations has supporting evidence. Collectively these results make clear that MAKER-P provides an effective means for *de novo* annotation of even difficult-to-annotate grass genomes.

The 6a annotation build provides the maize community a genome annotation dataset that is notably superior to both the 5b+ and MAKER-P *de novo* builds. Informed by new expression evidence assembled from an extensive collection of RNA-seq studies, the 6a build contains the MAKER-P updated 5b+-gene models
together with an additional 4,466 novel genes not contained in the 5b+ annotation build.

The 6a build also lacks 2,647 5b+ genes for which we could find no support, despite the number and diversity of evidence datasets used. Thus, the improvements offered by the 6a build are not limited solely to new contents. Considering these 2,647 5b+ genes as provisional has important consequences for future work: first, these poorly-supported gene models, for example, will no longer introduce biases into comparative studies as regards statistics such as domain content, UTR lengths, exon number sets; second, knowledge that these 5b+ genes are provisional will provide a starting point for focused experimental follow-up studies aimed at confirming or denying their existence.

Collectively, the 6a build is a demonstrable improvement upon the 5b+ build. Its genes have more exons, have longer UTRs, and are more congruent with the evidence. Furthermore, the 6a build also supplements the 5b+ build with 102,370 pseudogene and 3,006 ncRNA annotations.

Recent work has shown that the version of MAKER-P available within the iPlant Cyberinfrastructure can re-annotate the entire *Z. mays* genome using the same evidence datasets described here in less than three hours (Campbell et al., 2014), and that it can carry out a complete *de novo* annotation of the 20 giga-base draft loblolly pine genome in less than 24 hours (Neale et al., 2014; Wegrzyn et al., 2014).

These facts have important implications for the future of plant genome annotation. First, they show that MAKER-P provides effective means for annotation of plant genomes; second, its update mode provides a means to refresh the annotations of established plant genomes to reflect new data, and third, these updates can be carried out much more rapidly and frequently than has heretofore been possible. Perhaps even more important is that MAKER-P’s speed and flexibility will enable individual iPlant users to generate their own custom genome annotation datasets using public annotation builds as starting points, but embodying their own data. The 6a annotations and related documents are available for download at http://documents.maizegdb.org/makerp/. The latest version of MAKER-P is available as part of the MAKER package download at http://www.yandell-lab.org/software/maker-p.html

Methods

Transcripts and protein evidence. Transcripts and transcript assemblies were used as evidence for gene predictions and MAKER-updates. *Z. mays* ESTs and full-length cDNAs were downloaded from the National Center for Biotechnology Information’s (NCBI) GenBank. Ninety-five RNA-seq data sets were downloaded from NCBI's Sequence Read Archive (Supp. Table 1). One additional RNA-seq
data set was described by Takacs et al (2012) and can be obtained from the authors (Supp. Table 1). The RNA-seq reads from these data sets were cleaned using tools from the FASTX-Toolkit (v. 0.0.13, http://hannonlab.cshl.edu/fastx_toolkit/). The fastx-clipper program removed adapter sequences from all reads, and the fastx-artifacts-filter was used to remove aberrant reads. These steps were followed by running fastx-trimmer program that removed bases with quality scores less than 20 and discarded reads that were less than 30 bases in length. Cleaned RNA-seq reads from individual studies (Supp. Table 1) were assembled using the Trinity transcript assembly package (Grabherr et al., 2011) and used for annotation. SwissProt plant protein sequences were downloaded from UniProt. Maize protein sequences were removed, and the remaining plant protein sequences were used as annotation evidence. The maize genome (Zea_mays.AGPv3.21.dna.genome.fa.gz) was downloaded from ftp://ftp.ensemblgenomes.org/pub/release-21/plants/fasta/zea_mays/dna/ MAKER-P analyses focused on all nuclear Chromosomes 1-10 unless otherwise specified.

