Running head: Transcriptome of phyB-1 and wild-type tiller buds

Corresponding author information:

Name: John Mullet
Address: Department of Biochemistry and Biophysics,
Texas A&M University,
College Station, TX 77843, USA.
Phone: (979) 845-0722
Email: jmullet@tamu.edu
Transcriptome Profiling of Tiller Buds Provides New Insights into PhyB Regulation of Tillering and Indeterminate Growth in Sorghum

Tesfamichael H. Kebrom and John E. Mullet

Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA.

Summary: phyB-1 buds express high levels of TFL1, TPPI, GA2ox1 and become dormant whereas wild-type buds with higher cytokinin/sugar induce a SWEET transporter, cell wall invertases and grow into tillers.

Corresponding author: John Mullet jmullet@tamu.edu

Author contributions
T.H.K. designed the research, performed research, and analyzed data; T.H.K. and J.E.M. interpreted the results and wrote the paper.

Funding information
Funding for this study was provided by a Department of Energy grant DE-SC0009885, Ceres, and the Perry Adkisson Chair.
Abstract

Phytochrome B (phyB) enables plants to modify shoot branching or tillering in response to varying light intensities and ratios of red (R) and far-red (FR) light caused by shading and neighbor proximity. Tillering is inhibited in sorghum genotypes that lack phytochrome B (58M, phyB-1) until after floral initiation. The growth of tiller buds in the first leaf axil of wild-type (100M, PHYB) and phyB-1 sorghum genotypes is similar until 6 days after planting (DAP) when buds of phyB-1 arrest growth, while wild-type buds continue growing and develop into tillers. Transcriptome analysis at this early stage of bud development identified numerous genes that were up to 50-fold differentially expressed in wild-type/phyB-1 buds. Up-regulation of terminal flower1 (TFL1), GA2oxidase and TPPI could protect axillary meristems in phyB-1 from precocious floral induction and decrease bud sensitivity to sugar signals. Following bud growth arrest in phyB-1, expression of dormancy associated genes such as DRM1, GT1, AF1, CKX1 increased and ENOD93, ACCoxidase, ARR3/6/9, Cga1 and SHY2 decreased. Continued bud outgrowth in wild-type was correlated with increased expression of genes encoding a SWEET transporter and cell wall invertases. The SWEET transporter may facilitate sucrose unloading from the phloem to the apoplast where cell wall invertases generate monosaccharides for uptake and utilization to sustain bud outgrowth. Elevated expression of these genes was correlated with higher levels of cytokinin/sugar signaling in growing buds of wild-type plants.
The extent of tillering in crops affects plant density, leaf area, and the interception of light by the crop canopy. Modeling of light interception by crop canopies indicates that current genotypes often intercept an excess of light at the top of the canopy (Zhu et al., 2010; Drewry et al., 2014). Energy sorghum hybrids tiller to a greater extent than grain sorghum genotypes often producing canopies with excess leaf area (LAI>7) (Olson et al., 2012). A more optimal distribution of light interception could be achieved by growing energy sorghum with reduced propensity for tillering at lower plant density with leaves having reduced leaf angles (Truong et al., 2015). The reduced leaf area of low tillering varieties would conserve soil moisture for the grain filling stage in drought-prone regions (Islam and Sedgley, 1981; Kebrom and Richards, 2013). Reduced tillering associated with stay-green drought tolerance loci is also important for grain sorghum production in water-limited environments (Borrell et al., 2014). A more complete understanding of the genetic and biochemical basis of tiller production in sorghum will accelerate progress towards optimal crop canopy architectures and higher yield.

Shade is one of the major factors modifying the extent of shoot branching or tillering in crops grown at high planting density (Kebrom and Brutnell, 2007). Plants detect shade as a reduction in the intensity of red light (R) and decreases in the ratio of red to far-red (FR) light. The R to FR ratio of sunlight is about 1.2 (Holmes and Smith, 1975). The ratio of R to FR light within a canopy is reduced due to the absorption of R light by leaf chlorophyll. The microenvironment of plants grown at high density is also enriched in FR reflected from nearby plants (Ballare et al., 1990). Plants continuously monitor R:FR ratios using the phytochrome family of photoreceptors to detect neighbor proximity and potential competitors for light and other resources (Smith, 1995). Sorghum encodes three phytochromes (PhyA-C) whereas other flowering plants such as Arabidopsis have up to five types of phytochromes (PhyA-PhyE) that regulate growth and development from germination to maturity (Sharrock and Quail, 1989; Clack et al., 1994; Mathews and Sharrock, 1996). Shade signaling is mainly regulated by phyB (Franklin and Whitelam, 2005; Martinez-Garcia et al., 2010; Casal, 2013). Like the other phytochromes, phyB resides in an inactive R absorbing form in darkness. Upon absorbing R light phyB’s conformation changes into an active FR absorbing form that can be converted to the R absorbing form by FR or darkness. The ratio of active to inactive phyB is proportional to the R to FR ratio in a consistent illumination environment at steady state. When a plant is shaded it perceives relatively higher FR than R and proportionally more phyB becomes inactive. Upon perceiving low R:FR light, plants display a set of growth and developmental changes that help them cope with or avoid shade (Martinez-Garcia et al., 2010; Casal, 2013). These responses include increased stem elongation that moves leaves above neighboring plants, inhibition of tillering which prioritizes resources for elongating established shoots, and early flowering to escape from the detrimental effect of shade (Kebrom and Brutnell, 2007). This set of phenotypes is known as the shade avoidance syndrome (SAS) (Smith and Whitelam, 1997). PhyB deficient plants in diverse species constitutively display the SAS (Reed et al., 1993; Childs et al., 1997; Kebrom et al., 2006; Finlayson et al., 2010). The early flowering and stem elongation responses have been investigated in depth and are mediated in part by changes in the level or action of most of the major plant hormones (Carabelli et al., 1993; Finlayson et al., 1999; Morelli and Ruberti, 2000; Cerdan and Chory, 2003;
Carabelli et al., 2007; Sheehan et al., 2007; de Lucas et al., 2008; Kim et al., 2008; Tao et al., 2008). The molecular and physiological basis of phyB and SAS mediated reduction in branching is less well characterized.

Shoot branches or tillers develop from buds in the axil of leaves. The development of a branch begins with the initiation of a bud meristem and formation of a boundary zone surrounding the meristem (Janssen et al., 2014). Bud development and growth then reaches a transition stage or checkpoint where growth arrest/dormancy or outgrowth fates are determined by intrinsic and environmental factors (Shimizu-Sato and Mori, 2001; Dun et al., 2006). A plant may fail to develop a branch due to defects in axillary meristem initiation or inhibition of axillary bud outgrowth (Ward and Leyser, 2004). Reduced tillering in response to shading is due to bud growth arrest and inhibition of outgrowth because axillary buds are formed normally in phyB mutants of sorghum (phyB-1) and Arabidopsis (Kebrom et al., 2006; Finlayson et al., 2010). Sorghum genotypes that lack phyB such as 58M (phyB-1) have only one stem because axillary buds become dormant during the vegetative phase (Kebrom et al., 2006; Kebrom et al., 2010). In Arabidopsis, inactivation of phyB reduces but does not eliminate branching possibly due to the action of phyD and phyE that are not present in sorghum (Finlayson et al., 2010).

Research on the evolution of enhanced apical dominance in maize relative to its wild ancestor teosinte led to the discovery that teosinte branched1 (tb1) is expressed in tiller buds and inhibits bud outgrowth (Doebly et al., 1995; Doebly et al., 1997; Hubbard et al., 2002). Tillering in wheat was suppressed through transgenic overexpression of the maize tb1 gene (Lewis et al., 2008), and mutants of rice tb1 orthologs (fc1) and Arabidopsis (brc1) are highly branched indicating a role for tb1-like genes in the regulation of shoot branching in these species (Takeda et al., 2003; Aguilar-Martinez et al., 2007; Finlayson, 2007). Comparison of the phyB mutant (phyB-1) and wild-type (PHYB) sorghum demonstrated that expression of the sorghum ortholog of tb1 (SbTB1) was ~2.5-fold higher in phyB-1 buds 7-9 days after planting (Kebrom et al., 2006). Phytochrome regulation of tb1-like genes was also demonstrated in Arabidopsis (Aguilar-Martinez et al., 2007; Finlayson et al., 2010). Cytokinin has been found to down regulate expression of FC1 (tb1) in rice (Minakuchi et al., 2010) and PsBRC1 in pea (Braun et al., 2012). Therefore differential regulation of tb1 expression in phyB-1/wild-type buds could be mediated by altered cytokinin level or signaling. Maize mutants of grassy tillers1 (gt1), a gene that encodes an HD-Zip transcription factor, are highly branched (Whipple et al., 2011). Teosinte GT1 expression was induced by FR light, and sorghum GT1 expression increased in buds of phyB-1 plants between 7 and 9 days after planting, but not in wild-type plants (Whipple et al., 2011). Expression of GT1 is down regulated in tb1 mutants therefore tb1 may regulate tillering by controlling the expression of this gene (Whipple et al., 2011).

Strigolactones (SL) are key regulators of tillering that bind to a MAX2:D14/DAD2 complex and act in part through the TBI/BRC1/GT1 pathway (Janssen et al., 2014). MAX2 encodes an F-box protein required for strigolactone mediated inhibition of bud outgrowth (Stirnberg et al., 2002; Stirnberg et al., 2007). The Arabidopsis max2 mutant and mutants of MAX2 orthologs in pea (RMS4) and rice (D3) are highly branched indicating this gene regulates axillary bud outgrowth in diverse species (Stirnberg et al., 2002; Ishikawa et al., 2005; Johnson et al., 2006). Increased expression of SbMAX2 in buds of shaded plants
and phyB-1 genotypes (Kebrom et al., 2010) could increase SL mediated repression of bud outgrowth, possibly by disrupting auxin transport (Crawford et al., 2010; Domagalska and Leyser, 2011). SbMAX2 expression in axillary buds was increased by defoliation treatments that inhibit tiller outgrowth (Kebrom et al., 2010). The rose (Rosa hybrid) RwMAX2 was expressed at lower levels in buds supplied with sucrose (Barbier et al., 2015a). These results indicate phyB and sugar-sensing pathways co-regulate genes involved in strigolactone sensing that modulate tiller outgrowth.

