Running Title: Systemic induction of photosynthesis

Corresponding author:
Yanhong Zhou
Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
Telephone: 0086-571-88982276
Fax: 0086-571-88982276
E-mail address: yanhongzhou@zju.edu.cn

Research area: Signaling and Response
Title: Systemic induction of photosynthesis via illumination of the shoot apex is mediated sequentially by phytochrome B, auxin and hydrogen peroxide in tomato

Authors: Zhixin Guo¹, Feng Wang¹, Xun Xiang¹, Golam Jalal Ahammed¹, Mengmeng Wang³, Eugen Onac³, Jie Zhou¹, Xiaojian Xia¹, Kai Shi¹, Xueren Yin¹, Kunsong Chen¹,², Jingquan Yu¹,², Christine H. Foyer⁴, and Yanhong Zhou¹,²,*

¹Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
²Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
³Philips Research Europe, High Tech Campus 34, 5656 AE Eindhoven, Netherlands
⁴Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds, LS2 9JT, UK

One sentence summary:
Red light perceived in the shoot apex by phyB alters IAA and H2O2 signaling, accelerating photosynthetic induction in systemic leaves, by increasing CEF-dependent ATP production in tomato.
Footnotes:

List of author contributions

Y.Z. and J.Y. designed the research; Z.G., F. W., and X.X. performed the research; all authors analyzed the data; G.A., M.W., E.O., J.Z., X.X., K.S., X.Y., and K.C. discussed the data; Y.Z., J.Y. and C. H. F wrote the article with contributions from the other authors.

Funding information: This work was supported by the National Natural Science Foundation of China (grant nos. 31672198, 31430076), the Special Fund for Agro-scientific Research in the Public Interest (201203004), the Fundamental Research Funds for the Central Universities (2016XZZX001-07), the National High Technology R & D Program of China (2013AA102406), and the Fok Ying-Tong Education Foundation (132024).

*Corresponding author; email yanhongzhou@zju.edu.cn
ACKNOWLEDGMENTS

We are grateful to the Tomato Genetics Resource Center at the California University for tomato phytochrome mutants. We thank Dr. Ivanchenko of Oregon State University for providing dgt seeds. Thanks to Xiaodan Wu (Analysis Center of Agrobiology and Environmental Sciences, Institute of Agrobiology and Environmental Sciences, Zhejiang University) for assistance with phytohormones analysis.
ABSTRACT

Systemic signaling of upper leaves promotes the induction of photosynthesis in lower leaves allowing more efficient use of light flecks. However, the nature of the systemic signals has remained elusive. Here we show that pre-illumination of the shoot apex alone can accelerate photosynthetic induction in distal leaves and that this process is light-quality dependent, where red light promotes and far red light delays photosynthetic induction. Grafting the wild type (WT) rootstock with a *phyB* mutant scion compromised light-induced photosynthetic induction, as well as auxin biosynthesis in the shoot apex, auxin signaling and *RESPIRATORY BURST OXIDASE HOMOLOG 1 (RBOH1)*-dependent H$_2$O$_2$ production in the systemic leaves. Light-induced systemic H$_2$O$_2$ production in the leaves of the rootstock was also absent in plants grafted with an auxin resistant *dgt* mutant scion. Cyclic electron flow around photosystem I and associated ATP production were increased in the systemic leaves by exposure of the apex to red light. This enhancement was compromised in the systemic leaves of the WT rootstock with *phyB* and *dgt* mutant scions and also in *RBOH1*-RNAi leaves with the WT as scion. Silencing of *ORR*, which encodes NAD(P)H dehydrogenase, compromised the systemic induction of photosynthesis. Taken together, these results demonstrate that exposure to red light triggers *phyB*-mediated auxin synthesis in the apex leading to H$_2$O$_2$ generation in systemic leaves. Enhanced H$_2$O$_2$ levels in turn activate cyclic electron flow and ATP production, leading to a faster induction of photosynthetic CO$_2$ assimilation in the systemic leaves allowing plants better adaptation to the changing light environment.

Keywords: auxin, cyclic electron flow, H$_2$O$_2$, photosynthesis, phytochrome B, RBOH1, systemic signaling
INTRODUCTION

As a consequence of their sessile lifestyle, plants have evolved a high capacity for regulation of physiology, growth and development that facilitates survival in a constantly changing environment. Environmental stimuli perceived within each organ not only influence morphogenetic and physiological changes within that organ but also generate systemic effects in other organs that are remote from the site of signal perception. This crucial phenomenon is called systemic signaling or systemic regulation. Systemic signaling prepares other tissues of a plant for future challenges that may initially only be sensed by a few local tissues or cells. Several types of systemic responses are known. These include systemic acquired resistance (SAR) that is typically activated by pathogens such as viruses, bacteria and fungi (Fu and Dong, 2013), induced systemic resistance (ISR) that is triggered by beneficial soil microorganisms or others (Pieterse and Dicke, 2007), and systemic acquired acclimation (SAA) that is initiated by abiotic stresses such as high light, ultraviolet radiation, heat, cold and salinity (Mittler and Blumwald, 2015).

The light utilization efficiency of photosynthesis is important for the survival of understory plants and plants growing in canopies. In particular, the efficient use of the energy contained in light (sun) flecks is important because light flecks contribute up to 60–80% of photosynthetically active radiation (PAR) received by understory plants (Pearcy and Seemann, 1990; Leakey et al., 2003; 2005). Earlier studies have shown the existence of systemic regulation of stomatal development and of photosynthesis in developing leaves in response to environmental signals perceived by mature leaves such as changing irradiance and atmospheric CO₂ conditions (Lake et al., 2002; Coupe et al., 2006; Araya et al., 2008). Phytochrome(phy)B is important in the transmission of the systemic signals that modulate stomatal development in young leaves of Arabidopsis (Casson et al., 2014). In tomato, there are two forms of phyB, phyB1 and phyB2, that work together to mediate red light-induced responses, such as hypocotyl elongation and greening in seedlings (Hauser et al. 1995; Weller et al. 2000).

Photosynthesis is completely switched off in the dark, specifically to prevent futile cycling of metabolites through the reductive and oxidative pentose phosphate pathways. Hence, leaves need time to reactivate the enzymes of carbon assimilation after a period of darkness. The time taken to reach maximum net rates of
photosynthesis upon illumination is called photosynthetic induction (Walker, 1973). Systemic signaling has also been observed for the regulation of photosynthesis in relation to leaf ontology in understory plants (Montgomery and Givnish, 2008). The uppermost leaves, which are generally the first to receive sunlight, display faster photosynthetic induction times than understory leaves (Bai et al., 2008). Photosynthetic induction in understory leaves is enhanced by pre-illumination of upper leaves but not by lower leaves suggesting a directional signal transfer (Hou et al., 2015). While this process allows plants to use the light energy in sun flecks more efficiently, the nature of the systemic signals and their transmission pathways remain largely unresolved. Although, systemic signalling between different leaf ranks has been suggested to occur through the xylem (Thorpe et al., 2007), and also via electrical signals (Zimmermann et al., 2009), it is likely that systemic signals also pass through the phloem (Turgeon and Wolf, 2009; Hou et al., 2015). In addition, the phytohormone auxin is produced in the shoot apex and redistributed throughout the shoot by rapid non-polar phloem transport (Ljung et al., 2001). Changes in the light environment can dramatically alter auxin homeostasis, which is regulated in a light quality- and photoreceptor-dependent manner (Halliday et al., 2009).

