Article title: Flavan-3-ols are an Effective Chemical Defense against Rust infection

Corresponding author: Almuth Hammerbacher, Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa, Email: almuth.hammerbacher@fabi.up.ac.za, Phone: +27 12 460 3934, Fax: +27 12 460 3960

Research area: Biochemistry and Metabolism

Short title: Catechin and Proanthocyanidins are Antifungal Defenses in Poplar

Authors: Chhana Ullah,a Sybille B. Unsicker,a Christin Fellenberg,b C. Peter Constabel,b Axel Schmidt,a Jonathan Gershenzon,a and Almuth Hammerbachera,c,1

aDepartment of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany; bDepartment of Biology, Centre for Forest Biology, University of Victoria, Victoria, BC V8W 3N5, Canada; cDepartment of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa; 1To whom correspondence should be directed.

One sentence summary: Black poplar synthesizes flavan-3-ols as anti-fungal defenses against the foliar rust fungus (Melampsora larici-populina).

Author contributions: CU, SU, JG and AH designed the research. CU performed the experiments and analyzed the data, assisted by AH. AS produced the transgenic black poplar lines. CPC and CF produced the transgenic hybrid aspen lines and conducted inoculation experiment with rust fungus M. aecidiodes. CU, JG and AH wrote the article. All authors read and approved the manuscript.
Funding information: This work was supported by the Jena School for Microbial Communication (JSMC) and the Max Planck Society (MPG).

ABSTRACT
Phenolic secondary metabolites are often thought to protect plants against attack by microbes but their role in defense against pathogen infection in woody plants has not been comprehensively investigated. We studied the biosynthesis, occurrence and anti-fungal activity of flavan-3-ols in black poplar (*Populus nigra* L.), which include both monomers, such as catechin, and oligomers known as proanthocyanidins (PAs). We identified and biochemically characterized three leucoanthocyanidin reductases (LAR) and two anthocyanidin reductases (ANR) from *P. nigra* involved in catalyzing the last steps of flavan-3-ol biosynthesis leading to the formation of catechin [2,3-*trans*-(+)-flavan-3-ol] and epicatechin [2,3-*cis*-(−)-flavan-3-ol] respectively. Poplar trees that were inoculated with the biotrophic rust fungus (*Melampsora larici-populina*) accumulated higher amounts of catechin and PAs than uninfected trees. The *de novo* synthesized catechin and PAs in the rust infected poplar leaves accumulated significantly at the site of fungal infection in the lower epidermis. *In planta* concentrations of these compounds strongly inhibited rust spore germination and reduced hyphal growth. Poplar genotypes with constitutively higher levels of catechin and PAs as well as hybrid aspen overexpressing the *MYB134* transcription factor were more resistant to rust infection. Silencing *PnMYB134*, on the other hand, decreased flavan-3-ol biosynthesis and increased susceptibility to rust infection. Taken together, our data indicate that catechin and PAs are effective anti-fungal defenses in poplar against foliar rust infection.

Keywords: plant-pathogen interactions, *Populus nigra*, phenolics, flavonoids, condensed tannins
INTRODUCTION

Plant phenolics are a diversified group of secondary metabolites that serve as structural components of plant cells, coloring agents of flowers and fruits, protection against biotic and abiotic stresses and as important agents in human medicine (Trettter, 2005; Pereira et al., 2009; Dixon, et al., 2013). Most of these compounds are derived from the aromatic amino acid phenylalanine via the phenylpropanoid pathways. The major subclasses of phenylalanine-derived phenolic compounds include the chalcones, flavones, flavonols, isoflavones, anthocyanidins, proanthocyanidins, stilbenes, coumarins, furanocoumarins, hydroxycinnamic acids, monolignols and lignans (Bennett and Wallsgrove, 1994; Kutchan et al., 2015).

Proanthocyanidins (PAs, also known as condensed tannins) are phenolics that are major end products of the flavonoid biosynthetic pathway in the tissues of many terrestrial plant species. The building blocks of oligomeric or polymeric PAs are commonly known as flavan-3-ols which have the characteristic C₆-C₃-C₆ flavonoid backbone (Dixon, 2005). Flavan-3-ols differ structurally from other flavonoids by having a nearly saturated C ring with an additional hydroxyl group on the 3-position which as a chiral center gives rise to cis- and trans-forms of the basic PA-forming units, 2,3-trans-(±)-catechin or 2,3-cis-(−)-epicatechin. The structural diversity of PAs is further increased by the hydroxylation patterns of the B-ring (mono-, di- or tri-hydroxylation) and the degree of polymerization (up to more than 100 flavan-3-ol units) (Ferreira and Slade, 2002; Hammerbacher et al., 2014).

The biosynthesis of flavan-3-ols and PAs has been studied in many plant species (Xie et al., 2004; Bogs et al., 2005; Paolocci et al., 2007; Pang et al., 2013). The last steps of monomer biosynthesis are catalyzed by two distinct enzymes. For the biosynthesis of 2,3-trans-(±)-flavan-3-ols (e.g. catechin), leucoanthocyanidins are reduced directly to the corresponding flavan-3-ol (Tanner et al., 2003; Pang et al., 2013) by leucoanthocyanidin reductase (LAR). For the biosynthesis of the 2,3-cis-type compounds (e.g. epicatechin), leucoanthocyanidins are converted to anthocyanidins by anthocyanidin synthase (ANS) and then reduced by anthocyanidin reductase (ANR) to make the corresponding 2,3-cis-flavan-3-ol (Xie et al., 2004). Recently, LAR has also been shown to convert 4β-(S-cysteinyl)-epicatechin to free epicatechin in...
Medicago truncatula and so plays an important role in regulating the length of PA polymers (Liu et al., 2016). Both LAR and ANR are NADPH/NADH-dependent isoflavone-like reductases belonging to the reductase-epimerase-dehydrogenase superfamily.

