Running title: Linking auxin with photosynthesis

Title: Linking auxin with photosynthetic rate via leaf venation

Author Affiliation:

Scott A. M. McAdam¹, Morgane P. Élouët², Melanie Best¹, Timothy J. Brodribb¹, Madeline Carins Murphy¹, Sam D. Cook¹, Marion Dalmais³, Theodore Dimitriou¹, Ariane Gélinas-Marion¹, Warwick M. Gill⁵, Matthew Hegarty⁵, Julie M. I. Hofer², Mary Maconochie⁴, Erin L. McAdam¹, Peter McGuiness¹, David S. Nichols⁴, John J. Ross¹, Frances C. Sussmilch¹ and Shelley Urquhart¹

¹ School of Biological Sciences, University of Tasmania, Hobart, TAS, 7001, AUSTRALIA
² Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3EE, UNITED KINGDOM
³ Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Baitment 630, 91405 Orsay, FRANCE
⁴ Central Science Laboratory, University of Tasmania, Hobart, TAS, 7001, AUSTRALIA
⁵ Tasmanian Institute of Agriculture and School of Land and Food, University of Tasmania, Hobart, TAS, 7001, AUSTRALIA

Corresponding author:

Scott McAdam
School of Biological Sciences
University of Tasmania
Private Bag 55, Hobart, TAS, 7001
AUSTRALIA

Keywords: Auxin, photosynthesis, venation, vein density, leaf hydraulic conductivity

Author contributions: S.A.M.M. developed the research plans for and supervised measurements of anatomy, gas exchange and hydraulics and wrote the manuscript with contributions from J.M.I.H. and M.P.E. who designed the research plans for molecular and phenotypic characterisation of mutant alleles; A.G-M. performed auxin quantifications and auxin activity analyses writing relevant sections; S.D.C. prepared phylogenetic analyses, writing relevant sections; F.C.S. molecularly characterised a mutant allele and wrote relevant sections; E.L.M. acquired lines for auxin activity
analyses; M.B., T.D., M.M., S.U. and M.C.M. collected anatomical and physiological data; P.M. designed specialised software for anatomical analyses; M.D. developed a mutant allele; D.S.N. assisted in the quantification of auxin; W.M.G. undertook resin imbedding; M.H. supervised and assisted in the characaterisation of a mutant allele; T.J.B. assisted in experimental design; and J.J.R first observed the pss allele and complemented the writing.

Funding information: The TILLING platform was supported by the ERC Advanced Grant SEXYPARTH (MD). This work was supported by the Australian Research Council (grants DE140100946 (SAMM), DP140100666 (TJB) and DP130103357 (JJR)).

One-Sentence summary: Auxin influences maximum leaf photosynthetic rate through leaf venation and thus water transport capacity.

Abstract

Land plants lose vast quantities of water to the atmosphere during photosynthetic gas exchange. In angiosperms a complex network of veins irrigates the leaf, and it is widely held that the density and placement of these veins determines maximum leaf hydraulic capacity and thus maximum photosynthetic rate. This theory is largely based on interspecific comparisons and has never been tested using vein mutants to examine the specific impact of leaf vein morphology on plant water relations. Here we characterise mutants at the Crispoid (Crd) locus in Pisum sativum, which have altered auxin homeostasis and activity in developing leaves, as well as reduced leaf vein density and aberrant placement of free-ending veinlets. This altered vein phenotype in crd mutant plants results in a significant reduction in leaf hydraulic conductance and leaf gas exchange. We find Crispoid to be a member of the YUCCA family of auxin biosynthetic genes. Our results link auxin biosynthesis with maximum photosynthetic rate through leaf venation, and substantiate the theory that an increase in the density of leaf veins coupled with their efficient placement can drive increases in leaf photosynthetic capacity.

Introduction

A central requirement for photosynthesis on land is the uptake of CO₂ from the atmosphere. In order to assimilate just one molecule of atmospheric CO₂, plants on average lose 150 molecules of water (Wong et al., 1979). To supply this high demand for water an internal transport system comprised of xylem conduits irrigates the leaf. Higher rates of photosynthesis (A) are linked to higher rates of transpiration, thus demanding greater efficiency in the transport and delivery of water to evaporating leaf tissue (Brodribb and Feild, 2000; Tyree and Zimmermann, 2002; Sack and Scoffoni, 2013). The xylem transports water efficiently through non-living tubular cells in the leaf,
yet the last part of the pathway involves a significantly slower transfer through living mesophyll cells to the stomata. The length of this final non-xylem transfer has a major influence on the efficiency of the entire water transport system (Brodribb et al., 2007). Current theory posits that as hydraulic supply is essential for A, a reduction in the mean path-length for water flow through the mesophyll will increase leaf hydraulic conductance (K_{leaf}), which will increase stomatal conductance (g_s) and consequently theoretical maximum A (Sack and Frolé, 2006; Brodribb et al., 2007; Brodribb et al., 2010; Scoffoni et al., 2011; Scoffoni et al., 2016).

A core body of literature has identified a number of adaptations that reduce the terminal path-length for water flow in the leaf and thus increase K_{leaf}. These adaptations range from increasing the density of the veins per unit area of leaf (Brodribb et al., 2007; Sack et al., 2013; Caringella et al., 2015), modifying leaf thickness and bundle sheath extensions (Sack et al., 2003; Zsögön et al., 2015) through to the formation of accessory transfusion tissue (Brodribb and Holbrook, 2005), and the formation and placement of free-ending veinlets (FEVs) within areoles (the small area of leaf mesophyll bound on all sides by veins) (Scoffoni et al., 2011; Fiorin et al., 2016). Of these adaptations, vein density has been a major focus due to the high plasticity of this trait both within species (Carins Murphy et al., 2012; Scoffoni et al., 2015) and across vascular plant taxa (Boyce et al., 2009). Using this variation in vein density, strong correlations have been established between the terminal path length for water flow through the mesophyll and maximum K_{leaf} (Sack and Frolé, 2006; Brodribb et al., 2007; Brodribb et al., 2010; Sack et al., 2013; Scoffoni et al., 2016). These correlations are supported by single-gene vein density mutants in Arabidopsis thaliana and Solanum lycopersicum spanning a spectrum of vein modifications that influence K_{leaf} (Caringella et al., 2015; Zsögön et al., 2015).

