Microfluidics enable imaging of development

Magdalena Bezanilla, corresponding author
Biology Department
University of MA, Amherst
Amherst, MA 01003

Long-term growth of moss in microfluidic devices enables subcellular studies in development

Carlisle S. Bascom Jr.1,2†, Shu-Zon Wu1†, Katherine Nelson3,4, John Oakey2, and Magdalena Bezanilla1*
1University of Massachusetts, Biology Department, Amherst, MA, USA
2University of Massachusetts, Plant Biology Graduate Program, Amherst, MA USA
3University of Wyoming, Department of Chemical Engineering, Laramie, WY, USA
4University of Wyoming, Department of Molecular Biology, Laramie, WY, USA
*Corresponding author
†Contributed equally

Author contributions:
S.W., J.O. and M.B. conceived the original research plan; S.W. collected most of the data;
C.S.B and S.W. performed the data analysis; K.N. and J.O. built and designed the microfluidic
devices; C.S.B. wrote the article; M.B. supervised and complemented the writing.

Funding:
This work was supported by grants to M.B. from the National Science Foundation (MCB-1330171), the David and Lucille Packard Foundation, and by the Laura and Arthur Colwin Endowed Summer Research Fellowship and The Burr and Susie Steinbach Fellowship Funds from the Marine Biological Laboratory. C.B. received support from the Plant Biology Graduate Program at UMass. Additional support to J.O. came from NIH (R15 GM101636) and by the Laura and Arthur Colwin Endowed Summer Research Fellowship Fund from the Marine Biological Laboratory in Woods Hole, MA. K.N. gratefully acknowledges support from an NIH-funded Wyoming IDeA Networks of Biomedical Research Excellence program undergraduate research fellowship (P20GM103432).

Corresponding author email:
bezanilla@bio.umass.edu

SUMMARY
Microfluidic chambers enable imaging of moss development from early to late developmental stages at cellular and subcellular resolution.
Abstract

Key developmental processes that occur on the subcellular and cellular level, or occur in occluded tissues, are difficult to access let alone image and analyze. Recently culturing living samples within polydimethylsiloxane (PDMS) microfluidic devices has facilitated the study of hard-to-reach developmental events. Here, we show that an early diverging land plant, *Physcomitrella patens*, can be continuously cultured within PDMS microfluidic chambers. Because the PDMS chambers are bonded to a coverslip, it is possible to image *P. patens* development at high resolution over long time periods. Using PDMS chambers, we report that wildtype protonemal tissue grows at the same rate as previously reported for growth on solid medium. Using long-term imaging, we highlight key developmental events, demonstrate compatibility with high-resolution confocal microscopy, and obtain growth rates for a slow-growing mutant. By coupling the powerful genetic tools available to *P. patens* with long-term growth and imaging provided by PDMS microfluidics chambers, we demonstrate the capability to study cellular and subcellular developmental events in plants directly and in real time.

Introduction

To study developmental processes in plants, the sample must often be dissected to access the area of the plant where the tissue is developing and differentiating. As an example, floral developmental studies necessitate dissecting the emerging flower. Because taking time points requires serial specimens, it has been difficult to follow developmental processes within a single specimen. One major exception has been the ability to follow developmental processes in roots. Even here, though, there is a limitation to the number of hours over which it is possible to image the root (Meier et al. 2010; Clark et al. 2011; Grossmann et al. 2011). However with the advent of microfluidic devices, it has been possible to monitor root growth over much longer time courses (Grossmann et al. 2011). And more recently, (Jiang et al. 2014) developed microfluidic-based devices to monitor whole *Arabidopsis* plant growth in the first few weeks after germination as a means for high throughput mutant screening. Microfluidic devices have also been used for imaging excised *Arabidopsis* embryos to observe early patterning events (Gooh et al. 2015). These studies establish a basis for following often hard-to-reach developmental processes over time in a single specimen.

Here, we describe the design and utilization of PDMS microfluidics chambers for long-term imaging of development in the moss, *P. patens*. *P. patens’* simple body plan and excellent cytology has garnered interest in this system as a model organism to study the evolution of developmental processes in plants on the cellular and subcellular levels (Prigge & Bezanilla...
Additionally, the ability to efficiently edit the genome via homologous recombination has positioned *P. patens* as a powerful model system to uncover the molecular basis of developmental events.

P. patens establishes a plant by germinating from a haploid spore, regenerating from homogenized tissue, or regenerating from a protoplast. It first forms a filamentous network of tissue known as protonemata in which the apical cell within a filament divides, producing all the cells within the filament. Subapical cells can also divide to form branches off the initial filament. As the plant continues to grow radially out from the initial spore, more branching events occur and eventually the protonemal tissue forms a radially symmetric plant with denser filamentous tissues near the center. Within this meshwork, buds form off protonemal filaments and eventually develop into leafy shoots, known as gametophores.