The photosynthetic electron transport chain exhibits enormous flexibility in the relative rates of NADPH and ATP production, in order to accommodate the varying requirements of metabolism (Foyer et al., 2012). Non-cyclic, pseudocyclic and cyclic electron flow (CEF) pathways operate in the photosynthetic electron transport chain to drive the proton gradient across the thylakoid membrane (Allen, 2003). Photosynthetic induction is not only associated with the activation of the light- and thiol-dependent activation of carbon assimilation enzymes but also dependent on a high rate of CEF to drive ATP synthesis (Foyer and Harbinson, 1992). Considerable over-reduction of the electron transport acceptors occurs during the photosynthetic induction period and this continues until carbon assimilation can be activated. CEF around photosystem I (PSI), an essential component of photosynthesis, drives the proton gradient in a situation when NADP reduction has reached highest capacity and this essential electron acceptor is no longer available (Yamori et al., 2015; 2016). CEF is particularly sensitive to the reduction-oxidation (redox) status of the chloroplast, which is in turn responsive to cellular redox homeostasis. Oxidants, such as hydrogen peroxide, which are produced by pseudocyclic electron flow in the chloroplasts, play a crucial role in the activation of CEF through modulation of the activity of the
NADPH-plastoquinone reductase complex (Strand et al., 2015). Hormone-mediated
generation of hydrogen peroxide can also stimulate CO$_2$ assimilation (Jiang et al.,
2012).

Auxins, such as indole-3-acetic acid (IAA) generate hydrogen peroxide
(Ivanchenko et al., 2013; Peer et al., 2013) and can regulate CO$_2$ assimilation
(Bidwell and Turner, 1966; Hayat et al., 2009; Peng et al., 2013). We therefore used
tomato plants to test the hypothesis that the systemic signaling that regulates
photosynthetic induction in understory leaves arises from light-induced changes in
auxin and H$_2$O$_2$ homeostasis involving modulation of CEF in systemic leaves. We
present evidence showing that red light perceived in the shoot apex by a phyB–
dependent pathway alters IAA signaling, in a systemic manner. IAA signals from the
apex perceived in distal leaves, trigger systemic H$_2$O$_2$ production that accelerates
photosynthetic induction by increasing CEF-dependent ATP production in the
systemic leaves. These findings provide new insights into the elaborate plant
regulatory network that allows light-adaptation in different organs.
RESULTS

Systemic Induction of Photosynthesis in the Distal Leaves of Tomato Plants is Dependent on Phytochrome B in the Shoot Apex

To examine the role of light perception by the remote organs in the induction of photosynthesis in distal leaves, either the uppermost fully expanded (5-6th leaves), the 1st to 3rd leaves on the stem, or the shoot apex were exposed to white light (WL) at an intensity of 300 μmol m$^{-2}$ s$^{-1}$ for 30 min whilst other leaves were left in the dark (Supplemental Fig. S1). The induction of CO$_2$ assimilation upon exposure to high light (1500 μmol m$^{-2}$ s$^{-1}$ photosynthetic photon flux density, PPFD) was then followed in the 4th leaves on the stem for 30 min. A pre-illumination of either the upper expanded leaves or the lower leaves did not significantly change the times required to reach 50% (T50) and 90% (T90) of the maximal CO$_2$ assimilation rates in the 4th leaves (systemic leaf, SL) (Fig. 1B). In contrast, exposure of the apex to WL for 30 min resulted in a faster induction of CO$_2$ assimilation in the 4th leaves as compared to the dark controls. The T50 and T90 of the maximal CO$_2$ assimilation rates was decreased from 8.17 min to 4.30 min and from 19.7 min to 14.7 min, respectively (Fig. 1, A and B). However, such an induction of photosynthesis was only observed when the PPFD is higher than the light compensation point (ca. 50 μmol m$^{-2}$ s$^{-1}$, Supplemental Fig. S2). These findings demonstrate that only the light perceived by the shoot apex was able to transmit systemic signal(s) to the systemic leaves in order to facilitate a more rapid induction of CO$_2$ assimilation.

To determine the nature of the signals that facilitate a more rapid induction of CO$_2$ assimilation in the systemic leaves, we applied red (R, 660 nm) and far-red (FR, 735 nm) light at an intensity of 300 μmol m$^{-2}$ s$^{-1}$ to the shoot apex for 30 min prior to the measurement of the induction of CO$_2$ assimilation in the distal (4th) leaves (Supplemental Fig. S1). R light enhanced photosynthetic induction while FR light delayed the induction of CO$_2$ assimilation in the 4th leaves (Fig. 1C). Interestingly, R light-induced photosynthesis was abolished when R light was supplemented with FR light at R/FR ratios of 1:1 or 1:2, but the stimulation of photosynthetic induction was still observed at R/FR of 2:1 (Fig. 1D). Moreover, reciprocal R /FR light exposures at 5 min-intervals for up to 6 cycles failed to enhance the rate of photosynthetic induction (Fig. 1E). We then grafted the young shoots of wild type (WT) tomatoes, tomato mutants deficient in phytochrome A ($phyA$), phytochrome B1 and B2 ($phyB1B2$) or cryptochrome 1 ($cry1$) with two developing leaves onto stems of WT
plants with four leaves. This resulted in 4 grafting combinations: WT/WT, phyA/WT, phyB/WT, and cry1/WT, respectively. As had been observed in the WT plants, a pre-illumination with WL for 30 min resulted in a faster induction of CO₂ assimilation in the rootstock leaves (4ᵗʰ leaf) of the WT/WT, phyA/WT and cry1/WT plants.
compared to dark controls (Fig. 1F; Supplemental Fig. S3 and 4). In contrast, the WL-dependent induction of CO$_2$ assimilation was compromised in phyB1B2/WT plants which showed little change in the T50 and T90 values compared to the leaves of the WT (Fig. 1F; Supplemental Fig. S4). However, chlorophyll content in the developing leaves of phyB1B2 was not significantly different from those in WT plants (data not shown). This finding demonstrates that phyB signaling in the apex plays a critical role in the enhancement of photosynthetic induction in distal systemic leaves.