The importance of K_{leaf} lies in its positive correlation with A. Selection for greater A and productivity is believed to have been the primary driver behind the > 10 fold increase in vein density that is observed in the fossil record over the past 400 million years, from the single-veined leaves of lycophytes to the highly complex, hierarchical networks of leaf veins in angiosperms (Brodribb et al., 2005; Boyce et al., 2009; Zhang et al., 2014). This increase in vein density is correlated with an equally substantial increase in maximum A across extant lineages that diverged during this major transition in leaf anatomy. Similar correlations between vein density, K_{leaf} and A can be observed within angiosperms (Brodribb and Feild, 2010; Carins Murphy et al., 2012; Scoffoni et al., 2015; Scoffoni et al., 2016).

However, this correlative evidence does not prove that changes in venation are responsible for changes in A, especially considering that stomatal and/or epidermal traits, which can also strongly
influence maximum leaf gas exchange, are highly coordinated with vein density (Brodribb and Jordan, 2011; Carins Murphy et al., 2012; Carins Murphy et al., 2016). Here we use the powerful tool of physiological genetics to address the relationships between venation, water transport and A. A number of mutants, particularly those related to auxin biosynthesis or signalling, have either reduced vein densities, aberrant vein topologies or defective vein formation (Tobeña-Santamaria et al., 2002; Scarpella and Meijer, 2004; Cheng et al., 2006; Cheng et al., 2007; Verna et al., 2015). Indeed, the auxin canalization theory, based on observations of a self-organising flux of auxin that initiates a vascular cambium, effectively predicts the formation and development of leaf vein networks (Sachs 1981; Lee et al., 2014; Rolland-Lagan and Prusinkiewicz, 2005). While the vein-patterning mutant resource has been invaluable for studying both auxin biosynthesis and the role of the auxin stream in leaf vascular formation, no study to date has examined whether these mutations affect vein networks independently of changes in stomatal density or anatomy, and if so, whether these vein defects influence K_{leaf}, maximum leaf gas exchange, and most importantly, A.

In this study we characterise mutations at the *Crispoid* (*Crd*) locus of *Pisum sativum* (Swiecicki, 1989; Berdnikov et al., 2000). We show that *Crd* corresponds to the *PsYUC1* gene, a member of the *YUCCA* gene family known to encode key auxin biosynthesis enzymes (Zhao et al., 2001; Mashiguchi et al., 2011). We comprehensively describe aberrations in the vein morphology, topology, maximum leaf gas exchange and K_{leaf} in the *crd-4* mutant. We use this mutant to test the hypothesis that maximum A is determined by the distance water must travel through the mesophyll. We show that maximum A is regulated by auxin through leaf venation.
Results
crispoid mutants carry lesions in the pea homologue of AtYUC1/AtYUC4/PhFLOOZY

Homozygous recessive crd mutants are easily distinguished from wild-type (Swiecicki, 1989; Berdnikov et al., 2000) plants due to a noticeable reduction in vein density (Figure 1A and 1B; Supplementary Table S1). Two mutants with similar defective venation phenotypes were identified and shown to be additional alleles of the Crd locus by complementation testing (Supplementary Figure S1). The recessive mutant alleles were named crd-1 (Swiecicki, 1989), crd-2 (Berdnikov et al., 2000), crd-3 (FN 1522/1) and crd-4 (UTILdb L905). In order to identify the gene affected in the crd mutants, we used a next generation RNA sequencing approach, focussing on the identification of any transcripts missing from the crd-3 allele, as most lesions characterised so far from the JI 2822-derived fast-neutron mutant population have been large, gene-sized deletions (Domoney et al., 2013). We assembled a reference transcriptome from the corresponding wild-type line (WT-3) comprising 79,693 contigs (N50 = 1,191bp), and used this reference transcriptome to map reads from triplicate crd-3 samples. We identified two contigs that showed significant differences in expression between the crd-3 and WT-3 genotypes (FDR corrected p-value < 0.05). Only one contig, 435 bp in length, was expressed in WT-3 samples but showed complete absence of expression in crd-3 mutant samples, consistent with a fast neutron-generated deletion. This contig corresponded to the entire last exon and portion of the 3' UTR of PsYUC1, a previously identified pea homologue of AtYUC1/AtYUC4/PhFLOOZY, encoding a 411 amino acid flavin-containing mono-oxygenase (FMO) protein (Tivendale et al., 2010).

In order to test whether PsYUC1 corresponds to the Crd locus, the four known crd mutant alleles were characterised further. We identified a 425G>A SNP in the crd-1 allele (Figure 1C), which would result in a 142G>D amino acid substitution within the ATG-containing motif 1 conserved between YUCCA proteins (Liu et al., 2012). A single 628G>A SNP was identified in the coding sequence of the crd-2 allele, which is predicted to cause an intron 1 splicing defect (Figure 1C). Accordingly, PCR analysis of crd-2 cDNA showed several transcripts of different sizes (Supplementary Figure S2). Sequencing confirmed that the largest of these transcripts contained the unspliced intron 1, which would encode a protein product with a frameshift at position 210 and premature termination after 244 amino acids (Supplementary Figure S3). A smaller mis-spliced crd-2 transcript was found to contain 4 bp of intron 1, which would also result in a frameshift at position 210 and premature termination of the protein product after 262 amino acids. No portion of the PsYUC1 gene could be amplified from crd-3 genomic DNA template, using PCR primer pairs spanning the full length of the
gene, suggesting that crd-3 is a null allele corresponding to complete deletion of *PsYUC1*.