Both monomeric flavan-3-ols and PAs have been shown to contribute to plant defense against microbial pathogens, insects and mammalian herbivores, as well as abiotic stresses (reviewed by Dixon, 2005). Especially in woody plant species, catechin and PAs accumulate upon pathogen infection and are thought to represent antimicrobial defenses (Barry et al., 2002; Danielsson et al., 2011; Hammerbacher et al., 2014; Miranda et al., 2007; Nemesio-Gorriz et al., 2016). In support of this hypothesis, pre-treatment of roots with catechin induced systemic resistance in shoots against the bacterial pathogen Pseudomonas syringae (Prithiviraj et al., 2007). Catechin has also been shown to quench bacterial quorum-sensing (QS) and biofilm formation by inhibiting the QS-regulated gene expression involved in the production of virulence factors (Vandeputte et al., 2010). Furthermore, catechin and epicatechin have been reported to inhibit appressorial melanization of the necrotrophic fungus Colletotrichum kahawae causing coffee-berry disease (Chen et al., 2006). However, strong evidence for a defensive function, including in vitro and in planta studies are lacking for most systems. In addition, the spatial and temporal dynamics of monomeric flavan-3-ol and PA accumulation in planta upon challenge with fungal pathogens are not well understood.

Poplars (Populus spp.) are widely distributed tree species in the Northern hemisphere and are considered good model organisms for woody plant research due to the availability of the complete genome of Populus trichocarpa (Torr. & Gray) (black cottonwood) and established platforms for genetic, molecular and biochemical research (Tuskan et al., 2006; Jansson and Douglas, 2007). Poplar species are also economically important plantation trees due to their fast growth, use in bioenergy, pulping and plywood production (Stanturf et al. 2001; Berguson et al. 2010) and role in phytoremediation of contaminated soil as well as municipal landfills (Schnoor et al., 1995; Robinson et al., 2000). However, under natural conditions poplars are challenged by a plethora of microbial pathogens (Newcombe et al., 2001).
Poplar rust fungi (*Melampsora* spp.) are the most devastating foliar fungal pathogens of poplar and cause substantial losses in biomass production (Newcombe et al., 2001; Duplessis et al., 2009). The two most destructive species of rust fungi infecting poplar plantations in North America and Eurasia are *M. medusae* and *M. larici-populina*, respectively (Newcombe, 1996). *Melampsora* species are obligate biotrophic fungi, belonging to the phylum Basidiomycota (Pucciniomycotina, Pucciniomycetes, Pucciniales, Melampsoraceae). Their heteroecious life cycle is very complex such that two completely different hosts (poplar and larch) and five different spore-types (uredinia, telia, basidia, pycnia and aecia) are required for completion of the life cycle. The asexual stage of these fungi occurs during early spring and summer on poplar and is characterized by formation of yellow pustules on the leaves (uredinia) that produce copious amounts of asexual urediniospores with which the fungus can infect new poplar hosts (reviewed by Hacquard et al., 2011). With the availability of the complete genomes of both poplar (Tuskan et al., 2006) and the rust fungus (Duplessis et al., 2011), this system has become an important resource for studying plant-pathogen interactions.

Poplars synthesize and accumulate several classes of phenolic metabolites, including salicinoids (phenolic glycosides), anthocyanins, PAs and low molecular weight phenolic acids and their esters in leaves, stems and roots (Pearl and Darling, 1971; Palo, 1984; Tsai et al., 2006; Boeckler et al., 2011). Salicinoids and PAs are generally the most abundant secondary metabolites and together can make up to 30-35% of leaf dry weight (Lindroth and Hwang, 1996; Tsai et al., 2006). Although very little is known about the biosynthesis of salicinoids, advances have been made on research into PA biosynthesis in poplar. Three candidate genes encoding LARs and two genes encoding ANRs were discovered in the *P. trichocarpa* genome (Tsai et al., 2006), and a subset of these genes has been genetically characterized in *P. tomentosa* (Yuan et al., 2012; Wang et al., 2013). Furthermore, biosynthesis and accumulation of PAs have been shown to be transcriptionally regulated either positively or negatively by MYB transcription factors which have been characterized in poplar (Mellway et al., 2009; Yoshida et al., 2015; Wang et al., 2017). However, biochemical characterization of poplar LAR or ANR proteins catalyzing the two different branches of flavan-3-ol biosynthesis, and regulatory studies of the corresponding genes have not been attempted so far in black poplar.
Although PAs are constitutively present in poplar species, their biosynthesis can be up-regulated by insect herbivory and mechanical wounding (Peters and Constabel, 2002; Mellway et al., 2009). The role of PAs in defense against leaf-chewing insects is controversial and these substances have been frequently shown to be ineffective (Hemming and Lindroth, 1995; Ayres et al., 1997; Boeckler et al., 2014). On the other hand, PAs might be an effective defense against pathogen infection. In hybrid poplar, genes of the flavonoid pathway are activated transcriptionally upon infection with the rust fungus *M. medusae*, leading to the accumulation of PAs (Miranda et al., 2007). Overexpression of a PA biosynthetic gene *PtrLAR3* in Chinese white poplar (*P. tomentosa* Carr.) increased resistance against *Marssonina brunnea* causing leaf spot (Yuan et al., 2012). However, further evidence is required to substantiate the function of flavan-3-ols in poplar defense against pathogens.

In this study we provide evidence that flavan-3-ols are effective chemical defenses in poplar against foliar rust fungus infection. Catechin and PAs as well as the transcript abundances of the three LAR and two ANR genes involved in their biosynthesis increased significantly upon fungal infection of both stems and leaves of black poplar. We also show that these compounds accumulate at the site of infection. *In vitro* assays using artificial medium amended with physiologically relevant concentrations of catechin and PAs revealed that these compounds are directly toxic to poplar pathogens. *In planta* infection assays using genetically manipulated poplar as well as natural black poplar genotypes with different levels of flavan-3-ols further supported the role of catechin and PAs in the defense of black poplar against pathogen attack.
RESULTS

Catechin and Proanthocyanidins (PAs) Accumulate in the Leaves of Black Poplar after Rust Fungus Infection

To determine if there is any change in the contents of phenolic compounds in black poplar (P. nigra) leaves upon fungal infection, a controlled infection experiment was conducted on young clonal saplings (line NP1) using the rust fungus M. larici-populina. Poplar plants were inoculated thoroughly by spraying with an aqueous suspension of rust spores, and in parallel control plants were treated with water. Six fully expanded mature leaves from each rust-infected or control plant were sampled and pooled together (Fig. 1A). The leaf extracts were analyzed by high performance liquid chromatography coupled to a diode array detector or fluorescence detector (HPLC-DAD/FLD) or to a tandem mass spectrometer (LC-MS/MS).