PhyB-Mediated Auxin Signaling is Required for the Systemic Enhancement of Photosynthetic Induction

Photoreceptors modify plant growth, development and stress responses via alterations in phytohormone homeostasis (Jiao et al., 2007; Wang et al., 2016). Like polar auxin transport (PAT), light-induced signaling is basipetal in direction. We therefore examined how auxin accumulation was modified in the WT/WT, phyA/WT, phyB1B2/WT, and cry1/WT lines before and after the apex of the plants was exposed to WL. A pre-illumination with WL induced transcript levels of FLAVIN MONOOXYGENASE (FZY) in the apex and the accumulation of IAA in the apex and the 4th leaves (Fig. 2, A-C). FZY encodes flavin monooxygenase (FZY), a critical enzyme involved in a rate limiting step of IAA biosynthesis (Tivendale et al., 2010). Similar increases were also found in the apex and the 4th leaves of the phyA/WT and cry1/WT plants. In contrast, WL failed to increase FZY transcripts or IAA accumulation in either the apex or the 4th leaves of the phyB1B2/WT plants. Similar to increased IAA accumulation, WL induced an accumulation of IAA15 transcripts, a marker of IAA signaling (Wei et al., 2012) and PIN1 transcripts, a marker for PAT (Geldner et al., 2001; Ivanchenko et al., 2015) by 3-5 fold in the systemic leaves of the WT/WT, phyA/WT and cry1/WT plants, but not in the rootstock leaves of the phyB1B2/WT plants (Fig. 2D; Supplemental Fig. S5). Taken together, these results indicate that phyB was responsible not only for the observed increases in IAA biosynthesis in the apex but also for auxin signaling at the levels of the systemic leaves.

To explore the role of increased IAA accumulation on the systemic enhancement of photosynthetic induction, we applied IAA and N-1-naphthylphthalamicacid (NPA, an inhibitor for PAT) to the shoot apex either in the dark conditions or just prior to the pre-illumination treatment. Similar to the pre-illumination treatment, the application
of IAA accelerated the induction of CO₂ assimilation in the systemic leaves. However, the application of NPA abolished the WL-induced enhancement of photosynthetic induction in the systemic leaves (Fig. 3, A and B; Supplemental Fig. S6). Therefore, we concluded that IAA synthesized in the apex may function as a systemic signal to
influence the rate of induction of CO₂ assimilation in the distal leaves. To confirm this hypothesis, we grafted shoots with two leaves of WT and cyclophilin A
DIAGEOTROPICA (dgt) mutant plants, which are auxin resistant, onto the stem at the 4th leaf position of either WT or dgt rootstocks, respectively. In this way, we were able
to examine how the induction of CO₂ assimilation in the 4th leaf was altered by changes in the auxin signal arising in the apex. As predicted, WL pre-illumination-induced enhancement of the induction of CO₂ assimilation was abolished in the WT leaves of the dgt/WT plants and in the dgt leaves of WT/dgt plants. Moreover, the T50 and T90 values were not changed by the pre-illumination (Fig. 3, C and D; Supplemental Fig. S7A). Taken together, these results indicate that auxin signaling is essential for the pre-illumination-induced enhancement of the induction of CO₂ assimilation in systemic leaves.

Auxin-Triggered H₂O₂ Accumulation Leads to Systemic Increases in the Induction of Photosynthesis by Activating Cyclic Electron Flow

Reactive oxygen species (ROS), such as H₂O₂ that are produced in the apoplast, can function as secondary messengers in hormone signaling pathways that underpin plant development and stress responses (Xia et al., 2015). In these studies, pre-illumination of the apex triggered an accumulation of transcripts encoding the RESPIRATORY BURST OXIDASE HOMOLOG 1 (RBOH1), together with an accumulation of H₂O₂ in the systemic leaves of the WT/WT, phyA/WT and cry1/WT plants, but not in the rootstock leaves of the phyB1B2/WT plants (Fig. 4, A and B). Similarly, H₂O₂ accumulation was observed in the walls of the mesophyll cells of 4th leaf of WT/WT plants, particularly those facing the intercellular spaces, as indicated by the increased deposits of CeCl₃ staining (Fig. 4E). However, the light-induced increases in RBOH1 transcript levels and apoplastic H₂O₂ accumulation were abolished in the systemic leaves of dgt/WT plants and WT/dgt plants or dgt/dgt plants (Fig. 4, C-E). These results suggest that illumination of the apex resulted in apoplastic H₂O₂ accumulation in the systemic leaves, and that this process was dependent on auxin signaling.

To determine the role of RBOH1 in pre-illumination dependent enhancement of photosynthetic induction in the systemic leaves, we generated RBOH1-RNAi plants (rboh1) and grafted it with WT plants. The 4th leaves of the rboh1 plants with WT as scion had ca. 50% of the RBOH1 transcripts as compared with that in WT/WT leaves (Supplemental Fig. S8). Significantly, the pre-illumination-induced enhancement of photosynthetic induction was compromised in the systemic rboh1 leaves of WT/rboh1 and rboh1/rboh1 plants (Fig. 5, A-C; Supplemental Fig. S9A). Taken together, these results indicate that auxin-induced H₂O₂ production in the systemic leaves plays a...
critical role in the pre-illumination-associated enhancement of the induction of CO₂ assimilation.

CEF around PSI is particularly important in the induction phase of photosynthesis because it generates ATP at a time when non-cyclic electron flow is limited by the
availability of NADP (Joet et al., 2002; Joliot and Joliot, 2002). We compared rates of CEF in the systemic leaves of the WT/WT, WT/rboh1 and rboh1/rboh1 plants. The pre-illumination treatment of the apex significantly increased rates of CEF in the leaves of the WT/WT plants. This increase was not observed in the systemic leaves of

Figure 5. The requirement for RBOH1 in systemic light signaling from the shoot apex to distal leaves for the regulation of CO₂ assimilation rates and cyclic electron flow (CEF) during the induction phase of photosynthesis. A-C, Time-course of increases in net photosynthesis rate (Pn) during photosynthetic induction and the time required to reach 50% or 90% of the maximum Pn (T50 or T90) in the 4th leaves. Net photosynthetic rates are expressed as percentages of the maximum Pn. D and E, Typical traces of Chl a fluorescence quenching after 4-min actinic illumination (AL; 250 μmol m⁻² s⁻¹) in grafted plants with rboh1 mutant rootstocks. F, Relative Chl fluorescence was expressed as the r: a ratio of the induction curve. Irradiance to the shoot apex (Top lighting) was performed with white light (L) at 300 μmol m⁻² s⁻¹ for 30 min. Plants without pre-illumination (dark, D) were used as controls. During the illumination treatments, the other parts of the plant were kept in darkness. Values are the means of four plants ± SD. Different letters indicate significant differences at P < 0.05 according to Tukey’s test.
1 7

WT/rboh1 or rboh1/rboh1 plants (Fig. 5, D-F; Supplemental Fig. S9, B and C). No enhancement of the rates of CEF was observed in the systemic leaves of phyB1B2/WT plants, dgt/WT plants and WT/dgt plants or dgt /dgt plants (Fig. 6; Supplemental Fig. S7B). However, increased CEF rates were observed in the systemic
leaves of the phyA/WT and cry1/WT plants. These observations demonstrate that pre-illumination of the apex enhanced rates of CEF in a H$_2$O$_2$–dependent manner and that this was linked to the activity of the RBOH1 NADPH oxidase in the systemic leaves.