(Supplementary Figure S4). The crd-4 allele was characterised as a 1730G>A SNP which would shift the intron 3 splice acceptor site 1 bp downstream relative to WT-4. This would cause a frameshift at
position 334 of the protein product, with 27 nonsense amino acids preceding premature termination of the protein.

Crd and *PsYUC1* co-segregated in an F3 population of 96 individuals, which is consistent with these representing the same locus. Furthermore, genetic mapping located *PsYUC1* on pea LG II, at a position consistent with the *Crd* locus. On the basis of the strong evidence provided by this RNA-seq data, co-segregation analysis and the significant lesions characterised in four independent alleles, we concluded that the *Crd* locus corresponds to the *PsYUC1* gene. Phylogenetic analysis revealed that of the twelve *FMO* genes most closely related to *AtYUC1/AtYUC4/PhFLOOZY* identified in the *P. sativum* gene atlas (Alves-Carvalho et al., 2015), *Crd* is the only gene that groups with members of the *AtYUC1/AtYUC4/PhFLOOZY/SIFZY* clade (Figure 1D), indicating the *Crd* is the *P. sativum* orthologue. This conclusion is further supported by the finding that there is also only a single *Medicago truncatula* gene, Medtr1g011630, that groups within this clade present in the genome of *M. truncatula* (Figure 1D). *M. truncatula* is a sequenced legume closely related to *P. sativum* and their genomes are collinear in this region (Tayeh et al., 2015). Reciprocal BLASTn searches of the *M. truncatula* genome (v4) and pea transcriptome databases showed that *Crd* is most similar to Med1g011630; they likely represent an orthologous pair.

Altered vein topology in crispoid mutants

A common feature of all *crd* mutant alleles is a reduction in vein density at both a macroscopic and microscopic level (Figures 1A, 1B, 2A and 2B; Supplementary Table S1). Major vein density is reduced in the mutant alleles, with a significant reduction in the density of either or both secondary and tertiary orders of veins in mutants compared to WT leaves (Figure 1A; Supplementary Table S1). A more comprehensive microscopic examination of *crd*-4 mutant leaves revealed a 20% reduction in minor vein density compared to WT-4 leaves (Figure 2C). This reduction is not associated with changes in stomatal density or stomatal size, with both of these traits being the same as in WT-4 plants (Figure 2D and E). The placement and development of FEVs in areoles was also severely altered in the *crd*-4 mutant (Figure 3). In WT-4 plants the mean distance from the stomata to the nearest vein showed little variability across the spectrum of areole sizes. In contrast, and consistent with observations of lower vein density, *crd*-4 mutants had a significantly greater mean distance from the stomata to the nearest vein compared to WT-4 across areole sizes (t-test, P<0.001), as well as a significantly greater variance in the mean distance from stomata to the nearest vein (F-test, P<0.001) (Figure 3). The development of FEVs was substantially reduced in *crd*-4 mutant plants compared to WT-4 plants (Figure 3B and 3C), which in addition to a lower vein density contributed to the greater mean distance from stomata to the nearest vein. In WT-4 plants, only 60% of the
smallest size class of areoles lacked FEVs, with all areoles larger than 0.15 mm² having these structures (Figure 3B). In *crd*-4 plants, all areoles less than 0.15 mm² lacked FEVs and only areoles greater than 0.5 mm² consistently developed FEVs in this mutant (Figure 3C).

Leaf hydraulic capacity and gas exchange in crispoid mutants

Maximum K_{leaf} was reduced in *crd*-4 mutant plants, being 30% lower than in WT-4 plants (Figure 4). Leaf gas exchange was also significantly reduced in the *crd*-4 mutant plants compared to WT-4 plants at both high and low VPD (Figure 4). Leaf gas exchange parameters including A and g_s in WT-4 plants were double that of *crd*-4 plants at low VPD, and significantly higher at high VPD (Figure 4).

Photosynthetic apparatus was not compromised by the *crd*-4 mutation with both WT-4 and *crd*-4 plants having similar A-internal CO₂ concentration (C_i) relationships (Supplementary Figure S5). The lower maximum A observed in *crd*-4 mutant plants is likely to have contributed to a reduction in shoot biomass observed in these plants compared to WT-4 plants (Supplementary Figure S6). Other factors may contribute to reduced growth in the *crd* mutants which, in addition to altered vein anatomy, have an occasional reduction or modification in tendril number as well as, rarely, leaflet/pinna number (Supplementary Figure S7 and S8).

Mutation in Crd reduces auxin activity and levels in expanding leaves

FMO enzymes are believed to catalyse the conversion of indole-3-pyruvic acid (IPyA) to auxin (indole-3-acetic acid (IAA)) (Mashiguchi et al., 2011). To visualise potential differences in auxin...
activity in the developing leaves of *crd-4* and WT-4 plants we utilised a *DR5::GUS* reporter construct, for which GUS expression is driven by the promoter of a highly active synthetic auxin response element (DeMason and Polowick, 2009). A substantial reduction in auxin activity was noted in the veins of developing leaves of *crd-4* DR::GUS plants compared with those of WT-4 DRS::GUS plants, by minimal GUS staining (Figure 5A). In contrast to WT-4 leaves, no GUS staining was observed young leaves (less than 4 mm in length) of *crd-4* DRS::GUS plants, indicating no auxin activity (Supplementary Figure S9). We further investigated this difference in auxin activity in developing leaves by quantifying the levels of both free IAA and the auxin conjugate, IAA-aspartate (IAAsp) in apical tissue containing developing leaves and meristematic tissue. Free IAA and IAAsp levels were reduced by approximately 50 and 80%, respectively, in the apical tissue of *crd-4* plants compared to WT-4 plants (Figure 5B and C). In contrast, a reduction in free IAA levels was not observed in whole shoots (Supplementary Figure S10).
Discussion

Current theory indicates that the terminal path-length for water flow through the mesophyll should govern maximum K_{leaf} (Buckley et al., 2015), g_s and thus maximum A (Brodribb et al., 2010).