Catechin (2,3-trans-(+)-flavan-3-ol) accumulated in significantly higher amounts (approximately 2.5- to 3-fold) in rust-infected leaves in comparison to uninfected control plants from 3 to 21 days post inoculation (dpi) (ANOVA, \(p < 0.001 \), Fig. 1B). The isomeric epicatechin (2,3-cis-(-)-flavan-3-ol) also accumulated in greater amounts in rust-infected leaves compared to control leaves at 7 dpi (ANOVA, \(p < 0.001 \), Supplemental Fig. S1), but the concentration was much lower than that of catechin. The concentrations of flavan-3-ol dimers, mainly PA-B1 [2,3-cis-(-)-epicatechin-(4β→8)-2,3-trans-(+)-catechin], significantly increased 2.5- to 3-fold after rust infection (ANOVA, \(p < 0.001 \), Fig. 1C). We detected and quantified PA oligomers containing flavan-3-ol monomeric size units up to 8 and found that these also significantly increased to a similar degree after rust infection (ANOVA, \(p < 0.001 \), Fig. 1D; Supplemental Fig. S5). Furthermore, we analyzed the cell-wall-bound PAs from the residues after methanol and acetone extractions using the acid butanol method (Porter et al., 1986). Interestingly, the insoluble PAs also accumulated in higher amounts in rust-infected poplar leaves than the healthy leaves over the course of infection (ANOVA, \(p < 0.001 \), Fig. 1E). Reductive hydrolysis of soluble PAs into their respective monomeric units revealed that epicatechin and catechin levels increased after rust infection (ANOVA, \(p < 0.001 \), Fig. 1F).

We quantified other major phenolics in black poplar by HPLC-DAD to determine whether these compounds also accumulate upon rust infection. The concentration of the flavonoid quercetrin increased significantly after rust infection, whereas rutin (quercetin-3-O-
glucoside-rhamnoside) significantly decreased (ANOVA, \(p < 0.001 \), Supplemental Fig. S1).

Figure 1. Catechin and Proanthocyanidins Accumulate in Rust-Infected Black Poplar Leaves as Antimicrobial Defenses. (A) Experimental design for controlled inoculation with rust fungus using 50 young black poplar trees (left). At each time point, five plants from each treatment were harvested with each replicate consisting of the same six leaves from a single plant as depicted (right). (B) Catechin (2,3-trans- (+)-flavan-3-ol monomer) and (C) PA dimers were measured by LC-MS/MS. (D) PA oligomers with up to 8 monomeric units were measured by HPLC-FLD. (E) Cell wall-bound PAs were measured from the residue remaining after extraction of soluble catechin and PAs using the butanol-HCl method. The amounts of PA oligomers and cell wall-bound PAs are expressed as catechin and procyanidin-B1 equivalents respectively. Data were analyzed by two-way ANOVA (factors were: \('t' \) = treatment, \('t' \) = time post inoculation, and \('t' \times 't' \) = interaction effect). Corresponding \(p \)-values are indicated in the graphs. (F) Composition of flavan-3-ol monomeric units after hydrolytic cleavage of PAs. Metabolite data (catechin and epicatechin) were analyzed separately by two-way ANOVA (\(p < 0.01 \), \(p < 0.01 \), \(p < 0.01 \); for both metabolites). (G) Colonization of rust fungus in poplar leaves at different times after inoculation. The relative growth of the rust fungus was determined with qRT-PCR by normalizing poplar UBQ gene expression to quantify the relative growth of the fungus. Data were analyzed by one-way ANOVA followed by Tukey's post-hoc test and different letters denote statistically significant differences at 95% confidence. Data presented in all graphs are mean ± SE (\(N = 5 \)).
Black poplars are well known to synthesize high amounts of salicinoids (Boeckler et al., 2013) which we quantified using HPLC-DAD. Salicin, the simplest salicinoid, accumulated in greater amounts in *P. nigra* leaves after rust infection at 21 dpi compared to uninfected control leaves (ANOVA, *p* = 0.017, Supplemental Fig. S1). However, concentrations of the other salicinoids, salicortin, homaloside D and tremulacin, decreased in the rust-infected leaves in comparison to the leaves of corresponding control plants (ANOVA, *p* ≤ 0.005 for all salicinoids, Supplemental Fig. S1).

To determine the degree of colonization of the fungus in black poplar leaves, we quantified the mRNA levels of the rust actin gene and normalized this quantity to the mRNA levels of poplar *Ubiquitin (PtUBQ)*. The abundance of rust fungus in the leaves was low until 3 dpi, and then increased exponentially at 7 dpi coinciding with the appearance of visible symptoms (rust uredia) on the lower surfaces of infected leaves (ANOVA, *p* < 0.001, Fig. 1G).

Three LAR and two ANR Enzymes Catalyze the Last Steps of Flavan-3-ol Biosynthesis in Black Poplar

To better understand the biosynthesis of flavan-3-ols in black poplar, we utilized the genome of *P. trichocarpa* to identify genes involved in the last steps of the pathway which are specific to flavan-3-ol formation. As previously identified by Tsai et al. (2006) we found three LAR and two ANR candidate protein sequences from *P. trichocarpa* in GenBank and the *Populus trichocarpa* v3.0 database (Phytozome 11, https://phytozome.jgi.doe.gov/pz/portal.html) using blast searches targeting proteome data. The coding sequences of putative *PtLAR* and *PtANR* genes were retrieved from Phytozome, and open reading frames identified and amplified from *P. nigra* cDNA using primers designed from *P. trichocarpa* mRNA sequences. All three LAR and the two ANR genes are located on separate chromosomes in the *P. trichocarpa* genome. To investigate the biochemical functions of *PnLARs* and *PnANRs*, the genes were cloned and heterologously expressed in *Escherichia coli*. To determine LAR enzyme activity, each *PnLAR* and an apple dihydroflavonol reductase (*DFR*) gene were co-expressed in *E. coli* cells, and the catalytic activities of the proteins were determined by incubating crude protein extracts with the substrate taxifolin (a dihydroflavonol) and NADPH. The DFR protein converted taxifolin to leucocyanidin which was then used by all three *PnLAR* enzymes to make the final product.
catechin (Fig. 2B). To characterize ANR enzymes, heterologously expressed *Pn*ANR was mixed with an expressed *Petunia* anthocyanin synthase (ANS) and incubated with the substrate catechin and known cofactors. The *Petunia* ANS converted catechin to cyanidin which was then used as a substrate by both *Pn*ANR enzymes to form epicatechin (Fig. 2C).