CEF-dependent ATP production is particularly important during the induction phase of photosynthesis because it drives electron transport and associated CO$_2$ assimilation when the electron acceptor NADP is in short supply (Foyer et al., 2012). An increase in the ATP content of 47.2%–57.7% was observed in the systemic WT leaves of the WT/WT, phyA/WT and cry1/WT plants after the apex had been illuminated with WL for 30 min followed by exposure of the 4th leaves to WL for 8 min. The top lighting-induced increase in ATP production was not found in the WT leaves of the phyB1B2/WT and dgt/WT plants (Fig. 7, A and B). Furthermore, ATP levels were not increased in the rboh1 leaves after the pre-illumination treatment in the WT/rboh1 plants (Fig. 7 C).

Systemic Effects on Photosynthetic Induction are Dependent on Cyclic Electron Flow in the Systemic Leaves

We next analyzed whether the increase in CEF is essential for the light-induced effects on photosynthetic induction in distal leaves. The ORR gene, which encodes a NAD(P)H dehydrogenase, was previously shown to be involved in the regulation of CEF in tomato (Nashilevitz et al., 2013). Virus-induced silencing of ORR (pTRV-ORR) resulted in a decrease in ORR transcript level of 68.7% compared to the empty vector plants (pTRV). Under high light, the pTRV-ORR plants showed very low CEF rates (Supplemental Fig. S10). Moreover, the pTRV-ORR plants showed no response to apical pre-illumination in term of effects on the induction of CO$_2$ assimilation and CEF (Fig.8, A-D). While apical pre-illumination induced H$_2$O$_2$ accumulation in the systemic leaves of both pTRV and pTRV-ORR plants (Fig. 8E), there was no increase in ATP levels in the pTRV-ORR plants (Fig. 8F).
DISCUSSION

Rapid induction of photosynthesis in response to dark to light transitions and sharp increases in irradiance is critical to the survival of understory plants and gives a competitive advantage to plants within dense canopies. To date, studies on the
induction of photosynthesis have been focused largely on responses in single leaves with scant attention to the systemic integration of the leaf network within the plant. The results presented here demonstrate that phyB-mediated IAA synthesis in the shoot apex leads to systemic signaling and to H$_2$O$_2$ accumulation in distal leaves. The
subsequent increase in oxidation in the distal leaves activates CEF and ATP production, leading to a more rapid induction of CO₂ assimilation (Fig. 9). This systemic response is likely linked to enhanced light use efficiency in a fluctuating light environment. Systemic signaling following the perception of light by the apex,
which is the uppermost organ in the shoot, provides the distal leaves with a preemptive advantage in terms of activation of photosynthesis and hence the ability to maximize carbon gain.

The Apex-Induced Effects on the Induction of CO₂ Assimilation Are Phytochrome-Dependent

Light drives photosynthetic electron transport, light quality and quantity affecting photosynthesis in different ways to optimize growth. The results presented here demonstrate that pre-illumination of the apex with WL and with R light results in a more rapid induction of photosynthesis in distal leaves (Fig. 1, A-D). This effect on photosynthetic induction is directional and was observed only after exposure of the apex to WL or R light. This finding indicates that systemic signals originating from the young leaves at the apex, where cell division is rapid, are transduced to leaves in order to cause more rapid induction of photosynthesis. These observations are in agreement with an earlier observation that light-induced effects on photosynthesis are directional and that light perceived by mature leaves has little systemic effect on developing leaves in terms of the remodelling of photosynthesis (Murakami et al., 2014; Hou et al., 2015). The apex is likely to receive light signals earlier in the day than other parts of the plant. Thus, the transmission of light signals perceived at the apex to facilitate a more rapid photosynthetic induction in distal leaves probably evolved as a survival mechanism in understory plants in order to give a competitive advantage within dense canopies.

The rate of photosynthetic induction of distal leaves was modified by the quality of light perceived at the apex by photoreceptors present in the apex. R light and FR light had positive and negative effects, respectively, on the speed of photosynthetic induction (Fig. 1C). Interestingly, R light-induced photosynthetic induction could be abolished by FR (Fig. 1E), suggesting that R and FR light-induced changes in photosynthetic induction is a photochromes-dependent response. In agreement with this, grafting experiments using *phyA* and *phyB* mutants as the scion revealed that CO₂ assimilation was induced more rapidly upon light perception by the apex in *phyA/WT* plants but not in the *phyB1B2/WT* combination (Fig. 1 F; Supplemental Fig. S4). These findings suggest that phyB plays a key role in the systemic effects on the induction of photosynthesis. In agreement with these observations, *phyB* mutants show decreased CO₂ assimilation rates (Hernan et al., 2009) and conversely...
overexpression of *PHYB* increased CO₂ assimilation rates compared to WT plants (Schittenhelm et al., 2004). Taken together, these results demonstrate that red light received by phyB at the shoot apex is the initial trigger for the systemic signaling to the distal leaves.

Auxin Synthesized in the Apex Functions as a Systemic Signal Leading to Effects on the Induction of CO₂ Assimilation