Cytokinin (CK) promotes and ABA inhibits bud outgrowth through their actions within the bud (Pillay and Railton, 1983; Chatfield et al., 2000; Shimizu-Sato and Mori, 2001). Cytokinins enable growing buds escape dormancy (Muller et al., 2015). The level of CK in the stem is reduced by auxin-mediated suppression of a key CK biosynthesis gene, whereas ABA appears to inhibit bud outgrowth independently of auxin (Chatfield et al., 2000; Tanaka et al., 2006; Beveridge et al., 2009). Exposure of Arabidopsis to low R:FR illumination repressed bud outgrowth and increased expression of genes involved in ABA biosynthesis and signaling in buds (Gonzalez-Grandio et al., 2013; Reddy et al., 2013). The expression of these genes was decreased when buds were stimulated to grow by R light.

An important role for sugar in regulating shoot branching has been identified. In the tiller inhibition (tin) mutant of wheat, diversion of sucrose away from buds to elongating internodes inhibits bud outgrowth (Kebrom et al., 2012). Sugar also stimulates bud outgrowth in pea and rose (Rabot et al., 2012; Mason et al., 2014; Barbier et al., 2015a). The expression of the sucrose-starvation inducible Gln-dependent Asn synthase (ASN) gene was increased and sucrose-inducible PFP-gene encoding pyrophosphate-fructose-6-phosphate 1-phosphotransferase was down-regulated in dormant buds of tin in wheat and in buds repressed by defoliation in sorghum (Kebrom et al., 2012; Kebrom and Mullet, 2014). The molecular mechanism regulating sucrose levels and the specific signaling pathways mediating sugar sensing in buds remain to be discovered (Barbier et al., 2015b).

The elegant studies described above have identified, among other discoveries, a group of genes expressed in sorghum buds (i.e., TB1/BRC1, GT1, MAX2) that help repress the outgrowth of dormant buds until light conditions, sugar and cytokinin levels/signaling are permissive for tiller outgrowth. In non-shaded conditions, phyB-signaling down regulates the expression of TB1, GT1 and MAX2 in buds, increasing the propensity for tiller outgrowth. Less well understood is how lack of phyB-signaling leads to the initial arrest of bud growth. Moreover, additional information about the molecular and biochemical processes involved in bud outgrowth in wild-type plants under permissive conditions would help provide a more comprehensive understanding of bud development. Therefore, in the current study, transcriptome profiles of tiller buds from phyB-deficient (phyB-1) and wild-type (control) sorghum plants were obtained at a critical early stage of bud development when buds of phyB-1 plants arrest growth and transition into dormancy whereas buds of control plants grow into tillers. RNA-seq analysis was used to characterize differences in bud gene expression that are associated with phyB regulated tillering in sorghum plants.
Results

Development of tillers in near isogenic phyB-1 and wild-type sorghum genotypes

The phytochrome B null mutant sorghum genotype (58M, phyB-1) produces a main shoot that is devoid of tillers during the vegetative phase while the near isogenic wild-type sorghum genotype (100M, PHYB) produces many tillers (Fig. 1A). Buds in phyB-1 remain dormant during the vegetative phase, however, following floral initiation, axillary buds can develop into tillers (Fig. 1B). Like most genotypes of sorghum with an indeterminate or perennial like growth habit, phyB-1 genotypes continue to develop tillers and panicles as long as conditions are favorable for growth and flowering (Fig 1C).

Overall transcriptome dynamics during tiller bud development in phyB-1 and wild-type sorghum

Bud growth in the first leaf axil is similar in wild-type and phyB-1 through the first 6 days after planting (DAP) (Fig. 2A) (Kebrom et al., 2006; Kebrom et al., 2010). After 6 DAP the buds in phyB-1 plants show no or very slow growth, whereas buds of wild-type plants continue to steadily increase in size (Fig. 2A). Expression of SbDRM1, a marker of bud dormancy, was low and similar in buds of both genotypes at 6 DAP, then increased differentially ~3-5-fold in the phyB-1 relative to wild-type controls by 7/8 DAP (Fig. 2B) as previously reported (Kebrom et al., 2006).

RNA for RNA-seq analysis was obtained from buds dissected from the first leaf axil of wild-type and phyB-1 at 6 DAP, 7 DAP and 8 DAP and used to prepare cDNA template for sequencing. The average reads from a total of three biological replicates was 40.1 million, of which 93.9% mapped to the sorghum reference sequence Sbicolor-v2.1_255 version (Phytozome) that encodes 33,032 annotated genes and 39,441 transcripts (Table S1). RNA-seq data from biological replicates were found to co-cluster when assessed using principal component analysis (PCA) (Fig. S1). Transcriptomes of buds of phyB-1 and wild-type plants increasingly diverged between 6 DAP and 8 DAP. Relative gene expression was estimated by analyzing RNA-seq data in CLC Bio Genomics Workbench (CLC Inc., Aarhus, Denmark), using RPKM values, and a false discovery rate (FDR) of <5% (Table S2). Relative expression results from RNA-seq were confirmed using qRT-PCR (Figs. 2B, 2C & S2), and were consistent with prior qRT-PCR analysis of bud gene expression (Kebrom et al., 2006; Kebrom et al., 2010; Whipple et al., 2011). For example, SbDRM1 mRNA levels in phyB-1 and wild-type buds analyzed by RNA-seq (RPKM) and qRT-PCR showed that RNA abundance in buds was similar at 6 DAP, and by 8 DAP, 5-fold higher in phyB-1 buds relative to wild-type confirming prior results (Figs. 2B and 2C).

Genes that were differentially expressed in at least one of the time points analyzed are listed in Table S2. There were 127 (6 DAP), 315 (7 DAP) and 611 (8 DAP) genes up- or down-regulated ≥2-fold (RPKM ≥ 2) in buds of phyB-1 plants relative to the corresponding wild-type controls (Fig. S3). A total of 71 genes were consistently differentially expressed in phyB-1 buds relative to wild-type controls at all time points assayed. A large number of the differentially expressed genes categorized by MapMan software (Thimm et al., 2004) function in hormone metabolism and signaling, response to stress, transcription (RNA synthesis), protein synthesis, signaling, development and transport (Table S3). Differentially expressed genes with biological relevance based on established knowledge of regulation of dormancy and
outgrowth of axillary buds, flowering time and vegetative meristem identity maintenance in diverse species and novel genes that are up- or down-regulated >5-fold in the phyB-1 buds relative to the corresponding wild-type controls were analyzed in more detail beginning with genes differentially expressed at 6 DAP.

Differential expression of cell cycle genes and Peter pan in growth arrested buds at 6 DAP

Bud growth arrest occurs in phyB-1 at 6 DAP although seedling shoot and root growth continues (Kebrom et al., 2006). Differential bud growth arrest in phyB-1 could be due to differences in bud gene expression caused by the absence of phyB-signaling during the first six days of bud growth leading to the depletion of a gene product required for cell division or growth, or the buildup one or more repressors. To examine this possibility, we searched for genes involved in the cell cycle and growth that were differentially expressed in buds of phyB-1 compared to wild-type plants at 6 DAP.

Expression of cell cycle genes such as SbHis4, SbCycD2, SbCDKB, SbCycB and SbPCNA was previously found to be similar in buds of phyB-1 and wild-type (Kebrom et al., 2010). In the current study, genes involved in the cell cycle were expressed at similar levels in buds of both genotypes at 6 DAP, and showed minimal change in relative expression from 6 to 8 DAP consistent with prior analysis based on

Figure 1. Tiller development in phytochrome B mutant (phyB-1, 58M) and wild-type (PHYB, 100M) sorghum. Tillers are indicated by white arrows and the main shoot by yellow arrow. (A) phyB-1 plants have one main shoot during the vegetative phase because buds become dormant soon after they are formed, while wild-type produces many tillers. (B) Tiller bud outgrowth in phyB-1 is activated after the main shoot transitions into the reproductive stage. (C) phyB-1 continues to develop tillers and panicles like most sorghum varieties with indeterminate or weakly perennial growth habit as long as growing conditions remain favorable for growth and flowering. Figure 1A reprinted from Kebrom and Brutnell (2007); Figure 1B reprinted from supporting information for Kebrom et al., (2010).
an overall survey of genes involved in the cell cycle and cell division (Figs. S4 & S5). The expression of an E2F3-like gene Sb08g003670.1 was reduced ~3-fold in phyB-1 buds at 8 DAP (Fig. 3A). The E2F transcription factor is a component of the retinoblastoma/E2F/Dp pathway of the cell cycle that controls progression from G1 to S-phase by activating genes required for the S-phase of the cell cycle (Inze and De Veylder, 2006). In Arabidopsis, AtE2FA is required for lateral root initiation and vascular patterning (Berckmans et al., 2011).

A broader survey for genes that could regulate growth identified Sb01g035700.1, a gene expressed at >100-fold lower levels in phyB-1 buds compared to wild-type (Fig. 3B). This sorghum gene is homologous to Peter pan, a member of the SSF1/2 gene family, first identified in Drosophila as a gene required for normal mitotic growth (Migeon et al., 1999) and ribosome biogenesis (Eisenhaber et al., 2001). Sorghum encodes two Peter pan-like genes and while Sb01g035700.1 was nearly completely silenced in phyB-1 buds, another sorghum gene homologous to Peter pan, Sb01g035720.1 was expressed at similar levels in both phyB-1 and wild-type axillary buds (Fig 3C).

Figure 2. Developmental progression of tiller buds in phytochrome B mutant (phyB-1, 58M) and wild-type (phyB, 100M) sorghum. (A) Length of buds in the first leaf axil of phyB-1 and wild-type at 6 DAP (Days After Planting), 7 DAP and 8 DAP. (B) and (C) relative expression of SbDRM1, a gene associated with bud dormancy, in the phyB-1 and wild-type buds at 6 DAP, 7 DAP and 8 DAP determined by qRT-PCR (B) and by RNA-seq (C) in RPKM (reads per kilobase per million mapped reads). Data are means ± SE, n=10 buds (A) and 3 biological replicates (B & C).