Typically, *P. patens* is grown on solid media. Even with a relatively simple body plan, it has been difficult to image events occurring over long time periods within the dense center of the protonemal meshwork. The two main approaches used to image protonemata possess inherent limitations. In one method, protonemata are placed on a thin pad of agar composed of medium, sealed under a coverslip, and immediately imaged. The second method relies on first culturing protonemata in a dish with a coverslip at the bottom that is covered with a thin film of agar in medium for several days. After the protonemata have grown close enough to the coverslip, then live cell imaging is performed. The first method is rapid and amenable to high-resolution imaging of a majority of the sample. However, presumably due to insufficient gas exchange, cells often stop growing after a few hours. With the second approach, protonemal tissue grows very well, but often few cells reach the coverslip surface, making it difficult to perform high resolution imaging on a large fraction of the sample. It is particularly challenging to image slow-growing mutant lines using the second approach as the mutant lines often take several weeks to reach the coverslip surface, by which time, the thin agar has dried out.

Microfluidic devices described here overcome the major limitations of these standard imaging approaches. Devices are fabricated as PDMS replicas, which are bonded to dishes with a coverslip bottom, providing a chamber that is 30 µm deep and filled with liquid growth medium. Since PDMS is highly air permeable (Merkel et al. 2000), it is not necessary to continuously flow through medium. In fact, *P. patens* grows in these devices for several weeks, thereby improving upon the agar pad method and allowing for an opportunity to image a single specimen over developmental time. Additionally, because the plant is constrained to a 30 µm deep chamber above the coverslip, the majority of the tissue is within the optimal range for widefield and confocal microscopy. This not only enables high-resolution imaging of protonemal
growth but also facilitates the observation of bud formation and gametophore development at
the cellular level, thus overcoming the limitations of long-term imaging in glass-bottom
chambers overlaid with thin agar.

In addition to long-term imaging at cellular and subcellular resolution, introducing
pharmacological agents by microfluidic flow is simple, thereby enabling rapid perturbations to
the sample. With flexibility in design and implementation, we envision that microfluidic devices
will provide plant biologists the opportunity to study a number of different developmental and
physiological processes in mosses. It may be possible to extend this technology to other small
plant species, in particular unicellular algae, or tissues from other plants that can be confined
within the microfluidic device.
Results

Wildtype plants grow well in microfluidic chambers

For propagation purposes, *P. patens* tissue is typically homogenized and spread onto a cellophane covering solid medium. To load the chambers, a small amount of this tissue, once regenerated, was gently homogenized by manual pipetting in liquid medium and a few small clumps of tissue were loaded into a central port within the devices. The microfluidic devices were designed with a large central port opening into a chamber that is 45 μm from the coverslip (Figure 1). By gently applying pressure with a syringe filled with liquid medium, we pushed the tissue into the narrower portion of the devices, just beyond the central port, that is a 30 μm deep chamber (Figure 1, Supplemental Figure 1). Barriers are positioned radially helping to support the roof of the chamber and prevent tissue from clogging the flow-through channels (Figure 1). Once the tissue entered the 30 μm chamber, continued gentle pressure from the syringe filled the device with liquid medium. The entire device was then completely submerged in liquid medium and placed under continuous light (47 μE m$^{-2}$ s$^{-1}$).

In order to utilize microfluidic devices as a means to observe developmental events in *P. patens*, we first sought to establish that moss tissue regenerates and grows within PDMS chambers. *P. patens* protonemal tissue is comprised of two cell types, chloronemata and caulonemata. Both cell types grow via localized expansion at the tip of the apical cell, a process known as tip growth. In microfluidic chambers, we observed both chloronemal and caulonemal filaments growing over the course of weeks. Chloronemal cells grew at 7.21±1.72 μm/hr (n=25) and caulonemal cells grew at 16.07±4.85 μm/hr (n=17) (Figure 2, Supplemental movie 1). These rates are in remarkable agreement with previous measurements of protonemal growth rates (Rounds & Bezanilla 2013). We also observed growing rhizoids (Figure 2, Supplemental movie 1), a third tip-growing cell type. After a gametophore bud initial begins to expand, rhizoids form at the base and grow. In microfluidic chambers, we observed rhizoids growing at 19.01±5.24 μm/hr (n=25), slightly faster than caulonemata.
P. patens also regenerates from a single cell, either a spore or a protoplast. To test whether we could observe this process in PDMS chambers, we loaded freshly made protoplasts into the chamber. The chambers were then submerged in protoplast regeneration medium and placed under continuous light. After nine days, we observed regenerating plants, which have rebuilt their cell wall and undergone several cell divisions (Figure 3A). We then replaced the protoplast regeneration medium in the chambers and in the dishes with Hoagland’s medium. The apical cell started to grow with normal morphology after six hours, and multiple apical cells from branches emerged after 15 hours (Figure 3, Supplemental Movie 2).