However, both parts of this proposition are supported largely by correlative evidence, derived from natural variation within and between species (Sack and Frole, 2006; Brodribb et al., 2007; Brodribb and Feild, 2010; Scoffoni et al., 2015; Scoffoni et al., 2016). Recently, the influence of the distance through the mesophyll for water flow on K_{leaf} was demonstrated experimentally using a genetic approach (Caringella et al., 2015) and here we present genetic evidence that auxin, through leaf venation, acts as a regulator of both maximum leaf hydraulic supply and maximum A, and likely whole plant productivity. Our physiological analyses of the auxin-biosynthetic crd mutants indicate that altered vein density and topology results in an increase in the hydraulic path-length for water flow through the mesophyll, reduced maximum K_{leaf} and as a consequence maximum A. Our data support the conclusions derived from correlations that have highlighted the importance of an efficient internal leaf water transport system for maximising both g_s and A (Sack and Frole, 2006; Brodribb et al., 2007; Carins Murphy et al., 2012).

The effects of auxin deficiency on water transport, and consequently A, observed in the $crd-4$ mutant, occurred independently of any changes in stomatal anatomy, photosynthetic apparatus or

Figure 4. Mean photosynthetic rate and stomatal conductance (n=3, ±SE) measured in leaves of whole plants exposed to a vapour pressure deficit of 1 kPa or 2 kPa in WT-4 (black circles) and $crd-4$ mutants (open circles). Insert depicts mean maximum leaf hydraulic conductance (n=6; ±SE) in WT-4 and $crd-4$ mutant plants. Asterisks denote a significant difference in means (P<0.001).
intrinsic photosynthetic capacity. This breaking of coordination between vein and stomatal development is surprising, given that angiosperms are extremely efficient at coordinating hydraulic supply (the formation of veins) with demand (the density of stomata) (Brodribb and Jordan, 2011; Carins Murphy et al., 2016). The absence of a distinctive stomatal phenotype in the *crd-4* mutant plants is at odds with the suggestion that auxin transport influences stomatal development (Le et al., 2014). Interestingly, there have been no reports of aberrant vein development in the collection of stomatal patterning mutants (Berger and Altmann, 2000; Kanaoka et al., 2008), which suggests independent pools of auxin are involved in the developmental regulation of these two morphological features. The endogenous signal that may be responsible for coordinating vein and stomatal density in a developing leaf thus remains unknown.

The formation of FEVs

In addition to providing experimental evidence for the link between maximum K_{leaf} and A, our observations of the *crd-4* mutant revealed substantial rearrangements in the topology of the leaf vein network. We found that, unlike in WT-4 plants, both major and minor vein density were reduced in mutant plants and in contrast to a wide diversity of angiosperms species (Fiorin et al., 2016), the development of FEVs in both large and small areoles in *crd-4* plants was affected, as evidenced by a greater distance from stomata to the nearest vein in all size classes of areoles. Recent work has suggested that a strong selective pressure is placed on plants to develop leaves with a uniform distance from the nearest vein to the stomata (Fiorin et al., 2016). The correct positioning of FEVs minimises the mean distance from the minor veins to the nearest stomata. The mechanism regulating this key anatomical feature of reticulate veined angiosperm leaves is unknown; however auxin clearly plays a major role.
Auxin biosynthesis as a central regulator in the formation of veins

Auxin biosynthesis in plants occurs through a two-step pathway from the amino acid tryptophan to IAA via the intermediate IPyA (Zhao, 2012). These two steps are sequentially catalysed by tryptophan aminotransferases and FMOs from the YUCCA family (Tao et al., 2008; Mashiguchi et al., 2011). We show here that Crd is the only transcript recovered from P. sativum database searches that is embedded within the clade of FMO auxin biosynthetic genes including YUCCA1 and YUCCA4 from A. thaliana and FLOOZY from Petunia (Figure 1D). Consistent with this, we found reduced free IAA levels in crd-4 apical tissue when compared with WT-4 plants (Figure 5B). This finding demonstrates the importance of local auxin synthesis in the early stages of leaf and vascular development. In addition to reduced IAA levels, our observation of substantially lower levels of IAAsp in the apical tissue of crd-4, compared to WT-4 plants, is indicative of impaired IAA biosynthesis in the apical bud. Interestingly, we observed no difference in free IAA levels in whole shoot tissue of seedlings of the crd-4 mutant plants compared to WT-4 plants (Supplementary Figure S10), suggesting the reduction in auxin levels in these mutants is localised to the developing leaves. Our DR5::GUS reporter observations further support this, indicating that a reduction in IAA levels may be localised to the developing vascular tissue in expanding leaves of mutant plants (Figure 5A).

In wild-type plants, high auxin activity in vascular tissue of developing leaves has been reported previously in pea (DeMason et al., 2013) as well as Arabidopsis (Mattsson et al., 2003); in crd-4 leaves we found no GUS staining apparent in the developing veins (Figure 5A). Similar reductions in GUS staining have been observed in the veins of multiple yuc mutants in Arabidopsis lines carrying a DR5::GUS reporter (Cheng et al., 2006). Furthermore, systemic reductions in auxin activity were also noted in very young developing leaves of crd-4 mutant plants (Supplementary Figure S9).