Differential expression of genes that regulate meristem differentiation, GA and T6P levels
SbCN2 (Sb04g021650.1), a homolog of TFL1 (ZCN2, OsRCN2), was expressed at ~34-fold higher levels in phyB-1 buds at 6 DAP, and 86-fold higher levels compared to wild-type buds by 8 DAP (Fig. 4). TFL1’s role in preventing floral induction is well known (Lifschitz et al., 2014) and expression of ZCN2 (TFL1/SbCN2) was previously reported in axillary buds of maize (Danilevskaya et al., 2010). Elevated expression of SbCN2 in buds of phyB-1 plants indicates that in the absence of phyB-signaling, increased expression of TFL1 enhances the barrier to floral induction. Expression of SbCN4 (ZCN4, OsRCN4) is differentially up regulated in phyB-1 buds starting at 8 DAP (Fig. 4). ZCN4 is expressed in maize root apical regions (Danilevskaya et al., 2010). The increase in expression of this gene in phyB-1 at 8 DAP may indicate that nascent root meristems of the bud have developed and require protection from premature differentiation.

Several additional genes that regulate the transition from the vegetative to reproductive phase were differentially expressed to a limited extent in phyB-1 buds (Fig. 4). Genes that promote flowering such as LEAFY3-like (LFY3, Sb06g027340.1) and flowering promoting factor 1 (FPF1, sb03g044960.1) were
expressed at 2-fold higher levels in *phyB-1* buds. In addition, two splice variants of a gene similar to the Arabidopsis MADS-box, *SHORT VEGETATIVE PHASE* (*SVP*, *Sb01g044810.1* and *Sb01g044810.2*) that

<table>
<thead>
<tr>
<th>6 DAP</th>
<th>7 DAP</th>
<th>8 DAP</th>
<th>Sogrhum gene ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sb04g021650.1</td>
<td>Centroradiata-like1, Terminal flower1 (TFL1) and Rice RCN2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sb06g015490.1</td>
<td>Centroradiata-like1, Terminal flower1 (TFL1) and Rice RCN4</td>
</tr>
<tr>
<td>3.0</td>
<td>4.6</td>
<td>7.3</td>
<td>Sb03g044960.1</td>
<td>FPF1 (flowering promoting factor 1)</td>
</tr>
<tr>
<td>2.4</td>
<td>2.8</td>
<td>2.7</td>
<td>Sb06g027340.1</td>
<td>Leafy 3 (LFY3)</td>
</tr>
<tr>
<td></td>
<td>2.6</td>
<td>2.6</td>
<td>Sb01g044810.1</td>
<td>Short vegetative phase (SVP/AGL22)</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>2.6</td>
<td>Sb01g044810.2</td>
<td>Short vegetative phase (SVP/AGL22)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sb02g038780.1</td>
<td>APETALA1 (API/AGL7)</td>
</tr>
</tbody>
</table>

7.2	8.3	18.3	**Sb03g035000.1**	**GA2ox1 (gibberellin 2-oxidase 1)**
8.1	7.1	12.1	**Sb09g028380.1**	**GA2ox1 (gibberellin 2-oxidase 1)**
7.0	9.0	-6.4	**Sb03g002150.1**	**GA2ox1 (gibberellin 2-oxidase 1)**
			Sb09g020780.1	**GA2ox2 (gibberellin 20 oxidase 2)**

Figure 4. Differential expression of genes that regulate meristem differentiation, trehalose-6-phosphate levels, and growth identified by RNA-seq in buds in the first leaf axil of phytochrome B mutant (*phyB-1*) relative to the corresponding wild-type (*PHYB*) sorghum at 6 DAP (Days After Planting), 7 DAP and 8 DAP. Boxes with green color indicating genes expressed more highly in *phyB-1* and red color indicating genes expressed at lower levels in buds of *phyB-1* compared to wild-type. Values in boxes are fold-differences in *phyB-1* relative to the corresponding wild-type controls, and represent the mean of three biological replicates with a corresponding false discovery rate (FDR) less than 5%. Blank boxes represent values less than 2-fold and/or a corresponding FDR greater than 5%.

encodes a repressor of flowering (Hartmann et al., 2000), were expressed at 2-fold higher levels in *phyB-1* buds at 7 DAP and 8 DAP. The expression of *APETALA1-like* (*API*, *Sb02g038780.1*) was reduced ~3-fold in *phyB-1* buds at 8 DAP. The expression of the *API* and *LFY3* is repressed by TFL1 in different domains of the Arabidopsis shoot apical meristem (Conti and Bradley, 2007).

GA plays an important role in regulating floral transition (Sun, 2008) and many other aspects of growth and development (Claeys et al., 2014). GA biosynthesis/turnover, signaling and expression of GA responsive genes have been associated directly or indirectly with variation in shoot branching (Lo et al., 2008; Mauriat et al., 2011; Ni et al., 2015). Genes encoding GA2ox1 were expressed at 7-18-fold higher levels in *phyB-1* buds compared to wild-type at all time points examined (Fig. 4). Elevated expression of *GA2ox1* genes in *phyB-1* buds indicates that GA levels are maintained at low levels in the absence of phyB-signaling creating an additional barrier to floral induction and growth.

Reduction in trehalose-6-phosphate inhibits flowering and growth (Schlupmann et al., 2003; van Dijken et al., 2004; Delatte et al., 2011; Wahl et al., 2013). Therefore, elevated expression of a *TPPI-like* gene in *phyB-1* buds at 6 DAP (9-fold) through 8 DAP (34-fold) compared to buds of wild-type plants could
impact bud physiology (Fig. 4). Other members of the TPP and TPS gene family were also differentially expressed in phyB-1 vs. wild-type buds, but to a lesser extent and for most starting after 6 DAP (Fig. 4).

Additional genes differentially expressed >5-fold in phyB-1/wild-type buds at 6 DAP

Genes with diverse and in some cases unknown functions also showed high levels of differential expression in phyB-1 buds at 6 DAP through 8 DAP (Fig. S6). For example, genes encoding an F-box protein and VQ-motif protein are expressed ~80-fold and ~30-fold higher in phyB-1 buds at 6 DAP. The gene family encoding F-box proteins is very large (>600) (Xu et al., 2009) and these proteins function in numerous pathways including hormone signaling and glucose-delayed seed germination (Song et al., 2012). Proteins with VQ-motifs interact with WRKY-transcription factors and MAP-kinases (Weyhe et al., 2014) and responses to biotic and abiotic stress (Weyhe et al., 2014). A gene encoding an AAP3-like gene showed consistently higher expression in buds of phyB-1 (Fig. S6). AAP3 amino acid permeases are located in the plasmalemma and import amino acids from the apoplast into the phloem (Okumoto et al., 2004), however the exact role and localization of the bud expressed member of the AAP3 gene family is unknown. Genes encoding a haloacid dehalogenase-like hydrolase and UDP-glucosyl transferase 85A2 were both expressed at higher levels in buds of phyB-1. The gene encoding UDP-glucosyl transferase 85A2 was expressed at ~7-fold higher levels in phyB-1 buds at 6 DAP, and at 19-fold and 55-fold higher levels at 7 DAP and 8 DAP, respectively (Fig. S6). This enzyme mediates synthesis of DIBOA-glucoside, a compound involved in plant defense (Dick et al., 2012). DIBOA-glucoside is cleaved to form DIMBOA by a plastid-localized beta-glucosidase. A gene (sb08g007610) encoding a plastid beta-glucosidase that may be involved in DIMBOA synthesis was expressed at ~9-fold lower levels in phyB-1 at 6 DAP. DIMBOA is a compound used by plants for defense against herbivores therefore increased expression of this gene may be to protect buds from pests/pathogens (Frey et al., 1997; Dick et al., 2012). Genes encoding CTP-synthase, vacuolar iron transporter and heat shock proteins are expressed at lower levels in phyB-1 buds compared to wild-type at 6 DAP. Reduced expression of these genes may be a consequence of growth inhibition.

Differential gene expression in phyB-1 buds beginning at 7/8 DAP

DRM1 is a marker for the bud dormancy program (Kebrom et al., 2006). Following arrest of bud growth at 6 DAP in phyB-1, this gene is differentially induced ~3-fold at 7 DAP and ~6-fold by 8 DAP (Fig. 2). Numerous genes with expression kinetics similar to DRM1 in phyB-1 buds were identified (i.e., DIN1) including genes encoding transcription factors previously shown to regulate bud outgrowth that will be described below (Kebrom et al., 2006; Kebrom et al., 2010; Kebrom et al., 2012). Increased expression of ASN (Sb01g038460) (~5-8-fold) and decreased expression of a gene encoding asparaginase (Sb06g030910) (51-fold) is consistent with increased N-storage/decreased amino acid utilization in growth inhibited phyB-1 buds at 8 DAP (Fig. 5). In addition, several ShENOD93-like genes were expressed at 6-fold to 90-fold lower levels in phyB-1 buds compared to wild-type starting at 7 DAP (Fig. 5). Expression of ribosomal protein genes in buds of the two genotypes was similar at 6 DAP, however, transcript levels of several nuclear genes encoding plastid ribosomal proteins decreased ~2- to 3-fold in
phyB-1 compared to wild-type buds by 8 DAP (Fig. S7). In pea and Arabidopsis, the expression of genes encoding ribosomal protein genes is lower in dormant buds (Devitt and Stafstrom, 1995; Gonzalez-Grandio et al., 2013).}

<table>
<thead>
<tr>
<th>6 DAP</th>
<th>7 DAP</th>
<th>8 DAP</th>
<th>Sorghum gene ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.9</td>
<td>5.5</td>
<td>6.1</td>
<td>Sb01g016810.2</td>
<td>Dormancy-associated protein-like 1 (SbDRM1)</td>
</tr>
<tr>
<td>5.9</td>
<td>5.8</td>
<td>8.2</td>
<td>Sb04g000410.1</td>
<td>Senescence-associated protein (DIN1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sb01g038460.1</td>
<td>ASN1, DIN6 (glutamine-dependent asparagine synthase 1)</td>
</tr>
<tr>
<td>-6.1</td>
<td>-51.3</td>
<td></td>
<td>sb06g030910.1</td>
<td>L-asparaginase</td>
</tr>
<tr>
<td>-25.3</td>
<td>-8.3</td>
<td></td>
<td>Sb10g002820.1</td>
<td>Early nodulin 93</td>
</tr>
<tr>
<td>-95.3</td>
<td>-20.7</td>
<td></td>
<td>Sb10g002830.1</td>
<td>Early nodulin 93</td>
</tr>
<tr>
<td>-17.4</td>
<td>-6.2</td>
<td></td>
<td>Sb10g002890.1</td>
<td>Early nodulin 93</td>
</tr>
<tr>
<td>-15.3</td>
<td>-6.1</td>
<td></td>
<td>Sb10g002900.1</td>
<td>Early nodulin 93</td>
</tr>
</tbody>
</table>

Figure 5. Gene expression associated with induction of bud dormancy identified by RNA-seq in buds in the first leaf axil of phytochrome B mutant (phyB-1) sorghum relative to wild-type (PHYB) controls at 6 DAP (Days After Planting), 7 DAP and 8 DAP. Boxes with green color indicate genes expressed at higher levels in buds of phyB-1/wild-type and red color indicates genes expressed at lower relative levels in phyB-1 buds. Values in boxes are fold-differences in expression in phyB-1 relative to wild-type controls, and represent the mean of three biological replicates with a corresponding false discovery rate (FDR) less than 5%. Blank boxes represent values less than 2-fold and/or a corresponding FDR greater than 5%. Grandio et al., 2013).