Figure 2. Heterologous Expression and Biochemical Characterization of Enzymes Involved in the Last Steps of Flavan-3-ol Biosynthesis in Black Poplar. (A) Biosynthetic route to monomeric flavan-3-ols and proanthocyanidins. (B) Catalytic activities of leucoanthocyanidin reductase enzymes (LARs). A construct for each LAR gene was co-expressed with an apple dihydroflavonol reductase (MdDFR) in the BL-21 strain of *Escherichia coli*. The crude protein extracts were assayed with taxifolin (a dihydroflavonol) as a substrate. The apple DFR converted taxifolin to leuco cyanidin which was subsequently converted to catechin by the poplar LAR proteins, as measured by LC-MS. (C) Catalytic activities of anthocyanidin reductase enzymes (ANRs). Each ANR construct was expressed in BL-21 and the crude extract of the expressed protein was used for the enzymatic assay. The crude extract of a *Petunia* anthocyanidin synthase (ANS) was also added to each assay and catechin was added as substrate (shown with a dashed line arrow). The ANS converted catechin to cyanidin, which was then used as substrate for the poplar ANRs to produce epicatechin. The numbers on top of the chromatograms correspond to the compounds shown in Figure 2A (left).
To determine the evolutionary relationships of the LAR and ANR enzymes from black poplar and other plant species, a maximum-likelihood tree was constructed (Fig. 3). The closely related protein sequence *PtrDFR* (an ortholog of apple DFR) was included in the tree. The consensus tree was noticeably bifurcated with two clades: one for all the LARs and the other for all the ANRs. The DFR was more closely related to the ANRs. Within each LAR and ANR cluster, enzymes from gymnosperms and angiosperms clustered separately. The *PnLAR3* characterized in this study was closely related to *TcLAR* (*Theobroma cacao*) with 57% identity at the amino acid level, while *PnLAR1* and *PnLAR2* clustered with LAR proteins from a range of plant species. LAR1 and LAR2 shared 84% similarity in their sequences at the amino acid level and may have resulted from a recent duplication. Within the ANR cluster, both *PnANR1* and *PnANR2* clustered together and showed the greatest similarities with *MtANR1* (*Medicago truncatula*) and *LcANR1* (*Lotus corniculatus*). *PnANR1* and *PnANR2* share 62% and 64% similarity with *Arabidopsis AtANR* (*AtBAN*), respectively, on the basis of their deduced amino acid sequences.

To gain a broader understanding of flavan-3-ol biosynthesis in black poplar at the organ level, we analyzed the constitutive levels of monomeric flavan-3-ols and PAs in leaves, petioles, stems and roots of six month old black poplar saplings (Supplemental Fig. S2). Concentrations of catechin, PA dimers and polymers were lower in the leaf lamina than in the stems and roots. Leaf petioles also contained significantly higher levels of catechin and PAs than the leaf lamina (Supplemental Fig. S2). The concentration of epicatechin was very low in all parts of the plant (Supplemental Fig. S2). Steady-state transcript levels of the three *PnLAR* and two *PnANR* genes were also measured in different tissues. Transcript levels of *PnLAR* were 2-3-fold higher in fully expanded mature leaves and stems in comparison with expanding young leaf laminae and roots (Supplemental Fig. S3). While higher levels of *PnANR1* transcript were found in all leaf laminae than other tissues (Supplemental Fig. S3), the *PnANR2* was expressed at higher levels in fully expanded mature leaves and older stems (Supplemental Fig. S3).

Increases in Catechin and PA in Rust-Infected Black Poplar Leaves are Transcriptionally Regulated

11

Downloaded on February 6, 2021. - Published by https://plantphysiol.org
Copyright (c) 2020 American Society of Plant Biologists. All rights reserved.
To determine if the accumulation of catechin and PAs during rust infection is also transcriptionally regulated in a wild *P. nigra* clone, we measured the relative transcript abundances of the *PnLAR* and *PnANR* biosynthetic genes characterized in this study as well as *PnMYB-134*, a R2R3 domain transcription factor known to regulate PA biosynthesis in poplar (Mellway et al., 2009), by qRT-PCR from the same samples used to measure phenolics. The gene expression data revealed that transcription of the three *PnLAR* genes, the two *PnANR* genes, and the MYB134 gene was activated after rust fungus infection (ANOVA, *p* < 0.001 for all genes, Fig. 4). *PnLAR* and *PnANR* transcripts increased 3 to 4-fold in the rust infected leaves at 7 days post inoculation compared to the corresponding control plants (Fig. 4A to 4E). Interestingly, the transcription factor *PnMYB134* responded quickly after 6 hours with the highest expression at 7 dpi, which is a faster response than for the genes encoding the enzymes of flavan-3-ol biosynthesis (Fig. 4F).
Poplar Genotypes with Constitutively Higher Levels of Catechin and PAs are More Resistant to Rust Fungus Infection

To elucidate the defensive role of catechin and PAs in planta during poplar-rust interactions, we tested different poplar genotypes for their susceptibility to *M. larici-populina* infection during June to October, 2014. From this preliminary screening, five genotypes ranging...
from highly susceptible to moderately resistant were then selected for controlled inoculation under natural environmental conditions in summer (June-August) 2015 (Supplemental Table S1).