The development of the leaf vascular network can be explained by the auxin canalization theory, which describes a self-forming auxin transport stream initiating the formation of a vascular cambium (Sachs 1981). The profound and highly dysfunctional vein phenotypes of mutants in PIN-FORMED (PIN) proteins strongly implicate auxin efflux as a major regulator of this auxin transport stream and thus the formation of leaf veins (Mattsson et al., 1999). As a result, modifications to the auxin transport stream by auxin efflux dominates models seeking to simulate vein patterning (Bennet et al., 2014; Feugier et al., 2005; Lee et al., 2014; Mitchison, 1980; Rolland-Lagan and Prusinkiewicz, 2005). Our results, however, add to previous evidence suggesting that, in addition to auxin efflux rates, the biosynthesis of this hormone also plays an important role in establishing a normal leaf vascular network (Tobeña-Santamaria et al., 2002; Cheng et al., 2006; Cheng et al., 2007). Indeed, Cheng et al. (2007) found that auxin deficiency on a background of reduced auxin efflux had an additive effect.
on compromised leaf vascular development. Whether current models for leaf venation patterning, based primarily on auxin efflux dynamics, can mimic venation patterns observed in auxin biosynthetic mutants or require substantial modification will be an interesting avenue for future research.

Auxin as a driver of maximum photosynthetic rate

The importance of *Crd*, a FMO, in normal vein formation and thus maximum A suggests that this clade of auxin biosynthetic genes have been central to the formation of complex, high density vein networks in the leaves of derived angiosperms, a prerequisite for the high productivity of these species (Scoffoni et al., 2016). Phylogenetic analysis of closely related FMOs suggests that duplication and functional specialisation in this family occurred prior to and during the diversification of angiosperms, allowing for the evolution of a clade of genes that play key roles in the development and topology of veins. This clade includes *Crispoid*, Ph*FLOOZY*, At*YUCCA1* and At*YUCCA4*, which all result in compromised leaf vascular development when mutated (Tobeña-Santamaria et al., 2002; Cheng et al., 2006; Cheng et al., 2007). Given the importance of auxin in the development of efficient reticulate venation patterns in angiosperms, it is an intriguing possibility that this hormone may have played an instrumental role in the Cretaceous radiation and ecological rise of the angiosperms. Indeed as the hydraulic pathway through the leaf accounts for the greatest limitation to maximum realised leaf gas exchange, whether enhancing auxin levels in a developing leaf will improve maximum productivity remains to be tested. However, our new mechanistic understanding of auxin as a key developmental determinant of maximum leaf gas exchange provides exciting potential for future increases in plant productivity.

Materials and Methods

Plant material

Previously described *crd* mutants include the first described allele (*crd-1; JI 2460*) selected after N-ethyl-N-nitrosourea mutagenesis of the line Paloma (WT-1) (Swiecicki, 1989) and the *crispoid-whip* allele (*crd-2; JI 3160*), found after ethyl methane sulfonate (EMS) mutagenesis of the line SG (WT-2) (Berdnikov et al., 2000). These mutants were obtained from the John Innes Pisum Germplasm collection. In this paper, two novel *crd* mutant alleles were identified. The *crd-3* mutant was identified as line FN 1522/1 in a fast neutron mutagenesis population of the JI 2822 line (WT-3) (Domoney et al., 2013). The *crd-4* mutant was observed incidentally in line 905, derived from an EMS mutagenesis population of the Caméor line in the UTILLdb programme (Dalmais et al., 2008). Initially this mutant was named *pipes in short supply* (*pss*). Allelism was confirmed by non-
complementation of the crd phenotype in F₁ progeny from the crosses of FN1522/1 x crd₁,
FN1522/1 x crd₂ and pss x crd₁ (Supplementary Figure S1). At least six generations of backcross
selection were undertaken to provide near-isogenic wild-type (WT-4) and crd-4 lines for
morphological and physiological experiments. Three generations of backcross selection were
undertaken to provide crd-3 lines for RNA sequencing.

crd-1, crd-2, crd-3 and respective wild-type plants (as well as plants from allelism tests between
these lines) were sown in a glasshouse in Aberystwyth, United Kingdom, under natural light between
June and September (5.2-9.5/18.2-22.4°C day/night temperatures), in peat-free Jiffy pellets 7C,
45x40mm (Jiffy products S.L. (pvt) Ltd) and after two weeks transferred into 12 cm long and 12 cm
diameter pots with John Innes potting mix number 3 (http://www.johninnes.info/about.htm)
supplemented with 30% chick grit. Jiffy pellets and pots were placed on a carpet which was watered
everyday, allowing the plants to absorb water through the carpet. WT-4 and crd-4 plants (and plants
for the allelism test with this line, as well as DRS::GUS reporter lines) were grown under the
controlled glasshouse conditions in Hobart, Australia, described by McAdam et al. (2016). All
morphological and physiological observations were made on fully expanded node 4 leaves, unless
specified otherwise.