Differential expression of genes during wild-type bud outgrowth at 7/8 DAP

Axillary buds of wild-type continue growing from 6 DAP to 8 DAP and will escape dormancy and form a tiller under the growth conditions used in this study. Increased expression of an MtN3 gene that encodes a SWEET sugar transporter between 6 DAP and 7 DAP in wild-type plants could help supply sucrose from the phloem of the main plant for continued growth and development of buds (Fig. 6). Increased expression of two genes (Sb0067s002110.1 and Sb0067s002130.1) encoding cell wall invertases in buds of wild-type between 6 DAP and 7 DAP could cleave sucrose unloaded into the apoplast to glucose and fructose for uptake by developing buds (Fig. 6) (Sherson et al., 2003; Weschke et al., 2003). A gene encoding a ribonuclease T2 protein expressed at low levels in both phyB-1 and wild-type buds at 6 DAP, was up-regulated >10-fold in growing buds of wild-type at 7 DAP and 8 DAP (Table S2). Ribonuclease T2 could be involved recycling phosphate required for outgrowth (MacIntosh et al., 2010; Hillwig et al., 2011).

Differential expression of genes encoding transcription factors

Transcriptome analysis revealed a large number of genes encoding transcription factors that are induced or repressed in phyB-1 buds relative to wild-type with varying time courses (Fig. 7). Genes differentially expressed by 6 DAP included EEL, LSH3, GT1, PDF1, HB1 and a WRKY transcription factor (Fig. 7). EEL (DPBF4/AtbZIP11) and ABI5 are bZIP transcription factors that interact with G-box motifs and regulate genes involved in the biosynthesis of asparagine and aspartic acid derived amino acids in response to sugar levels/ABA (Ufaz et al., 2011). Expression of EEL/DPBF4/AtbZIP12 was ~8-fold...
higher at 6 DAP and 16-fold higher in buds of phyB-1 at 8 DAP (Fig. 7). Sorghum genes homologous to *LSH3* (Sb02g002650.1), a gene involved in shoot organ boundary formation (Cho and Zambryski, 2011), and *protodermal factor 1* (*PDF1*) (Sb04g008270.1) were expressed at 5-16-fold higher levels in buds of phyB-1 plants. *SbGT1* RNA was 2-fold higher in buds of phyB-1 at 6 DAP and accumulated further by 8 DAP resulting in 3-5-fold differential expression relative to wild-type (Kebrom et al., 2006; Kebrom et al., 2010; Whipple et al., 2011). *SbTB1* transcripts were not detected by RNA-seq. However, using qRT-PCR, *SbTB1* RNA levels were detected at ~2-fold higher in phyB-1 buds relative to wild-type (Fig. S8). Expression analysis via qRT-PCR utilized cDNAs prepared using random hexamer priming. In contrast, RNA-seq libraries were prepared from mRNA purified using poly-T oligo-attached magnetic beads. Similarly, *tb1* was not detected in cDNA prepared from two week-old maize plants using T7 Oligo (dT) primers (Vega-Arreguin et al., 2009). Therefore, it’s possible that *tb1* transcripts in maize and sorghum lack polyA tracts long enough for binding to oligo-dT primers used to prepare cDNA. The sorghum *AtHB1*-like gene (Sb04g029080.2) was expressed at lower levels in phyB-1 buds at 6 DAP (4-fold), 7 DAP (12-fold) and 8 DAP (15-fold). Transgenic expression of Arabidopsis *AtHB-1* in tobacco indicated a role in leaf development (Aoyama et al., 1995). Arabidopsis *AtHB1* is regulated by

Figure 6. Expression of genes encoding cell wall invertases and sugar transport determined by RNA-seq in buds in the first leaf axil of the phytochrome B mutant (phyB-1) and wild-type (PHYB) sorghum controls at 6, 7, and 8 DAP (Days After Planting). (A) and (B) cell wall invertases (Sb0067s002110.1 (CwINV1) and Sb0067s002130.1 (CwINV2)) and (C) *nodulin MtN3* (SWEET) family sugar transport protein (Sb07g026040.1). Data are mean RPKM (reads per kilobase per million mapped reads) ± SE; n = 3 biological replicates.
phytochrome/PIF1 signaling and also plays a role in activating hypocotyl elongation (Capella et al., 2015). Therefore, down regulation of \textit{SbHB1} in \textit{phyB-1} buds is consistent with growth arrest and bud dormancy. A gene encoding a WRKY transcription factor (Sb04g33240) was also expressed at lower levels in \textit{phyB-1} buds from 6-8 DAP, and expression of a bZIP transcription factor (bZIP44, Sb07g015450.1) was reduced in \textit{phyB-1} buds at 7 DAP and 8 DAP (Fig. 7). Six genes encoding NAC domain containing proteins, including genes similar to the Arabidopsis \textit{ANAC029}, showed increased expression in \textit{phyB-1} buds at 8 DAP (Fig. 7). The expression of the Arabidopsis \textit{ANAC029} (\textit{AtNAP}) is associated with leaf senescence (Guo and Gan, 2006). Several homeobox transcription factors (WOX, Knotted-like and Bell) were differentially expressed in \textit{phyB-1} buds at 7/8 DAP (Fig. 7). These transcription factors function in meristem maintenance and leaf development.

\textbf{Differential expression of genes involved in plant hormone metabolism and signaling}

Plant hormones play a key role in regulating bud outgrowth and variation in hormone level or signaling could be causing some of the differences in gene expression observed in buds (Beveridge et al., 2009; Muller and Leyser, 2011). While analysis of hormone pathways in seedling leaves and roots was beyond the scope of this study, we conducted an analysis of genes involved in hormone biosynthesis or signaling...
that are differentially expressed in phyB-1 and wild-type buds (Fig. 8). Cytokinins (CK) promote bud outgrowth (Muller et al., 2015). The expression of a cytokinin-responsive GATA transcription factor (Sb04g007750.1) similar to the Arabidopsis Cga1 (Chiang et al., 2012) was induced in wild-type buds by ~8 and 15-fold at 7 DAP and 8 DAP, respectively (Fig. 8, S9). CK levels in phyB-1 buds could be lower than wild-type due to elevated expression of a cytokinin deactivating gene, cytokinin oxidase/dehydrogenase1 (CKX1, Sb03g045410.1) in phyB-1 buds relative to wild-type controls from 6 DAP (2-fold) to 8 DAP (6-fold) (Fig. 8, S9). In addition, four genes encoding cytokinin-inducible type-A response regulators (ARRs) (D’Agostino et al., 2000) were expressed at 3-4-fold lower levels in phyB-1 buds as early as 6 DAP (Fig. 8). Expression of SbARR3 (Sb04g026750) decreased ~7-11-fold between 6 DAP and 8 DAP in buds of phyB-1 but not in wild-type (Fig 8, S9). The expression of sorghum SHY2/IAA3 (Sb01g005110.1) decreased in phyB-1 buds relative to wild-type controls between 7 DAP and 8 DAP (Fig. 8). Expression of SHY2/IAA3 in Arabidopsis roots is induced by cytokinins (Dello Ioio et al., 2008) therefore reduced expression of SHY2/IAA3 in phyB-1 buds is consistent with lower CK levels in phyB-1 tiller buds relative to wild type.

<table>
<thead>
<tr>
<th>6 DAP</th>
<th>7 DAP</th>
<th>8 DAP</th>
<th>Sorghum gene ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2²</td>
<td>3.6</td>
<td>6.0</td>
<td>Sb03g045410.1</td>
<td>Cytokinin oxidase/dehydrogenase1</td>
</tr>
<tr>
<td>-2.9</td>
<td>-4.1</td>
<td>-5.1</td>
<td>Sb03g046040.1</td>
<td>type-A response regulator 9 (ARR9)</td>
</tr>
<tr>
<td>-3.1</td>
<td>-3.4</td>
<td>-2.7</td>
<td>Sb04g022780.1</td>
<td>type-A response regulator 3 (ARR3)</td>
</tr>
<tr>
<td>-6.3</td>
<td>-11.1</td>
<td>-12.3</td>
<td>Sb04g026750.1</td>
<td>type-A response regulator 3 (ARR3)</td>
</tr>
<tr>
<td>-3.4</td>
<td>-4.1</td>
<td>-3.7</td>
<td>Sb06g017550.1</td>
<td>type-A response regulator 3 (ARR3)</td>
</tr>
<tr>
<td>-4.1</td>
<td>-3.8</td>
<td>-2.7</td>
<td>Sb06g032600.1</td>
<td>type-A response regulator 6 (ARR6)</td>
</tr>
<tr>
<td>-8.6</td>
<td>-14.8</td>
<td>-11.7</td>
<td>Sb04g007750.1</td>
<td>Cytokinin-responsive GATA transcription factor 22 (Cga1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sb01g005110.1</td>
<td>Short hypocotyl 2 (SHY2/IAA3)</td>
</tr>
</tbody>
</table>

Figure 8. Differential expression of genes involved in plant hormone metabolism and signaling identified by RNA-seq in buds in the first leaf axil of phytochrome B mutant (phyB-1) sorghum relative to the corresponding wild-type (PHYB) controls at 6 DAP (Days After Planting), 7 DAP and 8 DAP. Boxes with green color indicate genes that are expressed at higher levels in phyB-1/wild-type and red color indicates genes expressed at lower relative levels in phyB-1. Values in boxes are fold-differences in phyB-1 relative to wild-type controls, and represent the mean of three biological replicates with a corresponding false discovery rate (FDR) less than 5%. Blank boxes or asterisks indicate values less than 2-fold and/or a corresponding FDR greater than 5%.
Down-regulation of several genes encoding ACC oxidase1 (ACO1) that catalyze the last step of ethylene biosynthesis may reduce ethylene production in phyB-1 buds (Fig. 8). In particular, the expression of Sb03g026000.1 was 10-fold lower in phyB-1 buds relative to the corresponding wild-type controls, at 7 DAP and 8 DAP. The expression of an ethylene-responsive protein-related gene, Sb04g032150.1, was 28.6-fold lower in phyB-1 buds at 8 DAP. AP2/EREBP like genes, Sb01g045060.1 and Sb10g005520.1, were also down regulated in phyB-1 buds. The expression of the sorghum orthologs of Arabidopsis AP2/EREBP genes (At1g72360 and At5g25190) is induced by ethylene (Yang et al., 2011; Zhang et al., 2011). Therefore down-regulation of AP2/EREBP and ethylene responsive genes in phyB-1 buds could be due to decreased expression of several ACC oxidase1 (ACO) genes involved in ethylene biosynthesis.