Microfluidic chambers allow for observation of developmental events

Chloronemata and caulonemata are sequential developmental tissues within protonemata. Both spores and regenerating protoplasts form chloronemata. Chloronemata are
defined in the literature as being chloroplast rich and having transverse cell plates. After 6-7 days of growth, chloronemal apical cells begin to differentiate into caulonemal cells. Caulonemal cells are defined as being relatively chloroplast poor and having oblique cell plates (Reski 1998;
Schween et al. 2003; Menand et al. 2007; Pressel et al. 2008). Observing protonemata growing within microfluidic chambers affords the opportunity to watch this differentiation occur. Based on these definitions, we expected caulonemal cells to remain chloroplast poor. However, we were surprised to observe caulonemal cells fill with chloroplasts within two days after cell division (Figure 4A, Supplemental Movie 3). These observations are in agreement with data reported previously that caulonemata have a high number of chloroplasts at maturity (Pressel et al. 2008). Thus, identification of cell type solely by chloroplast density may not be diagnostic.

After 10-11 days protonemal tissue begins to develop leafy gametophores, which form from buds that emerge from protonemata. Imaging developing gametophores has been challenging due to the density of older protonemal tissue and the fact that leafy shoots grow upward and away from the coverslip in a glass-bottom dish. In microfluidic chambers, however, we were able to easily observe the different stages of gametophore development over a long period of time. As an example, we show the development of a bud initial from a single cell (Figure 4B, Supplemental Movie 4). Gametophore bud initiation is a developmental switch between two-dimensional and three-dimensional growth, which has been described in detail in (Harrison et al. 2009). Imaging with brightfield on a wide-field microscope, we clearly observed the bud initial cell enlarge and obtain a roundish shape, followed by the first oblique cell division that sets up the apical-basal axis within 17 hours. The apical and basal cells both divided about 8 hours later, perpendicularly to the first division plane. Subsequent divisions in the apical domain were not always clearly visible, but we were able to observe the establishment of the tetrahedral meristem cell (Figure 4B, yellow arrowhead) and the leaflet, or phyllid, initial (Figure 4B, green arrowhead) after another 16 hours. The basal lateral cell did not divide further, but initiated a rhizoid (Figure 4B, dark blue arrowhead) 36 hours later. The rhizoid expanded before phyllid expansion occurred (Figure 4B). After 17 hours of continuous growth, this particular rhizoid exploded (Figure 4C, Supplemental Movie 4), which is rarely observed. However it
afforded the opportunity to observe events occurring off of wounded tissues. Fifteen hours after the rhizoid tip exploded, the remaining subapical cell reinitiated tip growth (Figure 4C, light blue arrowhead), exemplifying the ease with which *P. patens* reprograms differentiated cells upon tissue wounding.

In addition to bud formation and rhizoid initiation and growth, we observed two phases during phyllid development (Figure 5, Supplemental Movies 5-7). During initiation, the leaf apical cell divides every 4 to 6 hours producing relatively small cells (Figure 5A, Supplemental Movie 5). The expansion phase occurred once a miniature leaf formed. Phyllids were observed to expand mostly by cell expansion while cell divisions were rarely observed (Figure 5B, Supplemental Movie 6). Expansion rates among cells were comparable, and cells expanded more longitudinally (Figure 5C). Despite the tight three-dimensional confinement in which the plants were grown, we were able to follow gametophore development through the expansion of
two to three phyllids (Figure 5D, Supplemental Movie 7). Together these data demonstrate that growing *P. patens* in microfluidic chambers uniquely facilitates imaging of key developmental events. Additionally, the long-term growth afforded by these chambers allows for imaging late developmental stages with exquisite resolution.

Cells in microfluidic chambers are amenable to confocal microscopy

To test if the microfluidic chambers enabled high-resolution imaging with confocal microscopy, we imaged stable transgenic lines with genetically encoded fluorophores targeted to specific organelles and subcellular structures (Figure 6A). For the organelle lines, Z-
projections of an apical protonemal cell in each line revealed an expected distribution of organelles (Figure 6A). Golgi stacks were visible, and we observed a tip-centric gradient – something not observed for mitochondria and peroxisomes, in agreement with a previous study (Furt et al. 2012). The nucleus was centrally located in the apical cell, and the silhouette of the nucleus was clearly visible.
nucleolus was visible. We also imaged a transgenic moss line expressing mCherry-tubulin and Myo8A-GFP (Wu & Bezanilla 2014). We show here a cell division event in a rhizoid emerging from the base of a gametophore (Figure 6B, Supplemental Movie 8). Microtubule structures are clearly visible in these images, demonstrating the versatility of microfluidic growth chambers in facilitating high-resolution imaging even in hard-to-reach tissue types like the gametophore.

Microfluidic chambers enable real-time pharmacological inhibitory studies

Microfluidic chambers are attractive because of the ease with which it is possible to perform pharmacological flow through experiments. To this end, we monitored populations of cortical actin after flowing through an actin depolymerizing drug, Latrunculin B (LatB). A stable line expressing the F-actin visual reporter, LifeAct-mRuby, was imaged in the chambers prior to the addition of 25 μM or 50 μM LatB. The same cell was then imaged after flowing in LatB. Within two minutes of flowing in the inhibitor, we observed the cortical actin population disintegrate (Figure 7A, Supplemental Movies 9).