RNA-sequencing and sequence data analysis to identify the crd-3 mutation

Total RNA from 20 day-old crd-3 and WT-3 shoot tips (three replicates each) was extracted using the
RNeasy Plant Mini Kit (Qiagen) and RNA concentration was determined using a Qubit fluorescence
spectrophotometer (Thermo Fischer). Each amplified library for sequencing was prepared from 2ug
of total RNA (Illumina TruSeq RNA v2 Sample Preparation Kit) and uniquely indexed to enable
multiplex sequencing. Libraries were analysed by gel electrophoresis and quantified using Qubit then
adjusted to 10nM in 0.1M Tris-HCl/0.01% (v/v) Tween 20 buffer and pooled equally prior to
denaturation/dilution in a final loading concentration of 8pM. Uniquely indexed, amplified libraries
prepared for RNA-seq were typically 300 bp in size. These were multiplexed and sequenced in
2x126bp format in a single lane of a HiSeq v4 high-output flowcell on an Illumina HiSeq2500
platform. Data in FASTQ format was analysed using the Genomics Workbench v6.5 software package
(CLJ Bio). RNA-seq data obtained ranged from 68.3 to 79.5 million reads per sample for crd-3
(average 73 million) and from 73 to 90 million reads for WT-3 (average 80.4 million). Following
trimming to remove low-quality sequence and reads <50bp, these were reduced to an average of
71.4 million reads for crd-3 and 78.9 million reads for WT-3, with an average read length of 113bp
for all samples. Overlapping WT-3 read-pairs were merged (~54% of each WT dataset), and this data
was used along with unmerged WT-3 read-pairs (21.85 Gbp in total) for de novo assembly of a reference transcriptome using the de Bruijn graph method with a k-mer value of 25. Maximum bubble size for conflict resolution within the graph was set at 50. Repeat regions within the graph were resolved using scaffolding based on paired-end sequences. Following initial contig assembly, reads were mapped back to contigs, requiring 50% identity and 80% similarity across the read. Ambiguous reads mapping to more than one contig were discarded. Insertion and deletion penalties were set at 3 and mismatch penalty at 2. Contigs from the initial assembly were removed if no reads mapped. Reads from all six individual samples were subsequently mapped to these reference contigs and used to calculate the number of reads mapped per kb of exon, per million mapped reads (RPKM) (Mortazavi et al., 2008). On average, 85% of reads from each sample could be mapped to reference contigs and used to generate RPKM expression values. RPKM values were analysed as a two-group experiment, crd-3 vs WT-3, to identify significantly different expression values between the two groups, with p-values adjusted using a false-discovery rate (FDR) (Benjamini and Hochberg, 1995). One significantly different (FDR corrected p-value < 0.05) contig sequence, showing complete absence of expression in crd-3 mutants, was used to query NCBI nucleotide and protein databases, using BLASTn and BLASTx, respectively, in order to identify the corresponding gene.

Sanger sequencing for mutant characterisation

For cDNA template preparation, total RNA was first extracted as for RNA-sequencing and treated with DNase (Ambion; WT-1 to -3, crd-1 to -3), or with the SV total RNA isolation system (Promega) including a DNase step (WT-4, crd-4), and quality-checked by gel electrophoresis. RNA was reverse-transcribed using oligo-dT primers and the Superscript III First-Strand Synthesis System (Invitrogen) in a total volume of 50 µl containing 0.4 µg RNA (WT-1 and crd-1) or 0.2µg RNA (WT-2 and crd-2; WT-3 and crd-3), or using the Tetro cDNA synthesis kit (Bioline) in 20 µL containing 1 µg RNA (WT-4 and crd-4). Genomic DNA template was extracted from leaves following the DNeasy Plant Mini Kit protocol (Qiagen; WT-1 to -3, crd-1 to -3) or using a CTAB-based method (WT-4, crd-4) (Allen et al., 2006). All primers are listed in Supplementary Table S3. Sanger sequencing of purified PCR products was performed at Aberystwyth University or by Macrogen Inc. (Korea).

Genetic Analysis

Plants grown in the glasshouse were scored for crd or WT phenotype. A WT-1 x crd-1 cross yielded 96 F3 progeny segregating 74:22 (3:1, χ² = 0.2, P > 0.6, n.s.). To test for co-segregation of the crd phenotype and the crd-1 mutation, phenotype and genotype scores of the F3 progeny were compared. Genomic DNA prepared from each plant was genotyped using a cleaved-amplified
polymorphic sequence (CAPS) marker for the Crd locus, amplified by PCR using primers 5F and 7R in Supplemental Table 1 and digested with Ddel. Digestion products were distinguished after gel electrophoresis (WT-1: 385 bp, 147 bp and 110 bp; crd-1: 385 bp and 257 bp). All plants homozygous for the crd-1 allele had the crd phenotype and no heterozygous plant nor any plants homozygous for the WT-1 allele had the crd phenotype ($\chi^2 = 93.2$, $P = 6 \times 10^{-21}$). The same CAPS marker was used to place the Crd locus on the genetic map of the JI 281 x JI 399 recombinant imbred population (Laucou et al., 1998) at position 130 cM on LG II, between markers cDNA39 and SNP190.

Phylogenetic analysis

The phylogenetic relationships between YUCCA-related genes in *Arabidopsis thaliana*, *Medicago truncatula* and *P. sativum* were assessed in conjunction with selected characterised genes from other species using amino acid sequences obtained from GenBank (www.ncbi.nlm.nih.gov) and the *P. sativum* gene atlas (Alves-Carvalho et al., 2015) (Supplementary Table S2). Sequences were aligned using the Clustal Omega algorithm (Sievers et al., 2011) and phylogenies were reconstructed using an LG substitution model (Le and Gascuel, 2008) based on a BIONJ tree using the statistical analysis software ‘R’. The packages APE (Paradis et al., 2004) and phangorn (Schliep, 2011) were used for sequence management and modelling, and ggtree (Yu et al., 2017) was used for tree visualisation.

Leaf anatomy

Leaves of crd-1, crd-2 and crd-3 mutant lines and respective wild-types were prepared for vein density measurements by incubating overnight in a solution of 3:1 ethanol:acetic acid (v v⁻¹) at room temperature. Leaves were then incubated for 1 h in a solution of 70% ethanol in water (v v⁻¹) and later transferred to 50% ethanol in water (v v⁻¹) until scanned at 600-1200 DPI (HP Scanjet 8200).