Inhibition of bud outgrowth by FR in Arabidopsis has been linked to an increase in the expression of ABA biosynthesis and signaling genes and ABA level (Gonzalez-Grandio et al., 2013; Reddy et al., 2013). Analysis of differentially expressed genes in phyB-1/wild-type buds identified several changes in gene expression related to ABA synthesis or signaling between 6 DAP and 8 DAP (Fig. 8). A gene similar to the Arabidopsis aldehyde oxidase (AAO2) that catalyzes the conversion of abscisic aldehyde into ABA (Leydecker et al., 1995; Seo et al., 2000) was reduced ~4-6-fold in phyB-1 buds relative to the corresponding wild-type controls at all time points. A gene encoding abscisic acid 8'-hydroxylase (Sb02g026600.1) that deactivates ABA and a protein phosphatase 2C (ABI1, Sb09g022410.1), which is negative regulator of ABA signaling (Gosti et al., 1999; Bensmihen et al., 2002), were also expressed at a higher levels in phyB-1 buds. However, the expression of two ABA-inducible genes, Sb01g021730.1 (mediator of ABA-regulated dormancy 1, MARD1) (He and Gan, 2004) and Sb05g017940.1 (HVA22-like) (Shen et al., 2001) was higher in phyB-1 buds relative to the corresponding wild-type controls. A NAC domain containing transcription factor (Sb03g041920.2) homologous to Arabidopsis AtAF1 (ANAC002) was up-regulated by about 18.6-fold in phyB-1 buds at 8 DAP. The AtAF1 gene in Arabidopsis increases ABA level by directly up-regulating the expression of the ABA biosynthesis gene NINE-CIS-EPOXYCAROTENOID DIOXYGENASE3 (NCED3) (Jensen et al., 2013). NCED3 was among ABA-related genes up-regulated in Arabidopsis buds grown under low R:FR and down-regulated at high R:FR (Reddy et al., 2013). The expression of the sorghum ortholog of Arabidopsis NCED3, Sb01g013520, was slightly elevated in phyB-1 bud at 8 DAP but not significantly different from the expression level in wild-type bud (Fig. 8).

Relatively few genes involved in strigolactone and auxin responses were differentially expressed in phyB-1/wild-type buds. SbMAX2 showed 2-fold higher expression in phyB-1 buds at 8 DAP as previously reported Table S2. The auxin-responsive SAUR genes and dwarf in light 1 (DFL1) were differentially expressed to some extent (Fig. 8). The DFL1 gene, a homologue of G3, inhibits cell elongation and lateral root formation in light in response to auxin (Nakazawa et al., 2001). Expression of two DFL1-like genes (Sb03g036680.1 and Sb09g024710.1) increased in buds of phyB-1 at 8 DAP (Fig. 8).
Discussion

Axillary meristems are initiated in leaf axils and develop into tiller buds that can grow into tillers or become dormant in non-permissive growth conditions (Fig. 9). Research on bud outgrowth has identified numerous factors that promote outgrowth such as cytokinin, sugars, and phyB-signaling, and inhibitors such as strigolactone, auxin, and ABA (Beveridge et al., 2009; Muller and Leyser, 2011; Kebrom et al., 2013; Janssen et al., 2014; Wang and Wang, 2015; Yuan et al., 2015; Barbier et al., 2015b). The current study focused on early steps in bud development that lead to growth arrest and dormancy in phyB-1 or outgrowth in wild-type seedlings (Fig. 9). Bud axillary meristem formation and growth were similar in phyB-1 and wild-type until 6 DAP when bud growth differentially arrests in phyB-1 (Fig. 9). Dormant buds of phyB-1 plants can grow out following floral initiation, indicating that bud growth arrest is reversible. A similar seedling growth checkpoint, mediated by ABI5/ABA, occurs during the first 3 days following seed germination (Lopez-Molina et al., 2001). Differences in gene expression in axillary buds of phyB-1 and wild-type at 6 DAP could contribute to growth arrest of buds in phyB-1 (Fig. 9, lower left). Following growth arrest, buds of phyB-1 transition into dormancy, a developmental process associated with further changes in gene expression between 6DAP and 8 DAP (Fig 9, lower right). In contrast, in the wild-type, tiller growth and development continues between 6 DAP and 8 DAP leading to tiller outgrowth (Fig. 9, top). Analysis of wild-type bud transcriptomes during this interval identified increased expression of MtN3, encoding a SWEET transporter, and two cell wall invertases as key events during tiller outgrowth (Fig. 9, top right). After 9 DAP, developing tillers of wild-type plants no longer respond to shade signals by inhibiting tiller growth, but instead accelerate growth in a manner similar to the shade avoidance response of the main shoot (Kebrom et al., 2006). Thus the interval from 6 DAP to 8 DAP corresponds to a ‘transition stage’ when bud growth occurs in the wild-type but can still be inhibited by shading, and bud dormancy development occurs in growth arrested buds of phyB-1. Since phyB-1 plants lack phyB-signaling from leaves, leaf sheaths, and buds from germination through 8 DAP, differences in bud gene expression in phyB-1/WT could be a direct (in buds) or indirect (via leaf phyB-signaling) consequence of lack of phyB in phyB-1 seedlings. Analysis of leaf transcriptomes of phyB-1/WT during this same phase of development is planned to investigate the possible role of leaf-derived phyB-signaling that could modulate bud growth and development. In addition, while this study identified a large number of phyB-regulated changes in gene expressions that are associated with bud development, phyB is also known to regulate gene expression at post-transcriptional levels.

Maintenance of bud vegetative meristems in phyB-1 sorghum

Elevated expression of TFL1, GA2oxidases, and TTP1 in buds of phyB-1 compared to wild-type plants could result in enhanced protection of axillary buds from floral transition. Expression of TFL1 (SbCN2) was ~30-fold higher in buds of phyB-1 plants at 6 DAP and ~80-fold higher by 8 DAP. TFL1 is a member of the phosphatidyl ethanolamine-binding protein (PEBP) gene family, and members of this family in Arabidopsis include FLOWERING LOCUS T (FT), MOTHER OF FT AND TFL1 (MFT) and CENTRORADIALIS homologue (ATC), genes that activate flowering (Karlgren et al., 2011). TFL1-like genes encode proteins that are expressed in meristems and bind to leaf derived FT to prevent FT-induced
flowering (Lifschi
tz et al., 2014). The AaTFL1 in Arabis alpina prevents young shoots from transitioning into flowering thereby maintaining a perennial growth habit (Wang et al., 2011). The indeterminate growth habit is lost in TFL1 mutants of antirrhinum (CENTRORADIALIS) and tomato (SELF-PRUNING) (Bradley et al., 1996; Pnueli et al., 1998). TFL1 is expressed in the shoot apical meristem and axillary meristems of Arabidopsis (Conti and Bradley, 2007), maize (Danilevskaya et al., 2010) and sorghum. The proposed function of elevated expression of the TFL1-like gene SbCN2 in phyB-1 sorghum tiller buds is to protect these vegetative meristems from florigenic signals in a manner similar to perennial plants. In annual crops, such as wheat, the transition from vegetative to the reproductive phase converts all apical and axillary meristems from vegetative to inflorescence meristems (Hay and Kirby, 1991; Evers et al., 2006; Kebrom et al., 2012). In perennial plants vegetative meristems in axillary buds do not transition to flowering before forming a vegetative shoot during the next growth cycle ensuring a perennial growth habit (Rohde and Bhalerao, 2007). Grain sorghum is classified as weakly perennial (Dewet and Huckabay, 1967) however sorghum germplasm can exhibit a wide range of annual to perennial growth habits. Sorghum and maize florigens are produced in leaves by ZCN8/SbCN8 and ZCN12/SbCN12 (Danilevskaya et al., 2010, 2011).
Flowering in sorghum is inhibited in long day photoperiods by repressing the expression of \(SbCN8 \) and \(SbCN12 \) through a pathway that requires phyB-signaling (Murphy et al., 2011; Yang et al., 2014). Therefore \(phyB-1 \) or shaded plants have greater propensity to produce FT, and increased expression of \(TFL1 \) (\(SbCN2 \)) in axillary buds of these plants may be needed to prevent precocious floral transition.

Genes encoding GA2ox1 were expressed at ~7-18-fold higher levels in buds of \(phyB-1 \) plants. Elevated expression of these genes is expected to reduce GA levels and increase DELLA activity in \(phyB-1 \) buds. GA is an important regulator of meristem development (Ubeda-Tomas and Bennett, 2010) growth, and flowering (Xu et al., 2014). GA levels are elevated in leaves of \(phyB-1 \) mutants and shade treated plants in diverse species (Rood et al., 1990; Lee et al., 1998; Hisamatsu et al., 2005). Therefore increased expression of genes encoding GA2ox1 in \(phyB-1 \) buds may be required to prevent GA-mediated growth and floral promotion. In maize, rice and Arabidopsis, \(GA2oxidase \) is expressed around the sub-apical region of the shoot apical meristem (SAM) during the vegetative phase and deactivates GA derived from young leaves and leaf primordia thereby protecting the SAM from precocious transition into flowering (Sakamoto et al., 2001; Jasinski et al., 2005; Bolduc and Hake, 2009). The expression of \(GA2oxidases \) at the base of the SAM in maize is maintained in part by KNOX and BELL transcription factors (Bolduc and Hake, 2009). The expression of the \(Knox \) and \(BELL \) genes was 2-4-fold higher in the \(phyB-1 \) buds at 8 DAP which may enhance or maintain elevated expression of \(GA2oxidases \). \(FPF1 \) (flower promoting factor 1) mediates GA3 induced flowering (Kania et al., 1997). \(FPF1 \) and \(LEAFY3-like \) (\(LFY3 \)), genes that promote flowering, are expressed at 2-3-fold higher levels in buds of \(phyB-1 \) plants. These genes are also up-regulated in apical meristems induced to flower by shading or inductive photoperiods that would reduce phyB-signaling (Blazquez and Weigel, 1999). Therefore increased expression of \(TFL1 \) and genes encoding GA2ox1 in phyB-deficient plants may help antagonize the floral promoting effects of these genes. GA2ox1 mediated reduction in GA level and elevated DELLA activity in \(phyB-1 \) buds may have additional functions related to bud growth arrest and induction of dormancy (Choubane et al., 2012).