Classification of the 5b+ annotation set using comparative genomics criteria. We utilized output of Ensembl Compara Gene Trees and associated synteny builds available from Gramene release-39 (October 2013), currently archived at http://archive.gramene.org/. The Ensembl method identifies ortholog and paralog relationships between genes using phylogenetic inference (Vilella, et al. 2009; see also http://useast.ensembl.org/info/genome/compara/homology_method.html). The Gramene project subsequently maps collinear and near-collinear orthologous genes between related species (Youens-Clark et al., 2011), adapting a protocol originally developed for the analysis of synteny in maize (Schnable et al., 2009; see especially SOM for details: http://www.sciencemag.org/content/suppl/2009/11/18/326.5956.1112.DC1/Schnable.SOM.pdf), which uses DAGChainer (Haas et al., 2004). The Compara Gene Trees in Gramene release-39 incorporated gene sets for twenty-five plant and five non-plant species. This release also included synteny maps for maize-sorghum and maize-rice. From these data we classified the maize 5b+ annotation set as follows: Syntelog, having ortholog in rice and/or sorghum that is arranged in a collinear or near-collinear fashion; Ortholog, having a called ortholog in rice and/or sorghum that is not a Syntelog; Conserved, found in a multi-species tree but lacking an identified ortholog; Species-specific, found in a maize-specific gene tree (i.e. having paralogs in maize but without homology to other species); and Other, not found in a tree (thus having no detectable homology with other species in the set).

Repeat library and examination of novel genes for transposons. The repeat library used in this study was derived from the following two sources. First, 1,526 transposon exemplar sequences were downloaded from maize transposable element (TE) database (http://maizetedb.org/~maize/). Second, 10,619 maize
Sirevirus sequences were downloaded from MASiVEdb (Bousios et al., 2012) and masked by the 1,526 transposon sequences from maize TE database. For a Sirevirus sequence, if 90% of the length was masked with a similarity of 80% or higher, it was excluded since it was considered to be already present in the 1,526 sequences. Exemplar sequences were chosen from the remainder of the Sirevirus sequences to reduce the redundancy as following: all sequences were compared using BLASTN. The element with the most matches (cutoff at 80% identity in 90% of the element length) was considered as the first exemplar. Thereafter, this element and its matches were excluded from the group and a second round BLASTN search was conducted with the remainder of the elements, leading to the generation of the second exemplar. This process was repeated until all elements were excluded. These exemplar sequences were combined with the 1,526 transposon sequences from the maize TE database, and the combined library was used in this study.

Since the combined library only contains true transposon sequences, gene fragments that are carried with transposons such as those in Pack-MULEs were not included in the library. To test whether the novel MAKER-P genes identified in this study were actually gene fragments inside transposons, the relevant gene coordinates were first compared with previously identified Pack-MULEs in maize (Jiang et al., 2011). If over 50% of the mRNA sequence of a gene was located inside a Pack-MULE, this gene is considered as transposon, and excluded from the 6a build. For the remainder of the genes, the gene and the 5 kb flanking sequence on both sides of the gene were retrieved and the transposons in the entire fragment were annotated using RepeatMasker with the library mentioned above. If the gene is flanked by two transposons from the same superfamily of transposon, and both transposons are truncated by 30 bp or more on the side facing the gene, this gene was considered to reside inside a transposon and excluded from 6a. If only part of the gene is inside the transposon, a 50% cutoff of the transcribed sequences was taken for consideration. In summary, if 50% or more of the mRNA of a gene is inside a transposon, the gene is considered as a transposon.

MAKER-P de novo annotation and update of 5b+. RNAseq datasets from public repositories (Supp. Table 1) were assembled and used as evidence in MAKER-P 2.31 r1081, along with Uniprot/Swiss-Prot protein evidence and a set of traditional full-length cDNAs. A custom repeat-library (see above) was used to mask the repetitive regions (see preceding paragraph for details). Genes were predicted using Augustus (Stanke and Waack, 2003; Stanke et al., 2008) trained in an iterative fashion in MAKER-P as described before (Campbell et al., 2014). MAKER de novo annotation set represents those predictions that are supported by evidence or contained a Pfam domain. To obtain a set of MAKER-P revised annotations, maize 5b+ models are passed to MAKER-P as gene predictions, together with the same evidence set and RepeatMasker above.
Utility of transcript assembly evidence for gene predictions. Our Trinity-derived transcript assemblies from 96 different RNA-seq data sets were ranked by the number of sequences in each assembly. While this approach may not recover the best RNA-seq datasets in all cases, for example, a dataset might contain genomic contamination, resulting in large numbers of spurious transcripts, we found that this simple procedure provided a practical means to select subsets of RNA-seq data when many different datasets are available. Collections of the top one, five, ten, fifteen, twenty or all transcript assemblies were used as evidence in MAKER-P runs. MAKER-P was run in pass-through mode using the 5b+ gene predictions and the different collections of transcript assemblies as evidence. The 5b+ gene models were unmodified but were assigned AED scores based on the transcript support for each model. Genes with AED scores less than 1 were scored as being supported by the given transcript evidence set.