Previous studies employed 25 μM LatB to abolish filamentous actin in apical cells (Wu & Bezanilla 2014). However, we found that we needed to increase the LatB concentration to 50 μM to eliminate the majority of filamentous actin in apical cells (data not shown). Imaging of subapical cells reveals that within ten minutes after adding 50 μM LatB, only the thickest actin cables remained. In contrast a larger number of filaments were still present with 25 μM LatB (Figure 7A, Supplemental Movie 9). It is possible that the PDMS may absorb some of the inhibitor, necessitating higher concentrations of LatB, which has been observed by others (Burke et al. 2014; Suarez et al. 2015). We found that 50 μM LatB was sufficient to inhibit tip growth in caulonemal and rhizoid cells. Tip growth stopped within one hour of LatB application and swelling of the tips became observable within 4 hours. Both cells did not resume tip growth within the 16-hour imaging period (Figure 7B, Supplemental Movie 10).

Microfluidics chambers facilitate the study of mutants
Given the ease with which wildtype moss grows, we sought to use microfluidic chambers to gain insight on the growth and development of slow growing mutants. **BRICK1** is a stabilizer of the SCAR/WAVE complex, itself an activator of the Arp2/3 complex, and therefore a regulator of the actin cytoskeleton. **BRICK1** knock-out plants have severe protonemal growth phenotypes.
as described in (Perroud & Quatrano 2008). By exploiting long imaging times afforded by these microfluidic chambers, we continuously observed the growth of Δbrk1 plants over the course of days (Figure 8, Supplemental Movie 11). Indeed Δbrk1 grew slower than wildtype with an average rate of 1.12±0.36 μm/hr (n=34), a full order of magnitude slower than wildtype.
Occasionally, but seen in multiple chambers, we observed a previously undescribed growth phenotype associated with Δbrk1 mutants. A single filament spontaneously underwent comparatively rapid growth (2.10 ± 0.25 µm/hr, n=4). This doubling in growth rate was coupled to a change in apical cell morphology. This morphology and form of growth was reminiscent of blebbing seen in some mutant pollen tubes (Gui et al. 2014). As the apical cell reached a mature size, the very tip ballooned out to form the next cell (Figure 8B, Supplemental Movie 11).

Figure 8. Δbrk1 plants growing in microfluidics chambers
(A) Comparison of Δbrk1 plants grown for two weeks on agar or in microfluidic chambers. Scale bar, 50 µm. (B) Δbrk1 chloronemata growing in microfluidics chambers. (right) Δbrk1 filament undergoing comparatively rapid growth. Black arrows indicate initial position of the apical cells throughout the series. Scale bar, 10 µm. See Supplemental Movie 10. (C) Quantification of growth rates. Error bars are standard error of the mean.
The branches that formed from blebs tended to abandon blebbing and grew as typical \(\Delta brk1 \) chloronemata (Figure 8B, Supplemental movie 11). Whether this type of growth occurs on solid or liquid media is unknown, but monitoring growing \(\Delta brk1 \) plants in microfluidic chambers allowed us to observe and study this phenomenon in detail.
Discussion

Here we show that microfluidic chambers are a powerful tool to study development in *P. patens*. By growing *P. patens* over the course of weeks in a two-dimensional space, we have gained the ability to image a continuous spectrum of developmental events at cellular and subcellular resolution. Importantly, we show that *P. patens* regenerates and grows well in chambers that are simply immersed in growth medium. We find that both protonemal cell types grow at rates reported previously. We also imaged rhizoids, another tip growing cell type, and report their growth rate. We find that rhizoids emerge very early from the developing gametophore, even before obvious phyllid expansion.

By imaging protonemata confined to two dimensions within microfluidic devices, we achieved an unprecedented view of protonemal development. Reports of the differences between the two protonemal cell types, chloronemata and caulonemata, have focused on the morphology of apical cells. However apical cells represent a transitional cell type. For example apical caulonemal cells tend to have few chloroplasts, but as these cells mature and become subapical cells in the protonemal filament over several days, we observed an increase in chloroplast density. Additionally, some cells with few chloroplasts had transverse cell plates, both of which are characteristics of caulonemal and chloronemal cells, respectively. Using microfluidic chambers, it is now possible to observe cellular processes that might differ between mature chloronemal and caulonemal cells at high resolution. We have also demonstrated that microfluidic chambers are an excellent method to characterize development and growth in mutants. Plants lacking the actin regulator BRICK1 have a striking protonemal phenotype. However, since \(\Delta brk1 \) cells are small and clustered when grown on solid surfaces (Figure 8A), it was difficult to quantify growth rates in older plants. When grown in chambers, we were able to accurately measure the growth rate for \(\Delta brk1 \) plants over the course of days. Interestingly, we also observed that \(\Delta brk1 \) plants occasionally undergo brief periods of accelerated growth. While the mechanism of this change in growth pattern remains to be elucidated, microfluidic devices provide an opportunity to pursue the molecular basis of this shift as well as that of moss development in general.