Growth arrest and maintenance of cell cycle gene expression in \(phyB-1 \) buds

The molecular mechanism causing the arrest of bud growth in \(phyB-1 \) is unknown, however strongly reduced expression of a gene homologous to \(Peter pan \) may be involved. The sorghum genome encodes two \textit{Peter pan}-like genes and expression of one of the \textit{Peter Pan}-like genes was reduced by ~100-fold in buds of \(phyB-1 \) compared to \(phyB \). \textit{Peter pan} was first identified as a gene required for larval growth in \textit{Drosophila} (Migeon et al., 1999). Down-regulation of both \textit{Peter Pan} genes (\(SSF1 \) and \(SSF2 \)) in yeast leads to cell division arrest (Yu and Hirsch, 1995). In \textit{Xenopus laevis}, ppap and pes1 interact and regulate ribosome biogenesis, cell proliferation, apoptosis, and gene expression (Tecza et al., 2011). Expression of \(PPAN \) and \(PESI \) in developing pronephros is dependent on \(wnt4 \) and \(fzd3 \) function, key regulators of cell growth and cell cycle progression (Tecza et al., 2011; Pfister et al., 2015). While the function of \textit{Peter pan} has not been examined in plants, strong down regulation of this gene in growth inhibited buds of \(phyB-1 \) plants at 6 DAP, suggests that low \textit{Peter pan} expression may contribute to inhibition of growth and cell division in buds of these plants.
Transcriptome analysis showed similar levels of cell cycle gene expression in buds of phyB-1 and wild-type plants at 6 DAP, consistent with prior analysis (Kebrom et al., 2010). Continued expression of cyclins and cyclin dependent protein kinases indicates the cell division machinery in growth-arrested buds of phyB-1 is on standby at least until 8 DAP, similar to cambial meristem dormancy in hybrid aspen (Espinosa-Ruiz et al., 2004). Reduced expression of a sorghum homolog of AtE2F3 in phyB-1 buds starting at 8 DAP could contribute to further inhibition of cell division as part of the bud dormancy program. Cell cycle gene expression was decreased in Arabidopsis buds inhibited by shade signals in a BRC1-dependent manner (Gonzalez-Grandio et al., 2013). Over expression of AtE2FA in Arabidopsis induces mature leaf cells to re-enter the cell cycle (Rossignol et al., 2002), and AtE2FA silencing reduces cotyledon and root growth and cell proliferation (Magyar et al., 2012). Decapitation increases cell cycle and ribosomal protein gene expression in dormant buds of Arabidopsis and pea and stimulates bud outgrowth (Devitt and Stafstrom, 1995; Tatematsu et al., 2005). Taken together, growth arrest at 6 DAP is not associated with decreased expression of genes involved in the cell cycle, however reduced expression of a sorghum homolog of AtE2F3 at 8 DAP and elevated expression of TB1 in phyB-1 buds may lead to reduced expression of genes involved in the cell cycle as the dormancy program becomes more fully established after 8 DAP.

PhyB regulated TPP expression - possible impact on flowering, growth, and sugar-signaling

The dormancy versus growth fates of axillary buds in diverse species has been linked to the level of sucrose/sugar-signaling and to changes in the expression of sucrose responsive genes in buds (Kebrom et al., 2012; Rabot et al., 2012; Kebrom and Mullet, 2014; Mason et al., 2014). Sugar signaling occurs through pathways involving hexokinase, trehalose-6-phosphate/SnRK1, and TOR, and by direct effects of sugars on growth and metabolism (Rolland et al., 2006; Lunn et al., 2014; Ruan, 2014). In the current study, transcriptome analysis revealed that the trehalose phosphate phosphatase TPPI-like gene was expressed at 9-fold higher levels in buds of phyB-1 at 6 DAP and 34-fold higher at 8 DAP. Other members of the TPP/TPS gene family were differentially expressed, including a 2-fold to 8-fold increase in the expression of 5 class II TPS genes in phyB-1 buds at 8 DAP. The class II TPS genes do not have TPS or TPP activities (Lunn et al., 2014). The expression of the Arabidopsis and maize class II TPS genes is induced by sucrose starvation (Henry et al., 2014; Yadav et al., 2014).

Trehalose-6-phosphate is required for growth (Schluepmann et al., 2003), flowering (van Dijken et al., 2004; Wahl et al., 2013) and can modify inflorescence branching (Satoh-Nagasawa et al., 2006) among other functions (Vandesteene et al., 2012). Ramosa3 (RA3), a member of the TPP-gene family in maize, is expressed in domains subtending axillary inflorescence meristems, and mutations in RA3 increase the number of long branches in tassels (Satoh-Nagasawa et al., 2006). Loss of TPP activity in tassal meristems is thought to increase T6P levels thereby promoting development of axillary branches (Tsai and Gazzarrini, 2014). Arabidopsis plants over-expressing TPP showed increased apical dominance, and plants lacking TPS activity develop slowly and are arrested at the torpedo stage (Schluepmann et al., 2003). Plants with reduced TPS activity and low T6P levels also showed delayed flowering (Wahl et al., 2013). Furthermore, T6P levels become elevated in plants that accumulate sucrose and high levels of T6P inhibit SnRK1, a central regulator of growth and metabolism under low energy/sugar conditions.
Low T6P levels signal a low sugar metabolic state, increasing SnRK1 activity, and inhibiting the use sugars for growth (Eastmond et al., 2003; Schluepmann et al., 2003).

Elevated expression of TPPI in phyB-1 buds relative to wild-type at 6 DAP is not correlated with changes in expression of the sugar responsive ASN1 and TPS-genes, because these genes show differential expression starting at 7 DAP (TPS11) or 8 DAP (ASN1, TPS5, TPS9). Expression of ASN1 is increased in buds of tiller inhibition in mutant wheat and defoliated wild-type sorghum plants (Kebrom et al., 2012; Kebrom and Mullet, 2014). ASN1 expression is also elevated in darkness under conditions of low sugar status (Fujiki et al., 2001). Therefore increased TPPI expression in phyB-1 buds at 6 DAP is more likely a consequence of reduced phyB-signaling. Increased trehalose phosphate phosphatase activity could reduce T6P levels thereby contributing to bud growth inhibition and reducing the propensity of buds to undergo floral transition.

Gene expression associated with induction of dormancy in phyB-1 buds

Induction of bud dormancy involves coordinated inhibition of growth of nascent leaves, roots, and other tissues, altered metabolism, and the creation of barriers to outgrowth. Previous studies have identified TB1 (BRC1), GT1 and MAX2 as key regulators that increase bud resistance to outgrowth (Kebrom et al., 2006; Kebrom et al., 2010; Whipple et al., 2011). These genes also help mediate bud growth inhibition caused by strigolactone (Aguilar-Martinez et al., 2007; Finlayson, 2007; Braun et al., 2012). Elevated and differential expression of GT1 (~3-5-fold from 6-8 DAP), TB1 (~2-3-fold from 6-8 DAP), and MAX2 (2-fold at 8-DAP) was observed in phyB-1 buds in this study. Elevated expression of these genes in buds of phyB-1 plants is consistent with prior studies showing that TB1, MAX2 and GT1 expression is regulated by phyB-signaling (Kebrom et al., 2006; Shen et al., 2007; Finlayson et al., 2010; Kebrom et al., 2010; Whipple et al., 2011), and that demonstrated a role for these genes as inhibitors of bud outgrowth (Doebly et al., 1995; Doebly et al., 1997; Stirnberg et al., 2002; Takeda et al., 2003; Aguilar-Martinez et al., 2007; Finlayson, 2007; Lewis et al., 2008; Whipple et al., 2011).

Reduced expression of sorghum genes homologous to HB1, WRKY, bZIP44, ENOD93, and ACCoxidase in buds of phyB-1 may also help coordinate growth arrest and the induction of bud dormancy. AtHB1 regulates increased hypocotyl growth in response to light signaling through PIF1 (Capella et al., 2015). ENOD93 genes are involved in nodule development and these genes are expressed in vascular bundles as well as the epidermis (Bi et al., 2009; Yan et al., 2015). Decreased expression of ENOD93 may inhibit the development of the vascular system in phyB-1 buds. Seeds of Arabidopsis bZIP44 mutants germinate at a reduced rate and bZIP44 promotes germination by enhancing the expression of endo-beta-mannanase (AtMAN7) that softens tissues surrounding the embryo (Iglesias-Fernandez et al., 2013). Therefore down-regulation of bZIP44 in phyB-1 buds might lead to hardening of leaves surrounding axillary meristem. Decreased expression of genes encoding ACC oxidases may reduce the level of ethylene in phyB-1 buds. Since ethylene biosynthesis increases in growing young leaves and leaf primordia (Hunter et al., 1999), a low level of ethylene in the phyB-1 bud might be associated with suspension of the growth of leaf primordia and young leaves enclosing the bud meristem.
Transcriptome analysis indicated that cytokinin levels and expression of genes involved in CK-signaling are reduced in buds of phyB-1 plants. Higher expression of a gene encoding CKX1 in phyB-1 buds may reduce bud cytokinin levels since transgenic expression of cytokinin oxidases/dehydrogenase (CKX) reduces CK-levels (Werner et al., 2001; Galuszka et al., 2004). In addition, genes encoding several type-A response regulators (ARR3/6/9) were expressed at lower levels in phyB-1 compared to wild-type buds. Cytokinins stimulate bud outgrowth in pea when directly applied to the bud (Pillay and Railton, 1983) and decapitation induced bud outgrowth in chickpea was associated with an increase in the level of cytokinins (Turnbull et al., 1997). Therefore, reduced expression of genes involved in cytokinin signaling in phyB-1 buds may increase resistance to bud outgrowth.