The constitutive levels of catechin were at least 2-3 times higher in the moderately resistant genotypes (Dorn, Kew and Bla) in comparison to the highly susceptible genotypes (NP1 and Leip) (ANOVA, \(p < 0.001 \), Fig. 5A). All genotypes showed increased levels of catechin in leaves after rust infection (ANOVA, \(p = 0.002 \), Fig. 5A). The levels of PAs in leaves were also significantly different among the genotypes (ANOVA, \(p < 0.001 \)) and followed the same trend observed for catechin concentration with moderately resistant genotypes containing higher levels than sensitive genotypes before rust infection with an increase in concentration in response to rust infection (Fig. 5B to 5C). Cell wall-bound insoluble PAs also accumulated to higher levels in resistant clones compared to the susceptible clones (ANOVA, \(p < 0.001 \), Fig. 5D). The minor flavan-3-ols, epicatechin and gallicatechin, did not change significantly after rust infection (Supplemental Fig. S6). While higher basal levels of epicatechin were found in the susceptible NP1 and Leip genotypes (Supplemental Fig. S6), more constitutive gallicatechins were found in the resistant Dorn, Kew and Bla genotypes (Supplemental Fig. S6). After acid hydrolysis of PAs, approximately 20-30% more gallicatechin and epigalicatechin were recovered in samples taken from the moderately resistant genotypes (Supplemental Fig. S7). Total amounts of flavan-3-ol monomers increased approximately 25% in all genotypes after rust infection 8 days post inoculation (Supplemental Fig. S7). To confirm the resistance of the poplar genotypes to rust fungus infection in this study, we quantified relative growth of the fungus in rust-infected samples from all five genotypes. The highest rust colonization was found in the genotype NP1 whereas the lowest was found in Kew and Bla genotypes (ANOVA, \(p < 0.001 \), Fig. 5E). Transcript levels of two LARs were around two-fold lower in the susceptible genotype NP1 than the resistant genotypes with a significant induction after rust infection. The level of ANR transcripts was also lower in the NP1 and Dorn genotypes than in all other genotypes (Supplemental Fig. S7).

To compare the detrimental effects of rust infection in different poplar genotypes, we allowed a subset of plants of the same age from each genotype to grow under natural conditions for a complete season in 2015. Susceptible, low flavan-3-ol plants were heavily infected and
defoliated by rust damage during mid-summer to early-autumn (July-September), but plants of the high flavan-3-ol, moderately resistant genotypes were healthy until November. After seasonal leaf drop in winter, we measured biomass gain in all genotypes. The low flavan-3-ol
genotypes gained 20-30% more biomass than the resistant genotypes containing high flavan-3-ols (ANOVA, $p < 0.001$, Fig. 5F). Our results indicated that rust infection can be detrimental to biomass gain over a full growing season, but high flavan-3-ol levels presumably mediate resistance and prevent any decrease in biomass.

Catechin and PAs are Toxic to *M. larici-populina* in vitro

To investigate the direct antifungal activities of rust-induced levels of catechin and PAs, an *in vitro* bioassay was developed for the biotrophic rust fungus *M. larici-populina* (Supplemental Fig. S9). The spore germination and hyphal growth in medium containing the test compounds were monitored under an inverted light microscope. The spores started to germinate after 4-5 hours of incubation in control medium, but germination was strongly inhibited in medium supplemented with catechin or PAs (Fig. 6A to 6B). After 24 h, germinated spores on control slides were highly branched whereas mycelial branching was inhibited on the catechin or PA supplemented slides (Fig. 6C to 6D). The germination percentage in control medium was 89.3% while catechin and PA supplementation significantly reduced germination to 21.1% and 13.3% respectively (ANOVA, $p < 0.001$, Fig. 6E). The average hyphal length on the control slides was 60 µm while the lengths in the catechin and PA treatments were 17 to 20 µm respectively (Fig. 6F). Decreased spore germination, reduced hyphal length and decreased branching on catechin- and PA-supplemented slides indicate that flavan-3-ols are directly toxic to the poplar rust fungus. We also tested different concentrations of catechin and PAs on rust spore germination *in vitro*. Both catechin and PAs inhibited spore germination at 0.25 mg mL$^{-1}$ but significant inhibition was only observed from 0.5 mg mL$^{-1}$ (Supplemental Fig. S10). Furthermore, we tested the anti-fungal activity of epicatechin, salicin, naringenin and quercetin against *M. larici-populina*. Naringenin inhibited spore germination, but the other compounds did not show any effect on rust spore germination *in vitro* (Supplemental Fig. S10).

Overexpression of the *MYB*-134 Transcription Factor in Hybird Aspen Increased Flavan-3-ol Levels and Reduced Rust Susceptibility

The poplar *MYB134* gene encodes an R2R3 MYB transcription factor, a positive regulator of PAs in poplar. MYB134 overexpression in transgenic *Populus* leads to a strong accumulation of PAs and catechin, but anthocyanins and other flavonoids are minimally affected.
To directly test the effects of this over-accumulation of flavan-3-ols and PAs on *Melampsora* resistance, we propagated three previously characterized *P. tremula x alba* MYB134-overexpressing lines and inoculated these with *Melampsora aecidiodes*, a closely related poplar rust that infects this hybrid. As expected, concentrations of catechin, PA dimers and PA oligomers were enhanced and up to 3-8 fold higher in the MYB134 overexpressing lines.
(ANOVA, $p < 0.01$, Fig. 7A to 7C), and Myb134 expression was 4-16 fold higher compared to the wild type (ANOVA, $p < 0.01$, Fig. 7D). To determine rust colonization in the transgenic lines and controls, we quantified *Melampsora* growth using qRT-PCR. Growth of the rust fungus *M. aecidiodes* was significantly reduced in the MYB134-overexpressing lines in comparison with wild type (ANOVA, $p = 0.002$, Fig. 7E), and roughly inversely proportional to catechin and PA concentrations.
RNAi-Mediated Knockdown of \textit{MYB-134} Transcription Factor in Black Poplar

\textbf{Downregulates Catechin and PA Biosynthesis, and Leads to Increased Rust Susceptibility}

To complement these findings in black poplar, a native host of the rust fungus \textit{M. larici-populina}, we down-regulated the \textit{MYB-134} gene in this species (\textit{P. nigra} NP1) by RNA-interference to reduce the biosynthesis of flavan-3-ols. We obtained two independent transgenic lines with lower flavan-3-ol monomer and PA levels. Transcript abundances of \textit{MYB134} in the \textit{MYB-RNAi} lines were significantly lower than in the controls (ANOVA, \(p = 0.006\), Fig. 8D). The concentrations of catechin, PA dimers and oligomers were approximately 40-50 \% lower in the RNAi lines in comparison with the vector control and wild type plants (ANOVA, \(p < 0.001\), Fig. 8A to 8C). The colonization of infected leaves by the rust fungus was up to 50\% higher in the two \textit{PnMYB134-RNAi} lines compared to the vector control and wild-type plants (ANOVA, \(p = 0.003\), Fig. 8E). Epicatechin and naringenin concentrations were also significantly lower in the \textit{PnMYB134}-silenced lines (ANOVA, \(p < 0.001\)) but quercetrin did not change (\(p = 0.92\)). The concentrations of the salicinoids such as salicin (\(p < 0.001\)), salicortin (\(p = 0.02\)) and tremulacin (\(p = 0.015\)) slightly increased in the transgenic lines but homaloside D (\(p = 0.38\)) did not change significantly (Supplemental Fig. S11).