6a annotations. MAKER de novo annotations that were not overlapped by MAKER-updated 5b+ gene models were retained when (1) single exon models encoded a domain and contained annotated start and stop, and (2) multi-exon models wherein at least one splice site was confirmed by EST alignment. Maize 5b+-updated models with domain support or RNA-seq evidence support were combined, along with MAKER-P ncRNA annotations with these two classes of MAKER de novo annotations to generate the final 6a build. 5b+ models without evidence support (AED=1.00) and/or encoded Pfam domains were classified as provisional. MAKER de novo annotations residing within transposons were also excluded.

ncRNA annotation. tRNAs were identified using tRNAscan-SE (Lowe and Eddy, 1997) within the parallelized MAKER-P framework. Sno-RNAs were predicted using snoscan (Lowe and Eddy, 1999) also within the parallelized MAKER-P framework. To limit the inevitable false positives resulting from the genome-scale use of stochastic context free grammars in snoscan we limited our results to snoscan predictions that matched a rRNA O-methylation site and had an AED of less than 0.5. rRNA O-methylations sites for *Z. mays* 26s (Refseq accession NR_028022 version NR_028022.2) and 17s (Refseq accession NR_036655 version NR_036655.1) rRNAs were inferred based on homology to known rRNA methylation sites (http://lowelab.ucsc.edu/snoscan/default-files/Hu-meth.sites) in human 28s (GenBank accession M11167 version M11167.1) and 18s (GenBank accession NR_003286 version NR003286.2) rRNA respectively.

The miRNAs were identified using miR-PREFeR pipeline (Lei and Sun, 2014) which is an improved version of the miRNA annotation pipeline described previously (Campbell et al., 2014). Expression of these miRNAs was confirmed within the miR-PREFeR pipeline using 12 small-RNA sequencing experiments from seven tissues (see Supp. Table 3). MIR-PREFeR utilizes expression patterns of miRNAs and follows the criteria for plant microRNA annotation (Meyers et al., 2008) to accurately predict plant miRNAs from one or more small-
RNA-seq samples. The primary criterion is that the small RNA-seq data should provide evidence of precise miRNA/miRNA* excision. Specifically, there should exist abundant reads corresponding to the mature miRNA sequence, and there should be at least one read that can be precisely mapped back to the miRNA* sequence. The miRNA and the miRNA* sequences should form a duplex with 2-nt 3’ overhangs. In addition, the miRNA/miRNA* duplex needs to present the following structural characteristics. There are typically four or fewer unpaired bases in the miRNA/miRNA* duplex. Asymmetric bulges are rare and small in size.

As expression of miRNAs can be tissue or condition-specific, we aimed to provide a comprehensive miRNA annotation by using multiple RNA-seq samples from different tissues/conditions/developmental stages. There are two advantages of predicting miRNAs from multiple RNA-seq samples. First, some miRNAs are poorly expressed and cannot be identified in a single RNA-seq sample. MIR-PREFeR can predict poorly expressed miRNAs by combining all reads from multiple samples. Second, due to fast degradation, some miRNAs lack reads mapping to their miRNA* region and will not satisfy the strict plant miRNA annotation criteria. In our method, if the corresponding miRNA loci from multiple samples demonstrate other typical miRNA characteristics including high expression, existence of a well-formed stem-loop, and precise miRNA/miRNA* excision in the predicted stem loop, we will conclude that this locus contains a true miRNA gene by dropping the requirement of the presence of the star sequence. In the current implementation, when there is no read corresponding to the star sequence, we require that there should be at least 1000 reads in all samples, and at least 100 reads in each sample.