Paradermal section of WT-4 and crd-4 leaves were cleared in household bleach (50 g L⁻¹ sodium hypochlorite and 13 g L⁻¹ sodium hydroxide) and stained in 1% toluidine blue. Five fields of view (FOV) at 4x magnification (for vein density measurements, FOV: 3.47 mm²), five FOV at 20x magnification (for stomatal density measurements), sufficient images at 40x magnification to capture 50 stomata (for measuring stomatal size) and images at 20x magnification focusing on the abaxial stomatal surface and covering the entire areole (for calculating mean stomatal distance to the nearest vein) were taken using a Nikon Digital Sight DS-L1 camera (Melville, NY, USA) mounted on a Leica DM 1000 microscope (Nussloch, Germany). Vein density and stomatal density were measured using ImageJ, as the total length of leaf vascular tissue and total number of stomata per mm² of leaf area. Stomatal size was determined by measuring the longest distance parallel to the stomatal pore from the edges of the guard cells using ImageJ. The mean distance from stomata to
the nearest vein for 24 areoles, randomly selected to span the full size spectrum of areoles across
the leaf, was determined by making a composite image of each areole using the 20x objective FOVs
which were then assembled together in Adobe Photoshop. This composite image of each areole was
analysed using specifically designed software that calculated the mean distance to the nearest vein
for each stomata in the areole once veins and stomata were manually marked. Leaf cross-sections
were made from leaf segments spanning the midrib that were fixed in 2.5% buffered glutaraldehyde
under vacuum then dehydrated in acetone and embedded in Spurr's resin. Semi-thick sections (5-7
µm) were stained with toluidine blue O.

Leaf gas exchange and hydraulic conductance

One leaf from three individuals of both WT-4 and crd-4 were used to determine the response of leaf
gas exchange to variation in vapour pressure deficit (VPD). A portable infrared gas analyser (Li-6400;
Li-Cor Biosciences) was used to measure leaf gas exchange between 1130 and 1300 h when gas
exchange was expected to be maximal. Conditions within the leaf cuvette were maintained as close
to external conditions as possible (temperature at 22°C and light intensity at 1000 µmol m⁻² s⁻¹, VPD
was regulated relative to external conditions by controlling intake air flow through a desiccant
column). On the first day of measurement, VPD in the glasshouse was held at 1 kPa from dawn by a
dehumidifier with integrated humidity sensors (ADH-1000, Airrex Portable dehumidifier, Hephzibah
Co. Ltd.), on the second day of measurement VPD in the glasshouse was held at 2 kPa. On each day,
midday leaf water potential was measured in all plants using a pressure chamber. K_{leaf} was
measured in three leaves of WT-4 and crd-4 plants using the evaporative flux method and flow
meter according to Carins Murphy et al. (2012).

Shoot biomass and growth

Whole shoots of WT-4 and crd-4 plants (n=3), grown under the same glasshouse conditions, were
harvested 28 days after sowing and dried at 70°C for at least 62 h before being weighed (±0.0001 g).
Plant height in WT-1, crd-1, WT-3 and crd-3 plants (n=13-14), grown under the same glasshouse
conditions, was measured every 10 days (from 20 days after sowing) until plants had dried at 60 days
after sowing.

Quantification of free IAA and IAAsp levels

Growing apical tissue, including all tissues immediately proximal to the uppermost fully expanded
leaf of WT-4 and crd-4 plants, were harvested. Tissue was weighed (± 0.0001g; with approximately
25 mg harvested per replicate for both genotypes) and placed in 1 mL of sodium phosphate buffer
(50nM, pH7). Samples were homogenised with a bead mill for 2 minutes. To quantify the
endogenous compounds, stable isotope-labeled internal standards were added, these were 13C$_6$-IAA (Cambridge Isotope Laboratories, Tewksbury, MA, USA) and 15N, 2H$_5$-IAAsp (OlChemim, Olomouc, Czech Republic). Compounds were extracted according to Novák et al. (2012). In addition, free auxin was quantified in two week old whole seedlings of WT-4 and crd-4, which were weighed and harvested into 3 mL of 80% methanol in water (v v$^{-1}$) containing 250 mg L$^{-1}$ butylated hydroxytoluene. All samples were analysed by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) as described by Cook et al. (2016).

DR5::GUS staining for auxin activity

Transgenic DR5::GUS lines carrying the Crd-4 and crd-4 alleles were constructed by crossing the RTP9 line (DeMason and Polowick, 2009) with crd-4 mutant pollen. The segregating F$_2$ generation consisting of 42 Crd GUS+: 15 crd GUS+: 14 Crd GUS-: 7 crd GUS- (9:3:3:1, $\chi^2 = 1.0$, P=0.8, n.s.) was genotyped by PCR for DR5::GUS using the primers and conditions described by DeMason and Polowick (2009) and distinctive leaf morphology phenotypes were used to identify crd-4 plants.

Young developing leaflets less than 8 mm in length, (one per individual, harvested from 8 randomly selected individuals per genotype) were removed from within stipules enclosing the apical meristem and immediately immersed in GUS staining buffer containing 2 mM 5-bromo- 4-chloro-3-indolyl b-D-glucuronide, 100 mM sodium phosphate (pH 7.5), 0.5 mM potassium ferricyanide, 0.5 mM potassium ferrocyanide, 10 mM EDTA, and 0.1% (v/v) Triton X-100. Samples were vacuum-infiltrated on ice at 200 mbar for 45 minutes then incubated for 48 hours at 37°C. The staining buffer was refreshed after 24 hours. The samples were then cleared in 70% ethanol, dissected and photographed as described above. To ensure an unbiased methodological approach and morphological assessment of GUS staining in the leaves, the samples were stained, cleared and photographed without prior knowledge of the genotype using a double-blind methodology. After decoding the genotypes, staining was compared in 3 randomly selected leaflets of less than 4 mm in length from crd-4 and WT plants carrying the DR5::GUS reporter, in addition to a randomly selected leaflet less than 8 mm in length from each of the two genotypes.
Supplementary materials

Supplementary Figure S1: Representative images of leaves or leaflets from F1 plants of crosses between putative mutant lines carrying the crd phenotype.