\textbf{Localization of Catechin and PAs at the Site of Rust Infection in Poplar Leaves}

During compatible interactions in poplar hosts, rust spores germinate within 6-12 hours after inoculation and establish an intercellular mycelial network within 2-4 days without any visible symptoms (Hacquard et al., 2011). To better understand the role of catechin and PAs against rust infection, we studied their localization in poplar leaves. Tissue-specific localization of PAs was shown in many plant species by staining with 4-dimethylaminocinnamaldehyde (DMACA) which produces a blue color (Kao et al., 2002; Abeynayake et al., 2011; Jun et al., 2015). Histochemical staining with DMACA revealed that catechin and PAs were densely localized in the upper and lower epidermal layers and vascular bundles of the leaf in rust-resistant poplar genotypes (Fig. 9C to 9E). In comparison, a low level of staining was observed in the susceptible genotypes NP1 and Leip (Fig. 9A to 9B). After infection with rust fungus, the pattern of flavan-3-ol localization in the leaf changed, with more staining observed in the lower epidermis and near to stomata (site of fungal invasion) and parenchyma cells (Fig. 9G to 9K). Staining of leaf petioles from a susceptible genotype revealed that catechin and PAs in this tissue...
were also localized in the epidermis and vascular bundles (Fig. 9F and 9L). Darker staining was observed in the epidermal layer of rust infected petioles as well (Fig.9L). Taken together histochemical staining revealed that catechin and PAs are mainly localized in the epidermis of poplar leaf laminae and accumulate at the site of rust infection. Since poplar synthesizes a variety of salicinoids and flavonoid-derived compounds, we tested the specificity of the DMACA. We found that DMACA was very specific to flavan-3-ol monomers and PAs and did not react with other major poplar phenolics (Supplemental Fig. S12).
Figure 9. Localization of Flavan-3-ols and PAs in Poplar Leaves with or without Rust Infection. Sections (20 μm thickness) were made from the first fully expanded matured leaf LPI-5 and were stained with 4-dimethylaminocinnamaldehyde (DMACA). (A-E) Cross sections (leaf lamina) of the genotype NP1, Leip, Dom, Kew and Bla respectively (F) Cross section of NP1 petiole. (G-K) Cross sections (leaf lamina) of NP1, Leip, Dom, Kew and Bla genotypes respectively after rust infection (L) Petiole cross section of NP1 infected with rust fungus 5 days post inoculation. Scale bars 100 μm (K, for all leaf laminae) and 200 μm (F, L). Triangles indicate fungal penetration and colonization sites. [ue = upper epidermis, le = lower epidermis, vb = vascular bundles, s = stomata, sp = spongy parenchyma, pa = palisade parenchyma, e = epidermis, c = cortex].
DISCUSSION

Poplars synthesize a range of ecologically important secondary metabolites including volatile organic compounds, such as terpenoids and nitrogenous compounds (Irmisch et al., 2013; Clavijo McCormick et al. 2014), as well as high quantities of phenolic metabolites including salicinoids, flavonoids, proanthocyanidins (PAs) and hydroxycinnamate derivatives (Tsai et al., 2006; Miranda et al., 2007; Boeckler et al., 2011; Yuan et al., 2012). Although the biosynthesis and anti-herbivore activity of these compounds have recently come under close scrutiny (Barbehenn and Constabel, 2011; Irmisch et al., 2013; Boeckler et al., 2013; Irmisch et al., 2014; Boeckler et al., 2014), it is still not known if any are effective defenses against pathogens of various life-styles.

Because chemical defense against plant pathogens has been mostly studied in cultivated rather than wild species and in herbaceous rather than woody plants, we chose to investigate a wild, woody host, black poplar, during its interaction with a foliar rust fungus commonly observed in poplar floodplain forests in Europe. During this study, we assembled comprehensive in planta evidence showing that monomeric (catechin) and polymeric (PAs) flavan-3-ols are chemical defenses in poplar against poplar rust (Melampsora spp). Furthermore, we demonstrated that these compounds accumulate preferentially at the site of fungal infection and are directly toxic to this obligate biotrophic fungus at physiological concentrations.

Concentrations of Both Monomeric (Catechin) and Polymeric (PAs) Flavan-3-ols Increase in Poplar after Rust Infection

Upon infection with the biotrophic rust fungus M. larici-populina, increased levels of catechin and PAs were observed in rust-infected leaf laminae over the course of infection. The isomeric form of catechin, known as (-)-epicatechin, increased in leaves after rust infection. Among the other flavonoids commonly produced by poplar, quercetin increased in rust infected leaves at the later stages of infection. These results are in agreement with previous studies in poplar which showed that several flavonoid biosynthetic genes are transcriptionally activated in poplar after rust colonization especially during the sporulation phase (Miranda et al., 2007; Azaiez et al., 2009). Studies also demonstrated that biosynthesis of flavan-3-ols and PAs increased after infection by fungal endophytes in poplar (Pfabel et al., 2012) as well as after
infection by pathogenic fungi in other plant species such as bilberry (Koskimäki, et al., 2009) and *Fagus crenata* (Yamaji and Ichihara, 2012). Increased accumulation of flavan-3-ols has also been recorded in Norway spruce during infection by necrotrophic fungi (Danielsson, et al., 2011; Hammerbacher, et al., 2014). A range of plants, including poplar, therefore respond to pathogen attack by accumulating both monomeric flavan-3-ols and PAs.