Pseudogene identification. Pseudogenes were identified by MAKER-P according to the method described in (Campbell et al., 2014). Annotated protein sequences were searched against a version of the genome masked for 6a annotations, and filtered using four criteria: e-value (<1e-5), identity (>40%), length (>30 aa), and coverage of the query sequence (5%). Using a maximum interval of 2,032 bp (95th percentile intron length), 510,259 pseudo-exons were combined into putative pseudogenes, which were subsequently filtered if they overlapped with annotated gene regions and/or known Viridiplantae repeats. Note that some of these putative pseudogenes are substantially shorter than their annotated, presumably functional paralogs but do not have disabling mutations (stop or frame-shift). In addition, some pseudogenes may be a functional gene that is split between contigs or scaffolds. Thus we only examined putative pseudogenes with ≥1 disabling mutations or those located distantly to the end of contigs based on a threshold distance. This threshold distance is defined as the sum of 95th percentile intron length and a consideration of functional paralog length (FPL). Suppose a functional paralog to a pseudogene has length L and the pseudogene match is from M_1 and M_2, FPL is defined as the larger of M_1 or $L-M_2$.

Acknowledgements.
This work was supported by NSF IOS-1126998 to SHS, YS, NJ, KLC and MY and MCB-1119778 to SHS. MaizeGDB and contributions by CMA and CJL are supported by the USDA-ARS and Iowa State University. We gratefully acknowledge iPlant, the TACC and MaizeGDB support personnel for their efforts.

References

Figures & Tables

Table 1. Overview of *Z. mays* annotation builds. 5b and 5b+ refer to nuclear Chromosomes 1-10 only in versions 5b and 5b+ of Maize Genome Sequencing Project (MGSP) annotation builds, respectively. Also included is a *de novo* annotation dataset generated by MAKER-P. 5b+-update is a MAKER-P updated
version of the 5b+ annotation build. 6a is the final, combined dataset consisting of the updated 5b+ gene models with evidence support plus an additional 4,964 new gene models derived from the MAKER-P de novo build. The Arabidopsis thaliana TAIR 10 annotations are included for purposes of comparison.

<table>
<thead>
<tr>
<th></th>
<th>5b</th>
<th>5b+</th>
<th>MAKER-P</th>
<th>5b+ update</th>
<th>6a</th>
<th>TAIR10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein coding genes</td>
<td>39,024</td>
<td>39,155</td>
<td>44,200</td>
<td>38,783</td>
<td>40,602</td>
<td>27,206</td>
</tr>
<tr>
<td>Ave. gene length</td>
<td>4,100</td>
<td>4,014</td>
<td>3,600</td>
<td>4,203</td>
<td>4,190</td>
<td>1,488</td>
</tr>
<tr>
<td>Ave. prot length per gene</td>
<td>375</td>
<td>366</td>
<td>327</td>
<td>371</td>
<td>366</td>
<td>410</td>
</tr>
<tr>
<td>Ave. exons per mRNA</td>
<td>4.8</td>
<td>4.8</td>
<td>4.6</td>
<td>5</td>
<td>5.1</td>
<td>5.3</td>
</tr>
<tr>
<td>% genes with UTR</td>
<td>81%</td>
<td>81%</td>
<td>59%</td>
<td>85%</td>
<td>86%</td>
<td>77%</td>
</tr>
<tr>
<td>Ave. UTR length</td>
<td>397</td>
<td>422</td>
<td>284</td>
<td>515</td>
<td>507</td>
<td>259</td>
</tr>
<tr>
<td>Ave. 5’ UTR length</td>
<td>137</td>
<td>161</td>
<td>107</td>
<td>202</td>
<td>199</td>
<td>94</td>
</tr>
<tr>
<td>Ave. 3’ UTR length</td>
<td>260</td>
<td>261</td>
<td>177</td>
<td>313</td>
<td>308</td>
<td>165</td>
</tr>
<tr>
<td>% models w/ start & stop</td>
<td>84%</td>
<td>97%</td>
<td>86%</td>
<td>98%</td>
<td>94%</td>
<td>96%</td>
</tr>
<tr>
<td>% genes w/ Pfam domain</td>
<td>64%</td>
<td>65%</td>
<td>62%</td>
<td>65%</td>
<td>69%</td>
<td>79%</td>
</tr>
</tbody>
</table>

Table 2. Impact of using increasing number of RNA-seq datasets for Annotation. 96 different RNA-seq datasets were ranked according to the number of Trinity-assembled transcripts they produced. The number (and percent) of Z. mays Chromosome 5 5b+ genes supported by the top one, five, ten, fifteen, twenty or all transcript collections were calculated (column 2). Column 3 shows the number (and percent) of 5b+ genes containing a Pfam domain but not supported by any transcript evidence.