Phytochrome signaling mediates many systemic responses in plants including flowering time, tuberization and nodule development, processes which are regulated by light-induced changes in phytohormone homeostasis (Wit et al., 2016). Like auxin polar transport, the light-induced signaling pathway that influences photosynthetic induction is basipetal. Here we provide multiple lines of evidence showing that auxin is required for the systemic effects on the induction of photosynthesis. Firstly, WL and R light both induced an increase in *FZY* transcript levels in the apex, as well as IAA accumulation in the apex and an accumulation of *IAA15* transcripts, an auxin signaling marker in the distal leaves (Fig. 2). Secondly, the transmission of light-induced signals from the apex that mediate systemic increases in the induction of CO₂ assimilation was compromised in the WT leaves linked to a *phyB1B2* scion (Fig. 1 F; Supplemental Fig. S4). Thirdly, the application of IAA stimulated a more rapid induction of CO₂ assimilation. Conversely the application of an inhibitor of polar auxin transport compromised light-induced signal transmission to distal leaves (Fig. 3, A and B; Supplemental Fig. S6). Fourthly, the transmission of light signals that enhance the induction of CO₂ assimilation in systemic leaves was abolished when an auxin resistant *dgt* mutant was used as the scion or rootstock (Fig. 3, C and D; Supplemental Fig. S7A). While we cannot rule out the potential involvement of light-induced carbohydrate accumulation and transport from the apex, the apex and the youngest leaves are defined as “sink” tissues that have a net import of carbohydrate to drive metabolism, growth and development. These tissues are not generally considered to be “source”, organs that export carbohydrate. Moreover, photosynthetic induction in distal leaves can only be observed after exposure to light intensities at PPFD levels to values higher than the light compensation point (Hou et al., 2015; Supplemental Fig. S2). We were unable to measure CO₂ assimilation rates in apex leaves due to their small size. However, CO₂ assimilation rates were very low in the developing leaves below the apex in the phyB plants, relative to the WT plants.
Soluble carbohydrates can regulate auxin biosynthesis via PHYTOCHROME-INTERACTING FACTOR (PIF) proteins, since PIFs negatively regulate phyB (Leivar et al., 2008; Sairanen et al., 2012). It is, therefore, possible that phyB functions as an integrator for light and sugar signaling in relation to auxin biosynthesis. To date, studies on the light regulation of auxin synthesis and polar auxin transport have produced contradictory results. For example, several studies have shown that exposure to low R/FR light ratios results in increased IAA accumulation and polar auxin transport in the hypocotyl (Tao et al., 2008; Keuskamp et al., 2010). However, such results have largely been obtained on very young Arabidopsis seedlings grown under conditions of minimal transpiration and photosynthesis, as occurs when plants are grown in closed Petri dishes, or on liquid media often containing sucrose, etc. (Tao et al., 2008; Keuskamp et al., 2010). Other studies have shown that low fluxes of red light enhance IAA synthesis and polar transport. The phyB mutant has decreased IAA accumulation in the stem in intact tomato plants (Liu et al., 2011). However, while plants grown under constant environmental conditions showed increased IAA accumulation during the night, plants grown in the field had increased IAA accumulation in the day (Lopez-Carbonell et al., 1992). Surprisingly, no studies have investigated the direct effects of light on auxin synthesis in apex even though auxin is thought to be mainly synthesized in the apex. Light- and phyB-mediated effects on IAA synthesis vary with between organs and environments (Ballaré, 2014; Krishna and Finlayson, 2014). Plants may have developed these responses in auxin signaling as adaptation strategies to steep fluctuations in the light environment.

Auxin-Triggered H$_2$O$_2$ Production Acts as a Signal that Induces CEF and ATP Production in Systemic Leaves

Chloroplasts are a hub of redox control, which exerts a strong influence over gene expression, carbon assimilation and starch synthesis (Fey et al., 2005; Pfannschmidt et al., 2009). Phytohormones such as brassinosteroids (BRs) enhance CO$_2$ assimilation rates in a RBOH-dependent manner in plants (Jiang et al., 2012). Moreover, H$_2$O$_2$ activates CEF around PSI, in order to increase CO$_2$ assimilation (Strand et al., 2015). Auxin and BRs have overlapping functions in relation to the control of gene expression. Auxin also induces RBOH NADPH oxidase-dependent H$_2$O$_2$ production (Ivanchenko et al., 2013; Peer et al., 2013). In the present study, increased IAA
accumulation and auxin signaling arising in the apex were shown to result in increased levels of \textit{RBOH1} transcripts and in H$_2$O$_2$ accumulation in systemic leaves leading to increased CEF-dependent ATP production (Figs. 4-7). Crucially, blocking the auxin signal with a \textit{dgt} scion or mutation of \textit{RBOH1} genes in the systemic leaves abolished the signal-induced CEF and ATP accumulation in the systemic leaves (Figs. 5-7). Taken together, these results demonstrate that CEF can be regulated in distal leaves by the auxin-dependent H$_2$O$_2$ production.

Non cyclic electron transport and cyclic electron flow around PSI are used to generate a proton gradient across the thylakoid membrane, a process that is coupled with ATP production (Shikanai, 2007; Foyer et al., 2012). Cyclic electron flow around PSI in higher plants consists of at least two partially redundant pathways known as the ferredoxinquinone oxidoreductase (FQR)- and NAD(P)H dehydrogenase NDH)-dependent pathways (Miyake, 2010). NDH complex deficiency in \textit{orr} mutant tomato plants was defective in CEF (Nashilevitz et al., 2013). H$_2$O$_2$-induced CEF was therefore not observed in mutants deficient in NDH. In the present studies, suppression of NDH transcript using VIGS compromised the induction of CEF by systemic signals. These results show that the systemic effects on the induction of photosynthesis are linked to regulation of NDH-dependent CEF (Fig. 8).

Switching between cyclic and non-cyclic pathways provides flexibility in the ratios of ATP and NAPDH produced by the electron transport chain. The ratios of ATP to NAPDH production can therefore be adjusted to meet the needs of varying rates of Benson–Calvin cycle activity, photorespiration and other metabolic pathways (Noctor and Foyer, 1999; Foyer et al., 2012). Thus flexibility also allows rapid responses to fluctuations in the light environment (Foyer and Harbinson, 1992; Foyer et al., 2012) In this regard, the systemic regulation of CEF may play a critical role in minimizing pseudocyclic electron flow and promoting the activation states of enzymes involved in CO$_2$ fixation, such as Rubisco activase (RCA) and fructose-1, 6-bisphosphatase (FBPase), which are modulated by the chloroplast redox status and ADP/ATP ratios, in the photosynthetic induction in response to irradiance.

The data presented here provide new insights into the regulation of photosynthesis. Evidence is presented showing that systemic regulation of the induction of photosynthesis in distal leaves is mediated by perception of red light at the apex via a phyB-associated pathway that promotes IAA biosynthesis and polar auxin transport, as illustrated in Fig 9. As a result, \textit{RBOH1}-dependent H$_2$O$_2$ production in the systemic
leaves induces cyclic electron flow in the chloroplasts and associated ATP production. These systemic and local signaling processes accelerate the rate of induction of CO$_2$ assimilation in systemic leaves. This study provides a mechanism by which plants can increase carbon gain in lower leaves in changing light environments via systemic regulation. Such mechanisms are likely to be very important in increasing light utilization efficiency in canopies for example at dawn, or in understory leaves where the light available in sunflecks must be used to maximize advantage in driving carbon gain.

MATERIALS AND METHODS

Plant Material and Growth Conditions

Wild-type tomato (*Solanum lycopersicum* L. cv. Ailsa Craig, cv. Moneymaker), cyclophilin A *DIAGEOTROPICA* (*dgt*) mutant in the Ailsa Craig background, and *phyA*, *phyB1B2* and *cry1* mutants in the Moneymaker background were used unless otherwise stated. Seedlings were grown in pots with a mixture of 3 parts peat to 1 part vermiculite, receiving Hoagland’s nutrient solution. The growth conditions were as follows: 12 h photoperiod, temperature of 25/20 °C (day/night), and photosynthetic photo flux density (PPFD) of 600 μmol m$^{-2}$ s$^{-1}$.