However, not all phenolics increase after pathogen infection. Salicinoids, an abundant class of phenolics in poplar leaves that are known to defend against herbivores (Boeckler et al., 2011), decreased after rust infection, except for salicin which was slightly induced at the later stages of infection. Salicinoids are thus not likely to be deployed by poplar for pathogen defense. They might decline because of their metabolism by the fungus as a potential food source; the sugar moiety in particular could be cleaved and assimilated by the pathogen (Hammerbacher et al., 2013). A more likely explanation, however, is that lower levels of salicinoids in rust-infected leaves result from elevated flavan-3-ol biosynthesis which was previously shown to reduce salicinoid biosynthesis. Up-regulation of PA biosynthesis by over-expressing the transcription factor MYB134 led to lower salicinoid content in hybrid poplar (Mellway, et al., 2009; Kosonen et al., 2012; Boeckler et al., 2014). In the absence of fungal infection or other biotic stresses, there are typically no dramatic differences in flavan-3-ol or salicinoid concentrations between young expanding and fully expanded mature leaves (Supplemental Fig. S2 and S4) (Massad et al., 2014), but this generalization does not apply after herbivore or pathogen attack. In line with previous studies, our phenolic measurements suggest that there is a trade-off between flavan-3-ol (catechin and PAs) versus salicinoid biosynthesis in poplar leaves (Boeckler et al., 2014), implying a trade-off between anti-pathogen and anti-herbivore defense.

Transcripts of Flavan-3-ol Biosynthetic Genes Increase in Response to Fungal Infection

The biosynthesis of flavan-3-ols has been well characterized in many plant species both genetically and biochemically. Two distinct enzymes, LAR and ANR, are involved in catalyzing the last steps of the pathway to flavan-3-ol monomers in PA-producing plants (Bogs et al., 2005; Pang et al., 2013; Liao et al., 2015). Genes encoding LAR and ANR can occur as single genes for example in *Arabidopsis thaliana* (Xie et al., 2004) or as multi-gene families, for example in grapevine and tea (Bogs et al., 2005; Pang et al., 2013). Analysis of the *P. trichocarpa* genome
revealed 3 loci encoding LAR proteins and two loci encoding ANR proteins. This is more than the two PtLAR and one PtANR (Yuan et al., 2012; Wang et al., 2013) which were previously reported and genetically characterized in P. trichocarpa. We confirmed the enzymatic activity of the proteins encoded by all loci by heterologous expression and in vitro enzyme assays and showed that they are likely involved in the catalysis of the last steps of flavan-3-ol biosynthesis in native black poplar (P. nigra). Our phylogenetic analysis shows that ANRs and LARs are two distinct classes of enzymes, and that DFR is more related to ANRs than LARs. Similar evolutionary relationships for ANR and LAR proteins were shown by other authors (Pang et al., 2013; Wang et al., 2013).

Transcript levels of all three PnLAR and two PnANR genes increased in rust-infected black poplar leaves over the course of infection. Previous microarray data also demonstrated that some of the genes of this pathway are transcriptionally induced in hybrid poplar after infection with M. medusae (Miranda et al., 2007). As previously reported for hybrid poplar (Mellway et al., 2009), the transcription factor PnMYB134, a positive regulator of PA biosynthesis, was also transcriptionally induced and responded quickly after rust inoculation in our study. Our transcript and metabolite analyses suggest that both LAR and ANR branches of flavan-3-ol biosynthesis are transcriptionally activated upon rust infection. Monomeric catechin synthesized from the LAR-branch is freely available and accumulated in black poplar while free ANR-dependent epicatechin was only observed at very low concentrations. Recovery of epicatechin after hydrolysis of PAs indicates that epicatechin might contribute to the extension of PA chains. Similar mechanisms were also observed in grape and Norway spruce (Bogs et al., 2005; Hammerbacher et al., 2014).

High Levels of Catechin and PAs are Associated with Resistance against Rust Fungus Infection

Various constitutive and induced plant phenolic compounds are thought to contribute to defense against microbial pathogens (Osbourne, 1996; Lattanzio et al., 2006), but not all phenolics have this effect (Henriquez et al., 2012; Zhang et al., 2015). In order to determine if flavan-3-ols have this function in planta, we screened five poplar genotypes for resistance against rust infection and quantified their phenolic contents. Interestingly, genotypes moderately
resistant to rust infection had constitutively higher amounts of catechin and PAs in their leaves than susceptible genotypes and substantially higher induced levels of these flavan-3-ols were found after artificial inoculation with rust. Similar results have been shown in other woody plant species. For example, crude extract from coffee cultivars resistant to coffee rust (Hemileia vastatrix), which contained higher amounts of PAs in comparison to the extracts of susceptible cultivars, was found more effective in inhibiting H. vastatrix uredospore germination (de Colmenares et al., 1998). In addition, higher levels of constitutive and induced (+)-catechin were found in a rust-resistant willow (Salix myrsinifolia) clone compared to levels in susceptible clones (Hakulinen et al., 1999). Recently, Wang et al (2017) showed that P. tomentosa increased its PA levels under elevated temperature as well as after infection by the necrotrophic fungus Dothiorella gregaria.

To further explore the role of catechin and PAs as antifungal defenses in poplar, we conducted an infection experiment using M. aecidiodes, in hybrid aspen (P. tremula X alba) overexpressing the MYB134 transcription factor. Previously, this gene was characterized and shown to be a positive regulator of PA biosynthesis in hybrid poplar and shown to be inducible by biotic and abiotic stresses (Mellway et al., 2009). Rust susceptibility was significantly reduced in MYB134-overexpressing lines accumulating higher levels of flavan-3-ols than the wild type plants. To investigate the role of catechin in PAs in European black poplar and rust system, we silenced the PnMYB134 transcription factor by RNAi in P. nigra NP1. We observed a 40-60% reduction of monomeric flavan-3-ols and PAs in black poplar after silencing PnMYB134. Silenced lines were more susceptible to rust fungus M. larici-populina in whole-plant infection trials (Fig. 8E), confirming the antifungal activity of these compounds in planta. Overexpression of MYB134 in a hybrid poplar (P. tremula × tremuloides) caused a significant reduction in salicinoid concentration (Mellway et al., 2009; Boeckler et al., 2014), but such a trade-off was not observed in the MYB134 silenced P. nigra lines accumulating reduced levels of flavan-3-ol and PAs. Silencing of flavan-3-ol biosynthesis is metabolically less costly for poplar than constitutive overexpression or accumulation of flavan-3-ols under pathogen attack. In agreement with our results, overexpression of a PA biosynthetic gene in P. tomentosa resulted in increased resistance against necrotrophic fungi (Yuan et al., 2012, Wang et al., 2017). A negative association between fungal endophyte communities and the levels of condensed tannin
was also shown in North American poplar species (Whitham et al. 2006). However, infection by
necrotrophic fungi was higher in *P. angustifolia* (Busby et al., 2013), which is known to
accumulate high amounts of condensed tannins (Whitham et al. 2006). These conflicting results
suggest that poplar-rust interactions are very complex and that other factors such as pathogen
virulence and non-phenolic defenses including surface immunity and effector-triggered
immunity might contribute to different outcomes of the infection process. Further investigation
is necessary using genotypes containing high PAs under natural conditions and also different rust
fungus strains.