Pharmacological perturbations to growth are a classic means of elucidating molecular mechanisms underlying both cellular and organismal development. We demonstrate that these microfluidic growth chambers are also amenable to drug flow through assays. This is an ability that we have demonstrated with an actin depolymerizing drug, LatB, but is extendable to many other agents. This introduces the opportunity for high throughput pharmacological studies with the focus on cellular and subcellular consequences.
Two-dimensional confinement also facilitated imaging of gametophore bud initiation and phyllid expansion over weeks, opening the possibility of studying gametophore development with high temporal and spatial resolution. Studying subcellular events during the transition from two-dimensional to three-dimensional growth will no doubt provide insight into the underlying mechanisms that govern this transition. Microfluidic chambers provide the opportunity to image the same specimen over developmental time periods, which will promote the discovery of new phenotypes and the elucidation of previously reported phenomena. Furthermore, by specifying microfluidic chamber geometry, it is possible to introduce barriers and obstacles around which proliferating tissue must navigate, thereby establishing a platform for understanding how plants respond to their physical environment at the cellular and subcellular level.

Materials and Methods

Microfluidic chamber design and fabrication

Microfluidic growth chambers were prepared using now standard photolithography and soft lithography methods (Duffy et al. 1998; McDonald et al. 2000). Chamber designs were prepared in AutoCAD (available at http://oakeylab.com/resources/) and developed as photolithographic shadow masks (CAD/Art Services, Bandon, OR). Chambers were prepared with radially symmetric hydraulic resistance so that the fluid velocity would be uniform in all directions under flow conditions. Negative photolithography was used to produce a raised pattern of planar rectangular channel devices with a height of 30 µm upon a silicon wafer. A second layer of photoresist was spun and developed to create a raised, 2 mm diameter, 45 µm deep reservoir to facilitate seeding at the center of the chamber. PDMS was poured over the wafer and allowed to cure in an oven at 70°F for four hours. Individual devices were cut from the PDMS replica and a sharpened 15 gauge blunt syringe tip was used to create a large port for tissue loading and fluid introduction at the center of the chamber. A sharpened 20-gauge syringe tip was used to create one outlet for fluid to exit the chamber. PDMS chambers were bonded to the bottom glass surfaces of either 12-well glass bottom plates or 35 mm glass bottom dishes (Cellvis, In Vitro Scientific, Sunnyvale, CA), following exposure of both to an oxygen plasma (Harrick PDC-001) under an oxygen pressure of 500 mTorr and medium RF power for 2 min. After exposure, the PDMS was quickly placed in conformal contact with the glass to produce a covalently bonded finished device.

Loading tissue into chambers
Prior to loading, the chambers were prepped by either soaking in Hoagland’s medium overnight, or by flowing through Hoagland’s medium. Saturating chambers with medium prevented the formation of bubbles and channel drying by fluid permeation into the PDMS matrix (Randall & Doyle 2005). Seven-day-old protonemal tissue was collected from a petri dish (described most recently in (Wu & Bezanilla 2014)) and suspended in 1 mL of Hoagland’s medium. This suspension was gently pipetted up and down to break up the tissue. 100 µL of P. patens tissue was then pipetted into the central port of the device, which was centered within the 45 µm loading region (Supplemental Figure 1A). Once loaded, a tube was inserted into the same hole, and standard Hoagland’s media pumped through via a 1 mL syringe (Supplemental Figure 1B). By pulsing the syringe plunger, the tissue was disrupted enough and forced into the 30 µm space between the PDMS and the glass coverslip. For pharmacological inhibitory studies, Hoagland’s medium containing LatB was injected into the chamber through the outlet hole with a 1 mL syringe (Supplemental Figure 1C).

Protoplast regeneration in PDMS chamber

Prior to loading, the chambers were soaked in protoplast regeneration medium for a few hours. Freshly made protoplasts suspended in the same medium were loaded into the central hole, and then more media was pumped into the central hole to distribute the protoplasts further into the chamber. Because protoplasts easily rupture, it is critical to very slowly flow in the medium. The dishes were then filled with protoplast regeneration medium and cultured for several days under the same conditions as described for protonemal tissue. Afterward, the medium in the chamber and in the dish was replaced with Hoagland’s medium. Again, the new medium should be flowed in slowly in order to minimize damage to the regenerating plants. The dishes were then cultured for a few more days under the same condition described above or immediately imaged on a wide-field microscope.

Chamber maintenance

For optimal growth, Hoagland’s medium is refreshed once every three days. Microfluidic devices were placed under two 48” T12 40 watt lights at a distance of 6cm with constant illumination. The entire device was submerged in liquid medium.