<table>
<thead>
<tr>
<th>RNA-seq datasets</th>
<th>Transcript supported 5b+ annotations on Chr. 5</th>
<th>5b+ annotations with Pfam domains but without transcript support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best One</td>
<td>2,670 (59.7%)</td>
<td>886 (19.8%)</td>
</tr>
<tr>
<td>Best Five</td>
<td>3,624 (81.0%)</td>
<td>314 (7.0%)</td>
</tr>
<tr>
<td>Best Ten</td>
<td>3,924 (87.7%)</td>
<td>159 (3.6%)</td>
</tr>
<tr>
<td>Best Fifteen</td>
<td>4,015 (89.8%)</td>
<td>130 (2.9%)</td>
</tr>
<tr>
<td>Best Twenty</td>
<td>4,066 (90.9%)</td>
<td>115 (2.6%)</td>
</tr>
<tr>
<td>All Assemblies</td>
<td>4,082 (91.3%)</td>
<td>121 (2.7%)</td>
</tr>
</tbody>
</table>

Table 3. Summary of ncRNA annotations. Numbers of non-coding RNAs are broken down by type for 5b, 5b+ and 6a annotation builds. The final column gives corresponding numbers in the TAIR 10 annotation of A. thaliana for reference.
NA denotes classes of annotations not present in the non-MAKER-P derived builds.

<table>
<thead>
<tr>
<th>ncRNA type</th>
<th>5b</th>
<th>5b+</th>
<th>6a</th>
<th>Common to 5b+ and 6a</th>
<th>TAIR 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>miRNA</td>
<td>NA</td>
<td>316</td>
<td>183</td>
<td>87</td>
<td>180</td>
</tr>
<tr>
<td>tRNA</td>
<td>NA</td>
<td>NA</td>
<td>2,192</td>
<td>NA</td>
<td>631</td>
</tr>
<tr>
<td>snoRNA</td>
<td>NA</td>
<td>NA</td>
<td>727</td>
<td>NA</td>
<td>71</td>
</tr>
</tbody>
</table>

Table 4. Summary of new gene models included in the 6a build.

<table>
<thead>
<tr>
<th></th>
<th>Multi-Exonic MAKER-P de novo</th>
<th>Single Exon MAKER-P de novo</th>
<th>6a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein coding genes</td>
<td>4,049</td>
<td>417</td>
<td>40,602</td>
</tr>
<tr>
<td>Ave. gene length</td>
<td>2,836</td>
<td>676</td>
<td>4,190</td>
</tr>
<tr>
<td>Ave. exons per mRNA</td>
<td>4.9</td>
<td>1</td>
<td>5.1</td>
</tr>
<tr>
<td>Ave. exon length</td>
<td>195</td>
<td>648</td>
<td>315</td>
</tr>
<tr>
<td>Ave. protein length</td>
<td>216</td>
<td>221</td>
<td>366</td>
</tr>
<tr>
<td>% genes w/ Pfam domain</td>
<td>45%</td>
<td>100%</td>
<td>68%</td>
</tr>
</tbody>
</table>

Figure 1. AED analyses of the 5b, 5b+, and TAIR 10 annotation builds. Top panel: AED CDF curves. Bottom panel: stack plots with the same data broken down into quartiles. 5b+ new models are those models that are not present in 5b.

Figure 2. 5b+ Annotations with stronger evidence of conservation have correspondingly better AED values. 5b+ Z. mays annotations broken into 4 categories: Syntelog, Ortholog, Conserved, and ‘Other’. See text for details of classification system. Note the extreme AED ‘ramp’ of the ‘Other’ category due to a lack of supporting evidence for these gene models. Top panel AED curves; bottom panel: Stack plots for the same data broken down into quartiles.