To generate the *RBOH1* RNAi construct, a 318-bp specific DNA fragment of *SlRBOH1* was PCR-amplified with the specific primers *SIRBOH1*-F (5′-GGCCatttaaatggatccCGTTCAGCTCTCATTACC-3′) and *SIRBOH1*-R (5′-TTggcgcgcctctagaCCGAAGATAGATGTGTGT-3′), which had been tailed with *BamHI*/XbaI and *SwaI*/AscI restriction sites at the 5′ end, respectively. Then, the amplified products were digested with *BamHI*/XbaI and *SwaI*/AscI and ligated into the pFGC5941 vector at the *BamHI*/XbaI restriction site in the sense orientation and at the *SwaI*/AscI restriction site in the antisense orientation. The resulting plasmid was transformed into *Agrobacterium tumefaciens* strain EHA105 and transformed into tomato cotyledons of Ailsa Craig as described by Fillatti et al. (1987). Transgenic plants were identified for resistance to Basta and then by qRT-PCR analysis.

To determine the role of cyclic electron flux in pre-illumination-induced CO$_2$ assimilation, we used virus-induced gene silencing (VIGS) to suppress the transcript of *Orange Ripening* (*ORR*, Nashilevitz et al., 2013) with the tobacco rattle virus (TRV)-based vectors (pTRV1/2) (Liu et al., 2002). The *ORR* cDNA fragment was PCR-amplified using as the forward primer CGgaattcGATCCGAAGATAGATGTGTGT-3′ and reverse primer CggccatttaaatgatccCGGCGCTGCATCTTCCATAC-3′.
and the reverse primer CCGctcgagTCCATTGTAATTGAACCCA'. The amplified ORR fragment was digested with EcoRI and XhoI, and ligated into the corresponding sites of the pTRV2 vector. Empty pTRV2 vector was used as a control. All constructs were confirmed by sequencing and subsequently transformed into Agrobacterium tumefaciens strain GV3101. VIGS was performed by infiltration into the fully expanded cotyledons of 15-d-old tomato seedlings with A. tumefaciens harboring a mixture of pTRV1 and pTRV2-target gene in a 1:1 ratio. Plants were grown at 21 °C in a growth chamber with a 12 h day length for 30 d until control pTRV-PDS plants (silencing of the gene encoding phytoene desaturase) showed strong bleaching (Ekengren et al., 2003). qRT-PCR was performed to determine the gene silencing efficiency (Livak and Schmittgen, 2001).

To determine the role of photoreceptors in photosynthetic induction, shoots of wild type (WT), phyA, phyB1B2 and cry1 plants with two developing leaves at 3–4 cm in length was grafted onto 4th leaf stem of WT plants, resulting in four groups of seedlings designated as WT/WT, phyA/WT, phyB1B2/WT and cry1/WT according to the scions, respectively. In the same way, we grafted shoots with two leaves of dgt mutant plants, which is auxin resistant onto stem of WT plants (dgt /WT), WT shoots onto stem of dgt plants (WT/ dgt) or onto that of RBOH1-RNAi plants (WT/rboh1), shoots of RBOH1-RNAi plants onto RBOH1-RNAi plants (rboh1/rboh1). The grafted plants were transferred to growth chambers with the following environmental conditions: 12-h photoperiod, temperature of 25/20 °C (day/night) and photosynthetic photon flux density (PPFD) of 600 μmol m⁻² s⁻¹.

Experimental Design and Treatments

Leaves in a plant were marked from No. 1 to No. 6 from cotyledons. Six independent experiments were carried out. In experiment 1, the 1-3th leaves, the 5-6th leaves and the apex were illuminated with white light (Philips, The Netherlands) at 50, 150 and 300 μmol m⁻² s⁻¹ for 30 minutes before the photosynthetic inductions of the 4th leaves were measured afterwards (Supplemental Fig. S1). In experiment 2, the apex of WT plants at 6-leaf stage was illuminated with red (R, 660 nm) or far-red (FR, 735 nm) at 300 μmol m⁻² s⁻¹ for 30 minutes or light with R/FR ratio at 2:1, 1:1 and 1:2, respectively, in which R light intensity was kept at 300 μmol m⁻² s⁻¹. Meanwhile, reciprocal R /FR light pulse at 5 min interval, which lasted 60 min with 6 cycles, was applied onto the apex for testing the reversibility of the positive effect of R light on the
photosynthetic induction. Mono-spectrum light was supplied with light-emitting diode (LED) source (Philips, The Netherlands). In other experiments, the apex of WT/WT, phyA/WT, phyB1B2/WT, and cry1/WT (Experiment 3), dgt/WT and WT/dgt (Experiment 4), WT/rboh1 and rboh1/rboh1 (Experiment 5), pTRV and pTRV-ORR plants (Experiment 6) at 6-leaf stage was pre-illuminated with WL at 300 μmol m$^{-2}$ s$^{-1}$ for 30 minutes before the photosynthetic inductions of the 4th leaves were measured afterwards. To study the role of IAA in the photosynthetic induction, IAA at 10 μM and N-1-naphthylphthalamic acid (NPA) at 10 μM were applied onto apex 30 min before gas exchange in the 4th leaves was determined. In all cases, plant without pre-illumination of apex (dark) was used as control.

Gas Exchange and Chl Fluorescence

Gas exchange measurements were performed using a LI-6400 Portable Photosynthesis System (LI-6400; LI-COR, Lincoln, NE, USA). The CO$_2$ concentration (400 μmol mol$^{-1}$), air humidity (60%), PPFD (1500 μmol m$^{-2}$ s$^{-1}$) and leaf temperature (25 °C) were controlled by an automatic control device of the instrument. The photosynthetic rate (Pn) was recorded every 20 s. Four plants were used in each measurement.

Chlorophyll (Chl) fluorescence was performed using a Dual-PAM 100 Chl fluorescence analyzer (Heinz Walz, Effeltrich, Germany) as described in Eiji et al., (2010). For the determination of chlorophyll fluorescence, plants were adapted in the dark for 30 min prior to measurement. After 4 min, the actinic light (AL; 250 μmol m$^{-2}$ s$^{-1}$) was turned off and fluorescence yield changes were continuously recorded (Yang et al., 2007). Four plants were used for each replicate. Relative Chl fluorescence, expressed as the rake ratio of the induction curve, was calculated from the one time regression equation $y=a+bx$, where y, a and x are the fluorescence yield, the rake ratio of the induction curve and time duration, respectively, during the fluorescence rise.

Measurement of IAA Levels

IAA extraction and quantification were performed using previously reported procedures with minor modifications (Durgbanshi et al., 2005; Wu et al., 2007; Boelaert et al., 2013). Briefly, 100 mg of frozen leaf material was homogenized in 1 mL of ethyl acetate which had been spiked with D$_3$-IAA (C/D/N Isotopes Inc, Canada) as internal standards with a final concentration of 100 ng mL$^{-1}$. Tubes were
centrifuged at 18,000 g for 10 min at 4 °C. The pellet was re-extracted with 1 mL of ethyl acetate. Both supernatants were evaporated to dryness under N₂. The residue was re-suspended in 0.5 mL of 70% methanol (v/v), centrifuged, and the supernatants were then analyzed in a liquid chromatography tandem mass spectrometry system (Varian 320-MS LC/MS, Agilent Technologies, Amstelveen, the Netherlands). The parent ions, daughter ions, and collision energies used in these analyses are listed in Supplemental Table S2.