Imaging

For long-term widefield imaging, images were acquired with a Nikon TIU or TIE body with an automated stage. Imaging was performed with 10X and 20X objectives and images
were acquired with a Nikon DS-Qi2 or Ds-Fi1 camera. Samples were continuously illuminated with an external 60 Watt fluorescent bulb positioned above the microscope stage.

Confocal images were taken with a Nikon A1R confocal microscope, using a 1.4NA 60x oil immersion objective (Nikon) at ambient room temperature. For GFP/YFP lines, 488nm laser illumination was used, and light was captured after passing a 525/50nm filter. For mCherry/mRuby2 lines, a 561nm laser was used, with a 595/50 emission filter.

Generating constructs and stable lines

The peroxisome and Golgi labeled lines were described in (Furt et al. 2012). For mitochondrial and nuclear imaging, we used a dual-labeled line. The mitochondrial marker was generated by cloning the first 228 bp of the mitochondrial domain of unknown function (mDUF) gene Pp3c18_16000 (Goodstein et al. 2012). This region was predicted to contain the mitochondrial targeting presequence. Primers containing attB sites were used to amplify the first 228 bp (forward primer: GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGAATCTCGCACAGCAAA; reverse primer: GGGGACAACTTTTGTATACAAAGTT-GTGCTGTTTCTCACCAGTGTCGG). The amplicon was cloned into pDONR-P1P5r using a BP clonase (Invitrogen) reaction, according to the manufacturer’s instructions. To generate a fusion between the predicted mitochondrial presequence and mCherry, we performed an LR reaction (Invitrogen) into a destination vector that drives the expression of the fusion protein using the maize ubiquitin promoter, and conferring kanamycin resistance to transformed plants (pTKUbi-Gate, (Wu & Bezanilla 2014)). The nuclear localized GFP marker was generated by amplifying the NLS-GFP-GUS coding sequence from the 35S-driven plasmid described in (Bezanilla 2003) and gateway cloning into a plasmid similar to pTKUbi-Gate, but conferring zeocin resistance (pTZUbi-Gate, (Wu & Bezanilla 2014)). A similar strategy as employed by (Vidali et al. 2009) was used to generate a LifeAct-mRuby2 fusion protein. With an LR clonase reaction, LifeAct-mRuby2 was cloned into a destination vector driving expression of the fusion protein via the maize ubiquitin promoter and conferring zeocin resistance to transformed plants (pTZUbi-gate). Once we obtained a stable line containing pTKUbi mDUF-mCherry, that line was transformed with pTZUbi NLS-GFP-GUS to generate a dual-labeled line. Transformation of all constructs and selection of stable lines was done with linearized plasmid via poly-ethylene glycol mediated DNA uptake as described in (Vidali et al. 2007).

Figure Legends
Figure 1. A schematic illustration of microfluidic growth chambers and their internal structure.
(A) Chambers have three regions: (1) central 45 µm deep sector (within blue dashed circle), (2) growth chamber (between blue dashed circle and red dashed circle), and (3) flow control channels (outside the red dashed circle). The volumes associated with these are 0.57 µL, 1.36 µL, and 0.25 µL, respectively. Moss is seeded by injection into the center inlet and allowed to grow radially outward. Growth chambers used in these studies were 30 µm deep. The high diffusivity of oxygen in PDMS (34 x 10^6 cm^2/s) (Dendukuri et al. 2008) provided ample exchange with the environment to support growth. The elasticity of PDMS (2.5 MPa) (Tan et al. 2003) was sufficient to provide barriers to growth that could not be deformed or penetrated by growing tissue. (B) Image of a chamber next to a dime as a size reference. (C) Image of a chamber mounted on an inverted microscope.

Figure 2. Wildtype Tip-Growing Cells Grow Well in Chambers
(A) Chloronemata, caulonemata, and rhizoids grow well in microfluidic devices. Black arrows indicate start position at time 0. Scale bar, 10 µm. See Supplemental Movie 1. (B) Quantification of protonemal and rhizoid growth rate. Error bars indicate standard error of the mean.

Figure 3. Protoplasts regeneration in PDMS Chambers
(A) A plant regenerated from a protoplast, rebuilt its cell wall and underwent several cell divisions within 9 days. The initial protoplast is outlined in a dashed black line. Scale bar, 50 µm. (B) After protoplast regeneration medium was replaced with Hoagland’s medium in the microfluidic chamber, cells regenerated from a single protoplast (outlined in a dashed black line) were immediately imaged with brightfield on a wild-field microscope. The apical cell grew with normal morphology after 6 hours. Multiple apical cells emerging from branches were observed after 15 hours. Scale bar, 50 µm. See Supplemental Movie 2.