Figure 3. AED-based comparison of the 5b+ and 5b+-updated gene models for Z. mays Chromosome 10. Open circles represent annotations with physical overlap between a 5b+ and its corresponding updated MAKER-P gene model. X-axis: AED of corresponding MAKER-P updated 5b+ gene model; Y-axis: AED of 5b+ models.

Figure 4. AED analyses of the MAKER-P updated 5b+ gene models. For ease of reference, also included are the MAKER-P de novo annotations and the original 5b+ annotations.
Figure 5. Shared and unique gene models in the 5b+ and the MAKER-P gene de novo gene sets. To facilitate comparison, both builds were broken down into the same five gene categories described for Figure 2. Intersecting genes are shown in green, gene models unique to the MAKER-P de novo build in yellow.

Figure 6. MapMan terms with over- or under-represented numbers of *Z. mays* pseudogenes. The ovals indicate over- (shade of red) and under- (shade of blue) represented terms and their parent terms (white). Some terms are truncated or abbreviated. For full terms and associated statistics, see Supp. Table 4.

Figure 7. AED analyses of the 6a build. AED stack plot by quartiles: 5b+ build, MAKER update of 5b+, MAKER-P de novo, 6a build, 5b+ models in 6a, novel MAKER de novo multi-exons and single exon in 6a, and provisional 5b+ models. Numbers in parentheses indicate number of annotations in each gene set.

Supplemental Figure 1. Comparing two versions of trained Augustus within MAKER-P on Chromosome 10. Pretrained Augustus (blue line) was meticulously selected and trained by the Augustus group. Augustus trained using RNA and EST data (green line) was

Supplemental Table 1. RNA-Seq data sources used for transcript assemblies.

Supplemental Table 2. Provisional 5b+ gene models. Provisional B73 RefGen_v3 5b+ gene models.

Supplemental Table 3. Small-RNA-seq experiments used in miRNA identification.

Supplemental Table 4. MapMan terms and statistics.
Figure 1. AED analyses of the 5b, 5b+, and TAIR 10 annotation builds. Top panel: AED CDF curves. Bottom panel: stack plots with the same data broken down into quartiles. 5b+ new models are those models that are not present in 5b.
Figure 2. 5b+ Annotations with stronger evidence of conservation have correspondingly better AED values. 5b+ Z. mays annotations broken into 4 categories: Syntelog, Ortholog, Conserved, and ‘Other’. See text for details of classification system. Note the extreme AED ‘ramp’ of the ‘Other’ category due to a lack of supporting evidence for these gene models. Top panel AED curves; bottom panel: Stack plots for the same data broken down into quartiles.
Figure 3. AED-based comparison of the 5b+ and 5b+-updated gene models for *Z. mays* Chromosome 10. Open circles represent annotations with physical overlap between a 5b+ and its corresponding updated MAKER-P gene model. X-axis: AED of corresponding MAKER-P updated 5b+ gene model; Y-axis: AED of 5b+ models.
Figure 4. AED analyses of the MAKER-P updated 5b+ gene models. For ease of reference, also included are the MAKER-P de novo annotations and the original 5b+ annotations.
Figure 5. Shared and unique gene models in the 5b+ and the MAKER-P gene de novo gene sets. To facilitate comparison, both builds were broken down into the same five gene categories described for Figure 2. Intersecting genes are shown in green, gene models unique to the MAKER-P de novo build in yellow.
Figure 6. MapMan terms with over- or under-represented numbers of Z.
*ma*ys pseudogenes. The ovals indicate over- (shade of red) and under- (shade of blue) represented terms and their parent terms (white). Some terms are truncated or abbreviated. For full terms and associated statistics, see Supp. Table 4.
Figure 7. AED analyses of the 6a build. AED stack plot by quartiles: 5b+ build, MAKER update of 5b+, MAKER-P de novo, 6a build, 5b+ models in 6a, novel MAKER de novo multi-exons and single exon in 6a, and provisional 5b+ models. Numbers in parentheses indicate number of annotations in each gene set.