The transition of buds in phyB-1 into dormancy was associated with an increase in the expression of NAC-domain proteins and dormancy-associated auxin repressed/stress related genes at 7/8 DAP (Fig. 7). The NAC domain containing proteins are involved in the regulation of stress tolerance (Puranik et al., 2012). Inhibition of bud outgrowth by shade signals in Arabidopsis is associated with increased expression of genes involved in ABA biosynthesis/response in plants (Gonzalez-Grandio et al., 2013; Reddy et al., 2013). Few genes in the ABA pathway were differentially expressed at 6 DAP. However, by 7/8 DAP, several genes involved in ABA metabolism and signaling expressed at higher levels in buds of phyB-1 (ABI1, CYP707A4 (ABA 8’-hydroxylase), MARD1, HVA22, AtAF1, NCED3). For example, expression of an AtAF1-like gene (Sb03g041920.2) that induces NCED3 expression (Jensen et al., 2013) increased ~19-fold in phyB-1 buds at 8 DAP (Fig. 8). Therefore, it is likely that ABA levels increase in phyB-1 buds at later stages of bud dormancy, consistent with prior studies showing a role for ABA in shade induced bud dormancy (Gonzalez-Grandio et al., 2013; Reddy et al., 2013).

Induction of genes for SWEET sugar transport and cell wall invertases during bud outgrowth

The expression of genes encoding an MtN3/SWEET-transporter and cell wall invertases (cwINV) was very low in phyB-1 and wild-type buds at 6 DAP, but strongly (>50-fold) and differentially increased in wild-type buds at 7/8 DAP. MtN3 encodes a SWEET transporter, a member of a family of sucrose/sugar transporters that are involved in phloem sugar loading/unloading and efflux of sugars from maternal tissues for seed filling and pollen development (Chen et al., 2012; Guo et al., 2014; Chen et al., 2015). Cell wall invertases cleave apoplastic sucrose into glucose and fructose for import into cells (Sherson et al., 2003; Weschke et al., 2003). Increased expression of the SWEET transporter in the phloem could facilitate unloading of sucrose into the apoplasm where cell wall invertases generate glucose and fructose for uptake by developing buds. The increase in sucrose transport and cleavage into glucose and fructose in the bud apoplast appears to be a key event in tiller development in wild-type plants. Apoplastic sugars provide feed forward signaling to genes involved in the cell cycle, growth, and auxin signaling and by increasing levels of T6P (Wang and Ruan, 2013). Increased expression of genes encoding an MtN3/SWEET transporter and cwINV’s could increase the supply of sugars from the shoot for continued growth of buds of wild-type plants until growth can be sustained by tiller leaf photosynthesis.

Mechanisms that regulate expression of the SWEET-gene family are largely unknown (Chen et al., 2015). The expression of genes that encode cell wall invertases can be induced by sugar (Huang et al., 2007).
Therefore its possible that increased cwINV gene expression is a consequence of increased sugars supplied by leaves and/or from elevated SWEET activity. The expression of cell wall invertases is also induced by cytokinins (Ehness and Roitsch, 1997). Changes in gene expression indicate that the level of cytokinin increases in wild-type buds between 6 and 8 DAP because the cytokinin responsive genes CGA1 and SHY2/IAA3 are induced in buds during this time frame (Fig. S9). In Arabidopsis, cytokinin acting through ARR1 increases SHY/IAA3 expression in root meristems (Peng et al., 2013). Increased expression of CGA1 mediates activation of genes involved in chloroplast development in rice (Hudson et al., 2013). Genes involved in chloroplast development including several genes encoding LHCII show higher expression in buds of wild-type plants by 8 DAP as would be expected following increased expression of CGA1 (data not shown). The lack of induction of genes encoding a SWEET-transporter and cwINVs in buds of phyB-1 could be caused by several factors including elevated expression of CKX1 which degrades cytokinin, lower expression of ARR3/6/9 response factors that may mediate CK-induced bud outgrowth (Fig. S9) (Muller et al., 2015).

In both phyB-1 and wild-type plants, initiation of axillary meristems and growth of axillary buds in the first leaf axils was similar until 6 DAP (Fig. 9). It is likely that the buds in both genotypes were supplied with sugars symplastically through plasmodesmata at least until 6 DAP. Lack of phyB-signaling in phyB-1 plants resulted in the many large differences in bud gene expression by 6 DAP compared to the wild-type that could contribute to coordinated growth cessation, increased protection of bud meristems from floral transition, increased barriers to outgrowth, and induction of bud dormancy. In contrast, buds of wild-type plants continued to grow and showed increased expression of genes encoding a SWEET transporter and cell wall invertases at 7 DAP. The timing of this change in gene expression is critical and occurs during a ‘transition stage’ from 6 to 8 DAP where bud growth can still be inhibited by shading (Kebrom et al., 2006). We propose that during the transition stage, increased expression of the SWEET transporter and cell wall invertases creates an apoplastic supply of sugar stimulating further bud development that enables the acquisition of photosynthetic capacity and escape from dormancy-inducing factors.

Materials and Methods

Plant materials and growing conditions

Seeds of phyB-1 (also known as 58M) and near-isogenic PHYB (wild-type, also known as 100M) were planted in flats containing cells filled with growing mix prepared from peat moss, vermiculite and perlite and fertilizers as described in (Beall et al., 1991). The seedlings were grown in a growth chamber using 14/10 h light/dark periods, 31°C/22°C day/night temperatures and 50% relative humidity. The length of the bud in the first leaf axil of phyB-1 and wild-type was measured under a dissecting microscope at six days after planting (6 DAP), 7 DAP and 8 DAP.

RNA-seq library preparation and sequencing

RNA-seq library was prepared from RNA isolated from three biological replicates of phyB-1 and wild-type axillary buds at 6 DAP, 7 DAP and 8 DAP. Total RNA was isolated from at least six axillary buds.
per sample using the TRIzol method (Invitrogen). RNA-seq libraries were prepared using the TruSeq™
RNA Sample Prep Kit v2 (Illumina, Inc.), following the recommended protocol. Briefly, mRNA was
purified from 400ng total RNA using poly-T oligo-attached magnetic beads. The mRNA was eluted,
fragmented and primed for cDNA synthesis. Following first and second strand synthesis, the cDNA was
end repaired and adenylated and unique adapters were ligated to each sample and the DNA fragments
were amplified before sequencing. The quality of each RNA-seq library was assessed using a bioanalyzer
and sequenced using Illumina HiSeq 2500 at the Texas A&M Genomics and Bioinformatics services
center.

RNA-seq data analysis and bioinformatics

The sequence reads were aligned with the sorghum transcript sequence Sbicolor-v2.1_255 version
(Phytozome) using the CLC Genomics Workbench. The Sbicolor-v2.1_255 includes 33,032 genes and
39,441 transcripts. To identify differentially expressed genes, RNA-seq datasets were analyzed using the
Edge statistical test in the CLC Main Workbench Version 7 (CLC Inc., Aarhus, Denmark). Genes
differentially expressed in axillary buds of phyB-1 relative to the corresponding wild-type controls at 6
DAP, 7 DAP and 8 DAP were determined using the following criteria: a false discovery rate (FDR ≤ 0.05), an RPKM ≥2 in the three biological replicates of either phyB-1 and/or corresponding wild-type
control. Genes deferentially expressed (up- or down-regulated) at two-fold or higher were included in the
analysis. The function of most of the genes was annotated using MapMan based on their homologs in
Arabidopsis and rice.

Analysis of gene expression by quantitative real-time PCR (qPCR)

To analyze the expression of genes by qRT-PCR, cDNAs were prepared from 400 ng of total RNA from
three independent biological replicates for each sample. The RNAs were treated with DNase I and
cDNA was prepared using SuperScript III (SS III) following the manufacturer’s protocol (Invitrogen).
The cDNA was suspended in 320 µl water, and 2 µl was used in every qPCR reaction. In addition to the
cDNA template the qPCR reaction included 2 µl of 250 ng primer pairs and 6 µl KiCqStart® SYBR
Green qPCR Ready Mix (Sigma-Aldrich). The 10 µl qPCR reaction was run in duplicate on an ABI
7900HT (Applied Biosystems). The average target cT (threshold cycle) values were normalized to 18s
rRNA cT values. The fold change between two samples was calculated using the slightly modified –
ΔΔCt method as described in Kebrom et al. (2010). The primers for SbTB1, SbMAX2, SbDRM1,
SbPCNA, SbCycD2, SbCycB and 18S rRNA used for qPCR were published in (Kebrom et al., 2010). The
primers for SbGT1 was published by (Whipple et al., 2011) and those for SbASN1 and SbPFP were

SUPPLEMENTAL MATERIAL

Table S1. RNA-seq analyses of transcriptome dynamics during the developmental progression of buds in
the first leaf axil of phytochrome B mutant (58M, phyB-1) and wild-type (100M, PHYB) sorghum at 6
DAP (Days After Planting), 7 DAP and 8 DAP. The total reads are the sum of three biological replicates
for each sample. The reads were mapped to the sorghum reference sequence Sbicolor-v2.1_255 version (Phytozome).

Table S2. List of MapMan Classified differentially expressed genes in ph\(yB\)-1 buds relative to the corresponding wild-type controls at 6 DAP (days after planting), 7 DAP and 8 DAP.

Table S3. MapMan functional categorization of genes differentially expressed in buds in the first leaf axil of phytochrome B mutant (58M, ph\(yB\)-1) relative to the corresponding wild-type (100M, PHYB) controls at 6 DAP, 7 DAP and 8 DAP identified by RNA-seq.

Figure S1. Principal component analysis (PCA) of RNA-seq data from buds in the first leaf axil of phytochrome B mutant (58M, ph\(yB\)-1) and wild-type (100M, PHYB) plants at 6 DAP (Days After Planting), 7 DAP and 8 DAP. Data are RPKM-based from three biological replicates for each sample. Dots with similar color represent the three biological replicates in a sample.

Figure S2. qPCR confirmation of RNA-seq results.