H₂O₂ Quantification, Histochemical Analysis, and Cytochemical Detection

H₂O₂ was extracted from leaf tissue and measured as described in our earlier study (Xia et al., 2009). H₂O₂ was also visualized at the subcellular level using CeCl₃ for localization, as described previously (Zhou et al., 2012). The sections were examined using a transmission electron microscope (H7650; Hitachi, Tokyo, Japan) at an accelerating voltage of 75 kV to detect the electron-dense CeCl₃ deposits that were formed in the presence of H₂O₂.

qRT-PCR Analysis

Total RNA was extracted from tomato leaves using RNAprep Pure Plant Kit (Tiangen Biotech Co., Ltd, Beijing, China) according to the supplier’s recommendation. Residual DNA was removed with RNase Mini Kit (Qiagen, Germany). One microgram of total RNA was reverse transcribed using a ReverTra Ace qPCR RT Kit (Toyobo, Osaka, Japan), following the supplier’s recommendation. On the basis of EST sequences, the gene-specific primers are shown in Supplemental Table S2 and used for amplification. qRT-PCR was performed using a Roche LightCycler 480 real-time PCR machine (Roche, Switzerland). The PCR reaction was run for 95 °C for 3 min, followed by 40 cycles of 30 s at 95 °C, 30 s at 58 °C and 1 min at 72 °C. The tomato Actin was used as an internal control. The relative gene expression was calculated as previously described (Livak and Schmittgen, 2001).

Determination of ATP Content

To determine ATP content in leaves, 0.1 g leaf samples was immediately placed in tubes containing 2 mL Tris–HCl (pH 7.8). The tubes with samples were then kept for 10 min at 100 °C in a boiling water bath for ATP extraction. One hundred μL of ATP extraction solution was used for analysis after sample cooling at room
temperature. The detailed procedures were performed following the instructions in the ATPlite 1step Assay System (Perkin Elmer, Waltham, USA).

Figure legends

Figure 1. The influence of systemic light signaling on the induction phase of net CO₂ assimilation (Pn; A, C-F) and the time required to reach 50% or 90% of the maximum Pn (T50 or T90) (B). In A and B, pre-illumination was provided to the shoot apex, upper leaves (UL, 5-6th leaves) and lower leaves (LL, 1st-3th) with white light (L) at an intensity of 300 μmol m⁻² s⁻¹ for 30 min before CO₂ assimilation was analyzed in the 4th leaves. In C, the apex was pre-illuminated with R or FR light for 30 min before CO₂ assimilation was analyzed in the 4th leaves. In D, the apex was pre-illuminated with different R/FR light ratios for 30 min, in which R light was kept at 300 μmol m⁻² s⁻¹, before CO₂ assimilation was measured in the 4th leaves. In E, reciprocal R/FR light pulse at 5 min interval with 6 cycles, was applied onto the apex before CO₂ assimilation was measured in the 4th leaves. In F, pre-illumination was provided by white light at an intensity of 300 μmol m⁻² s⁻¹ for 30 min before CO₂ assimilation was analyzed in the 4th leaves of the grafted plants. During the illumination treatments, the other parts of the plant were kept in darkness. Net photosynthetic rates are expressed as percentage of the maximum Pn. Plants without pre-illumination (dark, D) were used as controls. L, white light; R, red light; FR, far red light. Values are the means of four plants ± SD. Different letters indicate significant differences at P < 0.05 according to Tukey's test.

Figure 2. The effects of pre-illumination of the apex on FZY and IAA15 transcript levels and on the accumulation of IAA in grafted plants. A, FZY transcript levels in the apex. B, IAA accumulation in the apex. C, IAA accumulation and D, IAA15 transcript levels in the 4th leaves. Samples were harvested at 30 min after the pre-illumination for A-D. Plants without pre-illumination (dark, D) were used as controls. L, white light; phyA/WT, plants with phyA mutants as scion; phyB1B2/WT, plants with phyB1B2 mutants as scion; cry1/WT, plants with cry1 mutants as scion.
During the illumination treatments, the other parts of the plant were kept in darkness. Values are the means of four plants ± SD. Different letters indicate significant differences at $P < 0.05$ according to Tukey's test.

Figure 3. The rate of net CO$_2$ assimilation (Pn; A and C) during the induction phase of photosynthesis in 4$^\text{th}$ leaves and the time required to reach 50 or 90% of the maximum Pn (T50 or T90) (B and D). A and B, effects of IAA (10 μM) and NPA (10 μM) on the induction phase of CO$_2$ assimilation in the 4$^\text{th}$ leaves and the time required to reach T50 or T90. C and D, The induction of CO$_2$ assimilation in the 4$^\text{th}$ leaves and the time required to reach T50 or T90 of the grafted plants with dgt as scion or rootstock. D, Dark control; L, White light (300 μmol m$^{-2}$ s$^{-1}$) applied to the apex for 30 min before the measurement of CO$_2$ assimilation and the harvest of samples.

During the illumination treatments, the other parts of the plant were kept in darkness. Net photosynthesis rates are expressed as percentages of the maximum Pn. Values are the means of four plants ± SD. Different letters indicate significant differences at $P < 0.05$ according to Tukey's test.

Figure 4. The influence of scion genotypes and lighting onto apex on the levels of RBOH1 transcripts and H$_2$O$_2$ accumulation in the systemic leaves. A, The influence of different photoreceptor mutants as scions on the levels of RBOH1 transcripts in the systemic leaves of grafted plants. B, The influence of different photoreceptor mutants as scions on the accumulation of H$_2$O$_2$ in the systemic leaves of grafted plants. C, RBOH1 transcripts in the systemic leaves in plants with dgt as scion or rootstock. D, Accumulation of H$_2$O$_2$ in the systemic leaves in grafted plants with dgt as scion or rootstock. E, Cytochemical localization of H$_2$O$_2$ accumulation in mesophyll cells of systemic leaves with CeCl$_3$ staining in grafted plants with dgt as scion or rootstock. The apex was exposed to white light (L) at 300 μmol m$^{-2}$ s$^{-1}$ for 30 min or not (D), then the 4$^\text{th}$ leaves (SL) of the grafted plants were harvested soon for the analysis and cytochemical detection of H$_2$O$_2$. During the illumination treatments, the other parts of the plant were kept in darkness. Values are the means of four plants ± SD with different letters indicating significant differences at $P < 0.05$ according to Tukey's test in A-D. Arrows in the electron microscopy pictures indicate, H$_2$O$_2$-induced CeCl$_3$ precipitates in the apoplast of systemic leaves in E.
Figure 5. The requirement for RBOH1 in systemic light signaling from the shoot apex to distal leaves for the regulation of CO₂ assimilation rates and cyclic electron flow (CEF) during the induction phase of photosynthesis. A-C, Time-course of increases in net photosynthesis rate (Pn) during photosynthetic induction and the time required to reach 50% or 90% of the maximum Pn (T50 or T90) in the 4th leaves. Net photosynthetic rates are expressed as percentages of the maximum Pn. D and E, Typical traces of Chl a fluorescence quenching after 4-min actinic illumination (AL; 250 μmol m⁻² s⁻¹) in grafted plants with rboh1 mutant rootstocks. F, Relative Chl fluorescence was expressed as the rake ratio of the induction curve. Irradiance to the shoot apex (Top lighting) was performed with white light (L) at 300 μmol m⁻² s⁻¹ for 30 min. Plants without pre-illumination (dark, D) were used as controls. During the illumination treatments, the other parts of the plant were kept in darkness. Values are the means of four plants ± SD. Different letters indicate significant differences at P < 0.05 according to Tukey's test.