Supplementary Figure S2. The G628A SNP in crd-2 affects PsYUC1 splicing.

Supplementary Figure S3. Alignment of Crispoid protein from three wild-type and mutant lines.

Supplementary Figure S4: No portion of Crispoid/PsYUC1 could be amplified from crd-3 mutant genomic DNA template.

Supplementary Figure S5. Photosynthetic rate/internal CO₂ concentration curves for WT-4 and crd-4 mutant plants.

Supplementary Figure S6. Mean dry shoot biomass and plant height in WT and crd plants.

Supplementary Figure S7. Missing and under-developed tendrils in the crd-1 mutant leaves.

Supplementary Figure S8. Missing and under-developed tendrils and pinnae in leaves of the crd-3 mutant.

Supplementary Figure S9. GUS expression in F2 segregant plants.

Supplementary Figure S10. Mean levels of free indole-3-acetic acid from whole aerial potions of 14 day old seedlings of WT-4 and crd-4 mutant plants.

Supplementary Table S1. Mean secondary and tertiary vein densities in leaves of allelic crd mutants and respective wild-types.

Supplementary Table S2. Accession numbers of proteins used for phylogenetic analysis.

Supplementary Table S3. Details of Crd primers used in this study.

Acknowledgements

The authors would like to thank Charly Potter for preparation of libraries for RNA-seq, Caron James for Sanger sequencing, Vincent Vadez for helpful discussions, Patricia Polowick for generously providing the RTP9 line carrying the DRS::GUS insert, Noel Ellis for statistical advice and comments on the manuscript and two reviewers for astute recommendations on auxin quantifications.
Figure Legends

Figure 1. (A) Representative leaflets from node 6 taken from each *crd* mutant allele and respective wild-type. A 1 cm scale marker for each pair is shown in the wild-type image of each pairing. (B) Aerial view of seedlings of WT-3 and *crd*-3 (left) and WT-4 and *crd*-4 (right) showing node 4 leaves uppermost in each panel. A 2 cm scale marker for each pair of images is shown on the mutant image of each pairing. Similar images or comprehensive phenotypic details of *crd*-1 and *crd*-2 seedlings are provided by Swiecicki (1989) and Berdnikov et al. (2000), respectively. (C) Diagram of *Crd* gene showing regions encoding conserved motifs and the positions of *crd* mutations. Exons are shown as boxes, nucleotides encoding FAD- and NADPH-binding motifs are shown as black bars, ATG-containing motif 1 is shown as a grey bar. (D) Phylogenetic analysis of YUCCA protein sequences from *M. truncatula* (Mt), *P. sativum* (Ps) and *A. thaliana* (At), as well as ToFZY (*Solanum lycopersicum*), PhFLOOZY (*Petunia x hybrida*). Bootstrap values (from 1000 iterations) for this BIONJ tree are displayed adjacent to nodes and the scale bar indicates genetic distance (0.25 changes/amino acid). Diamonds indicate collapsed clades belonging to the putative, but uncharacterised seed YUCCA clades. Accession numbers for all genes are given in Supplementary Table S2.

Figure 2. (A) A representative longitudinal image of leaf venation in WT-4 and *crd*-4 leaves (scale bar = 200 µm, red lines outline an areole, blue lines highlight free ending veinlets within the areole). (B) A representative cross-sectional image of WT-4 and *crd*-4 mutant leaves through the midrib (scale bar = 200 µm). (C) Mean vein density (n=7 leaves, ±SE), (D) stomatal density (n=7 leaves, ±SE) and (E) stomatal size (n=50 stomata, ±SE) in WT-4 and *crd*-4 mutant plants. Asterisks denote significant difference in means (P<0.001).

Figure 3. (A) The relationship between the mean distance from stomata to the nearest vein (including free ending veinlet) in an areole (±SE) and areole area for WT-4 (open circles) and *crd*-4 mutant (closed circles) plants. Free ending veinlet occurrence across size classes of areoles in (B) WT-4 and (C) *crd*-4 mutant plants; bars represent the percentage of areoles that fall within each size class, with hatching depicting the areoles in that size class that had free ending veinlets.

Figure 4. Mean photosynthetic rate and stomatal conductance (n=3; ±SE) measured in leaves of whole plants exposed to a vapour pressure deficit of 1 kPa or 2 kPa in WT-4 (black circles) and *crd*-4 mutants (open circles). Insert depicts mean maximum leaf hydraulic conductance (n=6; ±SE) in WT-4 and *crd*-4 mutant plants. Asterisks denote a significant difference in means (P<0.001).
Figure 5. (A) GUS expression in expanding pinnae of representative F2 segregant plants (less than 8 mm in length) taken from WT-4, DR5::GUS and crd-4, DR5::GUS plants (scale bar = 2 mm). (B) Mean levels of IAA and (C) IAAsp from apical tissue of WT-4 and crd-4 mutant plants (n=4, ±SE). Asterisks denote a significant difference in means (P<0.001).

Brodribb TJ, Feild TS, Jordan GJ (2007) Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiol 144: 1890-1898

Brodribb TJ, Jordan GJ (2011) Water-supply and -demand interactions during leaf acclimation of Nothofagus cunninghamii...

Pubmed: Author and Title
CrossRef: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
CrossRef: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
CrossRef: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
CrossRef: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
CrossRef: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
CrossRef: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
CrossRef: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
CrossRef: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
CrossRef: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
CrossRef: Author and Title
Google Scholar: Author Only Title Only Author and Title

Zhao Y (2012) Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol Plant 5: 334-338

Pubmed: Author and Title
CrossRef: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
CrossRef: Author and Title
Google Scholar: Author Only Title Only Author and Title

Pubmed: Author and Title
CrossRef: Author and Title
Google Scholar: Author Only Title Only Author and Title