Figure S3. Venn diagram showing the number of differentially expressed (DE) genes in buds in the first leaf axil of phytochrome B mutant (58M, ph\(yB\)-1) relative to the level in wild-type (100M, PHYB) sorghum identified by RNA-seq. The genes were up- or down-regulated at 2-fold or greater levels (FDR < 0.05 and RPKM ≥ 2) in ph\(yB\)-1 buds relative the corresponding wild-type controls at 6 DAP (days after planting), 7 DAP and 8 DAP.

Figure S4. The expression level of cell cycle-related genes determined by RNA-seq in RPKM (reads per kilobase per million mapped reads) in phytochrome B mutant (58M, ph\(yB\)-1) and wild-type (100M, PHYB) buds at 6 DAP, 7 DAP and 8 DAP. Data are mean ± S.E, n = 3 biological replicates.

Figure S5. MapMan display of cell division, cell cycle and development related genes differentially expressed in phytochrome B mutant (58M, ph\(yB\)-1) sorghum buds relative to the corresponding wild-type (100M, PHYB) controls at 6 DAP, 7 DAP and 8 DAP. A color scale ranging from -3 (red) to 3 (blue) highlight genes with increasing or decreasing expression. Differentially expressed genes are represented by boxes. Red filled boxes indicate genes that were down regulated in phyB-1 buds and blue filled boxes indicate genes that were up regulated in phyB-1 buds.

Figure S6. Differentially expressed genes (>5-fold) in phytochrome B mutant (58M, ph\(yB\)-1) buds relative to wild-type (100M, PHYB) at 6 DAP (days after planting), 7 DAP and 8 DAP involved in diverse functions. Boxes with green color indicating genes expressed more highly in ph\(yB\)-1 and red color indicating genes expressed at lower levels in buds of ph\(yB\)-1 compared to wild-type. Values in boxes are fold-differences in ph\(yB\)-1 relative to the corresponding wild-type controls, and represent the mean of three biological replicates with a corresponding false discovery rate (FDR) less than 5%.

Figure S7. MapMan display of differentially expressed plastidic ribosomal protein genes in phytochrome B mutant (58M, ph\(yB\)-1) sorghum buds relative to the corresponding wild-type (100M, PHYB) controls at 6 DAP, 7 DAP and 8 DAP. A color scale ranging from -3 (red) to 3 (blue) highlight genes with
increasing or decreasing expression. Differentially expressed genes are represented by boxes. Red filled boxes indicate genes that were down regulated in phyB-1 buds and blue filled boxes indicate genes that were up regulated in phyB-1 buds.

Figure S8. Expression of SbTB1 (teosinte branched1) in buds in the first leaf axil of phytochrome B mutant (58M, phyB-1) and wild-type (100M, PHYB) sorghum at 6 DAP (days after planting), 7 DAP and 8 DAP determined by qPCR. Data are mean ± SE; n = 3 biological replicates.

Figure S9. Cytokinin-related differentially expressed genes determined by RNA-seq in RPKM in buds in the first leaf axil of phytochrome B mutant (58M, phyB-1) and wild-type (100M, PHYB) buds at 6 DAP (days after planting), 7 DAP and 8 DAP.

FIGURE LEGENDS

Figure 1. Tiller development in phytochrome B mutant (phyB-1, 58M) and wild-type (PHYB, 100M) sorghum. Tillers are indicated by white arrows and the main shoot by yellow arrow. (A) phyB-1 plants have one main shoot during the vegetative phase because buds become dormant soon after they are formed, while wild-type produces many tillers. (B) Tiller bud outgrowth in phyB-1 is activated after the main shoot transitions into the reproductive stage. (C) phyB-1 continues to develop tillers and panicles like most sorghum varieties with indeterminate or weakly perennial growth habit as long as growing conditions remain favorable for growth and flowering.

Figure 2. Developmental progression of tiller buds in phytochrome B mutant (phyB-1, 58M) and wild-type (phyB, 100M) sorghum. (A) Length of buds in the first leaf axil of phyB-1 and wild-type at 6 DAP (Days After Planting), 7 DAP and 8 DAP. (B) and (C) relative expression of SbDRM1, a gene associated with bud dormancy, in the phyB-1 and wild-type buds at 6 DAP, 7 DAP and 8 DAP determined by qRT-PCR (B) and by RNA-seq (C) in RPKM (reads per kilobase per million mapped reads). Data are means ± SE, n=10 buds (A) and 3 biological replicates (B & C).

Figure 3. Expression of the cell cycle gene E2F3 (Sb08g003670.1) (A), Peter Pan-like genes Sb01g035700.1 (B) and Sb01g035720.1 (C) determined by RNA-seq in buds in the first leaf axil of the phytochrome B mutant (phyB-1) and wild-type (PHYB) controls at 6 DAP (Days After Planting), 7 DAP and 8 DAP. Data are mean RPKM (reads per kilobase per million mapped reads) ± SE; n= 3 biological replicates.

Figure 4. Differential expression of genes that regulate meristem differentiation, trehalose-6-phosphate levels, and growth identified by RNA-seq in buds in the first leaf axil of phytochrome B mutant (phyB-1) relative to the corresponding wild-type (PHYB) sorghum at 6 DAP (Days After Planting), 7 DAP and 8 DAP. Boxes with green color indicating genes expressed more highly in phyB-1 and red color indicating genes expressed at lower levels in buds of phyB-1 compared to wild-type. Values in boxes are fold-differences in phyB-1 relative to the corresponding wild-type controls, and represent the mean of three biological replicates with a corresponding false discovery rate (FDR) less than 5%. Blank boxes represent values less than 2-fold and/or a corresponding FDR greater than 5%.
Figure 5. Gene expression associated with induction of bud dormancy identified by RNA-seq in buds in the first leaf axil of phytochrome B mutant (phyB-1) sorghum relative to wild-type (PHYB) controls at 6 DAP (Days After Planting), 7 DAP and 8 DAP. Boxes with green color indicate genes expressed at higher levels in buds of phyB-1/wild-type and red color indicates genes expressed at lower relative levels in phyB-1 buds. Values in boxes are fold-differences in expression in phyB-1 relative to wild-type controls, and represent the mean of three biological replicates with a corresponding false discovery rate (FDR) less than 5%. Blank boxes represent values less than 2-fold and/or a corresponding FDR greater than 5%.

Figure 6. Expression of genes encoding cell wall invertases and sugar transport determined by RNA-seq in buds in the first leaf axil of the phytochrome B mutant (phyB-1) and wild-type (PHYB) sorghum controls at 6 DAP (Days After Planting), 7 DAP and 8 DAP. (A) cell wall invertases (Sb0067s002110.1 (CwINV1) and Sb0067s002130.1 (CwINV2)) and (B) nodulin MtN3 (SWEET) family sugar transport protein (Sb07g026040.1). Data are mean RPKM (reads per kilobase per million mapped reads) ± SE; n = 3 biological replicates.

Figure 7. Differential expression of genes encoding transcription factors identified by RNA-seq in buds in the first leaf axil of phytochrome B mutant (phyB-1) sorghum relative to wild-type (PHYB) controls at 6 DAP (Days After Planting), 7 DAP and 8 DAP. Boxes with green color indicate genes expressed at higher levels in buds of phyB-1 relative to wild-type and red color indicates lower relative expression. Values in boxes are fold-differences in expression between phyB-1 and wild-type controls, and represent the mean of three biological replicates with a corresponding false discovery rate (FDR) less than 5%. Blank boxes represent values less than 2-fold and/or a corresponding FDR greater than 5%.

Figure 8. Differential expression of genes involved in plant hormone metabolism and signaling identified by RNA-seq in buds in the first leaf axil of phytochrome B mutant (phyB-1) sorghum relative to the corresponding wild-type (PHYB) controls at 6 DAP (Days After Planting), 7 DAP and 8 DAP. Boxes with green color indicate genes that are expressed at higher levels in phyB-1/wild-type and red color indicates genes expressed at lower relative levels in phyB-1. Values in boxes are fold-differences in phyB-1 relative to wild-type controls, and represent the mean of three biological replicates with a corresponding false discovery rate (FDR) less than 5%. Blank boxes or asterisks indicate values less than 2-fold and/or a corresponding FDR greater than 5%.

Figure 9. A summary of patterns of differential expression of genes associated with bud outgrowth or dormancy in phytochrome B null (phyB-1, 58M, red) and wild type (PHYB, 100M, green) sorghum genotypes at 6 DAP (days after planting), 7 DAP and 8 DAP. The bud in wild-type continue growing and develop into tiller whereas the growth of the bud in the phyB-1 is arrested and becomes dormant. Symbols “>” and “>>” indicate up-regulated and dramatically up-regulated genes, respectively; “<” and “<<” indicate down-regulated and dramatically down-regulated genes. Arrows indicate the timing of differential expression of genes. Genes with short arrow are differentially expressed at 8 DAP, genes with long arrow are differentially expressed at 7 DAP and 8 DAP and genes without arrow, such as the Peter pan, HBl etc, are differentially expressed at 6 DAP, 7 DAP and 8 DAP.

Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, Fernie AR, Frommer WB (2012) Sucrose Efflux Mediated by SWEET Proteins as a Key Step for Phloem Transport. Science 335: 207-211

Guo YF, Gan SS (2006) AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant Journal 46: 601-612

Hillwig MS, Contento AL, Meyer A, Ebany D, Bassham DC, MacIntosh GC (2011) RNS2, a conserved member of the RNase T2 family, is necessary for ribosomal RNA decay in plants. Proceedings of the National Academy of Sciences of the United States of America 108: 1093-1098

MacIntosh GC, Hillwig MS, Meyer A, Flagel L (2010) RNase T2 genes from rice and the evolution of secretory ribonucleases in plants. Molecular Genetics and Genomics 283: 381-396

Mason MG, Ross JJ, Babst BA, Wenclaw BN, Beveridge CA (2014) Sugar demand, not auxin, is the initial regulator of apical dominance. Proceedings of the National Academy of Sciences of the United States of America 111: 6092-6097

Mauriat M, Sandberg LG, Moritz T (2011) Proper gibberellin localization in vascular tissue is required to control auxin-dependent leaf development and bud outgrowth in hybrid aspen. Plant J 67: 805-816

Peng Y, Chen L, Lu Y, Ma W, Tong Y, Li Y (2013) DAR2 acts as an important node connecting cytokinin, auxin, SHY2 and PLT1/2 in root meristem size control. Plant Signal Behav 8: e24226

regulation and homologues in diverse organisms. Plant Mol Biol 45: 327-340