Figure 6. The effect of phyA, phyB1B2 and cry1 as scions and dgt as scion or rootstock on the irradiance to the shoot apex-dependent changes in cyclic electron flow (CEF). A, Typical traces Chl a fluorescence quenching after 4-min actinic illumination (AL; 250 μmol m⁻² s⁻¹) for grafted plants with different photoreceptor mutants as scions. B, Typical traces of Chl a fluorescence quenching after 4-min actinic illumination (AL; 250 μmol m⁻² s⁻¹) for plants with dgt mutant as scion. C, Relative Chl fluorescence was expressed as the rake ratio of the induction curve. Irradiance to the shoot apex (Top lighting) was performed with white light (L) at 300 μmol m⁻² s⁻¹ for 30 min. Plants without pre-illumination (dark, D) were used as controls. During the illumination treatments, the other parts of the plant were kept in darkness. Values are the means of four plants ± SD. Different letters indicate significant differences at P < 0.05 according to Tukey's test.

Figure 7. The influence of phyA, phyB1B2 and cry1 (A) and dgt (B) as scions in grafted plants, and RBOH1 suppression in the leaves of the rootstock (C) on the effects of irradiance to the apex on ATP accumulation in the 4th leaves. D, Dark control. L, White light (300 μmol m⁻² s⁻¹) was applied to the apex (top lighting) for
30 min. Plants without pre-illumination (dark, D) were used as controls. Samples were harvested after the 4th leaves were exposed to WL for 8 min with pre-illumination or not. During the illumination treatments, the other parts of the plant were kept in darkness. Values are the means of four plants ± SD. Different letters indicate significant differences at $P < 0.05$ according to Tukey's test.

Figure 8. The requirement for ORR in systemic light signaling effects on the induction phase of photosynthesis in distal tomato leaves, including the time course of increases in net photosynthetic rate (Pn) during photosynthetic induction, the time required to reach 50% or 90% of the maximum Pn, cyclic electron flow (CEF), H$_2$O$_2$ accumulation and ATP accumulation in the 4th leaves. A and B, Time course of increases in Pn during photosynthetic induction and the time required to reach 50% or 90% of the maximum Pn (T50 or T90) in 4th leaves. Net photosynthetic rates are expressed as percentages of the maximum Pn. C and D, the effect of ORR silencing on cyclic electron flow (CEF) in the 4th leaves during photosynthetic induction. E, the effect of ORR on H$_2$O$_2$ accumulation in the 4th leaves after pre-illumination of the apex with white light (L) at 300 μmol m$^{-2}$ s$^{-1}$ for 30 min. F, the effect of ORR on ATP accumulation in the 4th leaves during photosynthetic induction. Samples were harvested after the 4th leaves were exposed to L for 8 min with pre-illumination. D, dark control. L, White light (300 μmol m$^{-2}$ s$^{-1}$) was applied to the apex for 30 min before the measurement of CO$_2$ assimilation rates. During the illumination treatments, the other parts of the plant were kept in darkness. Values are the means of four plants ± SD. Different letters indicate significant differences at $P < 0.05$ according to Tukey's test.

Figure 9. A working model depicting how light perception at the apex initiates an auxin- and redox-dependent systemic signaling pathway leading to enhanced rates of photosynthetic induction in distal leaves. In this model, R perceived by phyB and FR perceived by phyA function antagonistically to regulate IAA biosynthesis. As a result of light-perception driven polar auxin transport (PAT), IAA triggers systemic H$_2$O$_2$ production in distal leaves which is able to accelerate cyclic electron flow (CEF) around PSI leading to increased ATP production. In this way, light perception by the apex can enhance photosynthetic CO$_2$ assimilation and resultant carbon gain in distal leaves.
Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Sketch map of the plant materials and experiment design.

Supplemental Figure S2. Effects of pre-illumination at different white light intensity on the induction of photosynthesis in the systemic leaves.

Supplemental Figure S3. Effects of pre-illumination on the induction of photosynthesis in plants with cry1 as scion.

Supplemental Figure S4. The influence of systemic light signaling on the time required to reach 50% or 90% of the maximum net photosynthetic rate (T50 or T90) in photosynthetic induction.

Supplemental Figure S5. Relative transcript of PIN1 in the 4th leaf as influenced by the pre-illumination.

Supplemental Figure S6. Effects of application of NPA on the induction of photosynthesis.

Supplemental Figure S7. Effects of pre-illumination on the induction of photosynthesis (A) and cyclic electron flux (CEF, B) in the 4th leaf in grafting plants with dgt as rootstock.

Supplemental Figure S8. Relative transcript of RBOH1 in the scion leaves and rootstock leaves in grafted plants used for the experiment (n=12).

Supplemental Figure S9. Time course of the net photosynthetic rate (Pn) and cyclic electron flux (CEF) in the 4th leaf as influenced by the suppressed transcript of RBOH1 in grafted plants.

Supplemental Figure S10. Cyclic electron flux and relative transcript of ORR in VIGS plants used for the experiment.

Supplemental Figure S11. CO2 assimilation rate for WT and phyB plants.

Supplementary Table 1. List of primer sequences used for qRT-PCR analysis.

Supplementary Table 2. Parameters used for detection of IAA and related compound by LC-MS/MS.

Ekengren SK, Liu Y, Schiff M, Dinesh-Kumar SP, Martin GB (2003) Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato. Plant J 36: 905-917

Ivanchenko MG, Os DD, Monshausen GB, Dubrovsky JG, Bednárová A, Krishnan N (2013) Auxin increases the hydrogen peroxide (H2O2) concentration in tomato (Solanum lycopersicum) root tips while inhibiting root growth. Ann Bot 112: 1107-1116

Copyright (c) 2020 American Society of Plant Biologists. All rights reserved.

Yang Y, Yan CQ, Cao BH, Xu HX, Chen JP, Jiang DA (2007) Some photosynthetic responses to salinity resistance are transferred into the somatic hybrid descendants from the wild soybean Glycine cyrtoloba ACC547. Physiol Plant 129: 658-669