Figure 4. P. patens developmental events observed in microfluidic chambers.
Wild-type moss protonemal tissue growing in microfluidic chambers was imaged with brightfield on a wild-field microscope. (A) A wild-type caulonemal subapical cell (red arrowheads) transformed into a chloroplast-rich cell (blue arrowheads) after a day. Scale bar, 50 µm. See Supplemental Movie 3. (B) Development of a bud initial from a single cell. Cell division events were clearly visible (red arrowheads). The formation of the tetrahedral meristem cell (yellow arrowheads) and the leaf initial (green arrowheads) were observed after 40 hours. A rhizoid
initiated from the lateral-basal cell (dark blue arrowhead). Scale bar, 20 µm. See Supplemental Movie 4. (C) This particular rhizoid exploded (purple arrowhead) and a new rhizoid tip reinitiated from the remaining subapical cell after 15 hours (light blue arrowhead). Scale bar, 50 µm. See Supplemental Movie 4.

Figure 5. Phyllid initiation and expansion during gametophore development.
Wild-type moss protonemal tissue in microfluidic chambers was imaged with brightfield on a wild-field microscope. (A) During early stages of phyllid initiation, cell division occurred every 4 to 6 hours. Cell lineages were traced with different colors when cell boundaries were visible. Red lines indicate new cell divisions that were clearly observed. Scale bar, 20 µm. See Supplemental Movie 5. (B) Gray dash lines outline an expanding phyllid. Five cells within this phyllid were traced with different colors over time. Cell expansion was clearly observed while cell division was rarely seen. Blue arrowheads indicate a rhizoid emerging from the base of this gametophore. Scale bar, 50 µm. See Supplemental Movie 6. (C) Cell expansion rates were measured from the five cells outlined in (B). Area, cell length and cell width of each cell were measured at 40, 48, 56, 64 and 72 hours from the time-lapse acquisition. Color lines in this graph correspond to the cell with the same color in (B). (D) Even with confinement, bud initials were able to develop and expand 3 to 4 phyllids. Scale bar, 50 µm. See Supplemental Movie 7.

Figure 6. Microfluidics Chambers are Amenable to Confocal Microscopy
(A) YFP targeted to the Golgi reveals a tip focused accumulation of Golgi dictyosomes. mCherry targeted to the mitochondria. GFP targeted to the peroxisomes. GFP-GUS fusion targeted to the nucleus. Scale bar, 25 µm. (B) A cell division event observed in a rhizoid emerging from the base of a gametophore. Moss tissue expressing Myo8A-GFP (green) and mCherry-tubulin (red) was imaged on a scanning confocal microscope. Images are maximum intensity projection of z-stacks from a time-series acquisition. Scale bar, 10 µm. See Supplemental Movie 8.

Figure 7. Functional Drug Flow Through Experiments
(A) Subapical cells expressing LifeAct-mRuby2 were imaged near the cortex with a scanning confocal microscope. Treatment with 25 µM (A) and 50 µM LatB (B) rapidly depolymerizes most actin filaments. Every 2 minutes, 30 seconds of no-delay acquisition was acquired for each cell (see supplemental movies). A single image from each acquisition is shown. See Supplemental Movie 9. (B) Tip growth in caulonemal and rhizoid cells was inhibited by 50 µM LatB. Approximately 1 mL of medium containing 50 µM LatB was injected into the PDMS chamber at
time 0. Images were acquired every 10 minutes with brightfield on a wide-field microscope. Selected time points are shown. See Supplemental Movie 10.

Figure 8. Δbrk1 Plants Growing in Microfluidics Chambers

(A) Comparison of Δbrk1 plants grown for two weeks on agar or in microfluidic chambers. Scale bar, 50 µm. (B) Δbrk1 chloronemata growing in microfluidics chamber. (right) Δbrk1 filament undergoing comparatively rapid growth. Black arrows indicate initial position of the apical cells throughout the series. Scale bar, 10 µm. See Supplemental Movie 11. (C) Quantification of growth rates. Error bars are standard error of the mean.

Supplemental Data

Supplemental Movie 1. Tip growing tissue growing in a PDMS microfluidic chamber.

Supplemental Movie 2. Tip cells emerged from a plant regenerated from a protoplast.

Supplemental Movie 3. A wild-type caulonemal subapical cell transformed into a chloroplast-rich cell.

Supplemental Movie 4. Development of a bud initial and rhizoids.

Supplemental Movie 5. Early stages of phyllid initiation.

Supplemental Movie 6. Phyllid expansion observed in a young gametophore.

Supplemental Movie 7. A mature gametophore with several expanding phyllids.

Supplemental Movie 8. A cell division event observed in a rhizoid emerging from the base of a gametophore.

Supplemental Movie 9. Actin filament disassembly by 25 µM and 50 µM LatB.

Supplemental Movie 10. Tip growth in caulonema and rhizoid cells were inhibited by 50 µM LatB.

Supplemental Movie 11. Protonemal tissue from the Δbrk1 mutant grows in PDMS microfluidic devices.

Supplemental Figure 1. PDMS devices used in the study.
Supplemental Movie 2. Tip cells emerged from a plant regenerated from a protoplast. Images were acquired every 10 minutes with brightfield on a wild-field microscope. Scale bar, 50 µm. See also Figure 3.

Supplemental Movie 3. A wild-type caulonemal subapical cell transformed into a chloroplast-rich cell. Images were acquired every 10 minutes with brightfield on a wild-field microscope. Scale bar, 50 µm. See also Figure 4A.

Supplemental Movie 4. Development of a bud initial and rhizoids. Images were acquired every 10 minutes with brightfield on a wild-field microscope. A 48-hour movie and a subsequent 47-hour movie were combined into Movie 4. Gap between the two movies was 20 minutes. Time stamps on Movie 4 were labeled accordingly. Scale bar, 20 µm. See also Figure 4B and 4C.

Supplemental Movie 5. Early stages of phyllid initiation. Images were acquired every 10 minutes with brightfield on a wild-field microscope. Scale bar, 20 µm. See also Figure 5A.

Supplemental Movie 6. Phyllid expansion observed in a young gametophore. Images were acquired every 10 minutes with brightfield on a wild-field microscope. A 48-hour movie and a subsequent 47-hour movie were combined into Movie 6. Gap between the two movies was 20 minutes. Time stamps on Movie 6 were labeled accordingly. Scale bar, 50 µm. See also Figure 5B.

Supplemental Movie 7. A mature gametophore with several expanding phyllids. Images were acquired with brightfield on a wild-field microscope. Time interval between frames is 30 minutes. A 48-hour movie and a subsequent 47-hour movie were combined into Movie 7. Gap between the two movies was 20 minutes. Time stamps on Movie 7 were labeled accordingly. Scale bar, 50 µm. See also Figure 5D.

Supplemental Movie 8. A cell division event observed in a rhizoid emerging from the base of a gametophore. Moss tissue expressing Myo8A-GFP (green) and mCherry-tubulin (red) was imaged on a scanning confocal microscope. Images are maximum intensity projection of z-stacks from a time-series acquisition. Time interval between frames is 1 minute. Scale bar, 10 µm. See also Figure 6B.
Supplemental Movie 9. Actin filament disassembly by 25 µM and 50 µM LatB. Images of LifeAct-mRuby2 are single focal planes near the cell cortex acquired with a scanning confocal microscope. Scale bar, 10 µm. See also Figure 7A.

Supplemental Movie 10. Tip growth in caulonema and rhizoid cells were inhibited by 50 µM LatB. Images were acquired every 10 minutes with brightfield on a wild-field microscope. Scale bar, 20 µm. See also Figure 7B.

Supplemental Movie 11. Protonemal tissue from the ∆brk1 mutant grows in PDMS microfluidic devices. Images were acquired every 10 minutes with brightfield on a wild-field microscope. Scale bar, 25 µm. See also Figure 8.

Supplemental Figure 1. PDMS devices used in the study.

(A) The PDMS chamber is attached to a 35 mm glass bottom dish with a 20 mm bottom well. (B) After moss tissue was loaded into the central hole (inlet), a flexible tubing was inserted into the hole and medium was pumped into the chamber using a blunt needle and a syringe. (C) LatB was injected into the chamber through the outlet hole using a blunt needle and a 1 mL syringe.

Acknowledgements

The authors are grateful to Nikon Instruments for microscopy support and the Marine Biological Laboratory for fostering a collaborative work environment that spear-headed this project.
Pubmed: Author and Title
CrossRef: Author and Title
Google Scholar: Author Only
Title Only
Author and Title
Pubmed: Author and Title
CrossRef: Author and Title
Google Scholar: Author Only
Title Only
Author and Title
Pubmed: Author and Title
CrossRef: Author and Title
Google Scholar: Author Only
Title Only
Author and Title
Pubmed: Author and Title
CrossRef: Author and Title
Google Scholar: Author Only
Title Only
Author and Title
Pubmed: Author and Title
CrossRef: Author and Title
Google Scholar: Author Only
Title Only
Author and Title
Pubmed: Author and Title
CrossRef: Author and Title
Google Scholar: Author Only
Title Only
Author and Title
Pubmed: Author and Title
CrossRef: Author and Title
Google Scholar: Author Only
Title Only
Author and Title
Pubmed: Author and Title
CrossRef: Author and Title
Google Scholar: Author Only
Title Only
Author and Title
Pubmed: Author and Title
CrossRef: Author and Title
Google Scholar: Author Only
Title Only
Author and Title
Gui, C.-P. et al., 2014. Overexpression of the tomato pollen receptor kinase LePRK1 rewires pollen tube growth to a blebbing mode. The Plant cell, 26(9), pp.3538-3555.
Pubmed: Author and Title
CrossRef: Author and Title
Google Scholar: Author Only
Title Only
Author and Title
Pubmed: Author and Title
CrossRef: Author and Title
Google Scholar: Author Only
Title Only
Author and Title
Pubmed: Author and Title
CrossRef: Author and Title
Google Scholar: Author Only
Title Only
Author and Title
Pubmed: Author and Title
CrossRef: Author and Title
Google Scholar: Author Only
Title Only
Author and Title
Pubmed: Author and Title
CrossRef: Author and Title
Google Scholar: Author Only
Title Only
Author and Title