**Site and Magnitude of Flavan-3-ol Accumulation is Consistent with a Defensive Role
against Fungal Pathogens**

Accumulation of flavan-3-ol monomers and PAs is often limited to specific tissue types
and developmental stages of plant organs. For example, in white clover (*Trifolium repens*)
flavan-3-ol monomers and PAs are localized in the epidermal layers of floral organs
(Abeynayake et al., 2011), while in *Arabidopsis thaliana*, PAs mainly accumulate in the seed
coat especially in the endothelial cells (Debeaujon et al., 2003). Biosynthesis and spatial
distribution of these compounds in specific tissues or organs might have ecological significance.
Our histochemical staining with DMACA revealed that flavan-3-ols are mainly localized in the
leaf epidermis and vascular tissues (Fig. 9). Moderately resistant genotypes that contained higher
levels of catechin and PAs had a more restricted localization of these compounds in the
epidermal layers compared to the susceptible genotypes. After rust infection, high amounts of
flavan-3-ols were also observed in the parenchyma cells. The epidermal localization of flavan-3-
ols could provide a defensive barrier to early fungal colonization of the leaf. Dark PA staining
was also observed in the lower surface of the aspen leaves (Kao et al., 2002) and in hybrid poplar
stems infested by the galling aphid *Phloeomyzus passerinii* (Dardeau et al., 2014).

The effectiveness of an epidermal flavan-3-ol barrier depends on the inhibitory effect of
these compounds on rust development. Using a novel *in vitro* bioassay technique, we showed
that physiologically relevant concentrations of both catechin and PAs strongly inhibited rust
spore germination and reduced hyphal growth. However, epicatechin did not show antifungal
activity even at a 10 times higher concentration than found in poplar leaves (Supplemental Fig.
S9) although this compound is an extender unit in PA chains (Fig. 1F). Our data therefore clearly show that catechin and PAs are active antifungal metabolites in poplar and might serve as an effective chemical defense at the surface or in other tissues of the plant.

In conclusion, black poplar, a perennial woody species of Europe, Asia and northwestern Africa, was shown to synthesize monomeric and polymeric flavan-3-ols as a phenolic defense against the rust fungus *M. larici-populina* in concentrations demonstrated to have anti-fungal activity *in vitro* at sites on the epidermis and in vascular tissue where they form a barrier to fungal invasion. Rust resistant poplar genotypes used in this study constitutively accumulate more flavan-3-ols than susceptible genotypes. Transgenic black poplar trees with reduced levels of catechin and PAs were more susceptible. Future work is needed to investigate such topics as the mode of action of flavan-3-ols on fungi, how infection triggers flavan-3-ol accumulation and if other poplar metabolites act in defense against fungal infection.
METHODS

Plant Materials

Black poplar (P. nigra L. clone NP1) was propagated from stem cuttings and grown in the greenhouse (22°C day temperature and 19°C night temperature, 60% relative humidity, 16h/8h light/dark cycle) in 2L pots having a 1:1 mixture of sand and soil (Klasmann potting substrate; Klasmann-Deilmann, Geeste, Germany). Other poplar genotypes were supplied by the Northwest German Forest Research Station (Nordwestdeutsche Forstliche Versuchsanstalt) in Hann. Münden in 2014 as stem cuttings. Plants were regenerated under greenhouse conditions and subsequently multiplied in large quantities. The transgenic black poplar plants used in this study were amplified by micropropagation as described by Irmisch et al. (2013), and then multiplied by stem cuttings. Transgenic hybrid aspen (P. tremula × alba INRA 717-1-B4) were grown and maintained as described by Mellway et al. (2009). Plants with a height of approximately 80-100 cm were used for inoculation with fungi. Some plants from each genotype were grown outside the greenhouse to allow natural infection by M. larici-populina. The disease resistance and susceptibility levels were scored based on the number of uredinia on the abaxial leaf surface as well as by qRT-PCR (list of genotypes with resistance level is given in Supplemental Table S1).

Fungal Pathogens and Culture Maintenance

Virulent M. larici-populina was collected from a natural population of black poplar located in the floodplain forest of an island in the Oder River near Küstrin-Kietz, Germany. The fungus was multiplied from a single uredium on a susceptible poplar genotype (P. nigra NP1). The infected plants were covered with polyethylene bags in order to collect spores without allowing any condensation of water inside the bags, which might lead to spore germination. The urediniospores were collected from infected poplar leaves using fine brushes and placed in 2 mL micro centrifuge tubes. To dry spores, the tube was inserted in a closed beaker containing dry silica gel for 2-3 days with the cap open. The spores were then stored at -20°C until further use. This spore preservation technique avoided continuous in planta culturing of this obligate biotrophic fungus. Uredospores of M. aecidiodes were collected from a local P. alba tree.

Inoculation of Poplars with M. larici-populina or M. aecidiodes
Freshly harvested or frozen urediniospores of *M. larici-populina* were used for inoculation experiments. Young black poplar trees (approx. 80 cm height and 15-20 leaves) grown in the greenhouse were transferred to a climate chamber (22°C day temperature and 19°C night temperature, 70% relative humidity, 16h/8h light/dark cycle) 7 days before inoculation. For the kinetic infection experiment, 50 individual black poplar trees of approx. equal size were chosen. Each young potted tree was placed in a separate receptacle (18 cm diameter) for watering independently. Half of the plants (N = 25) were inoculated by thoroughly spraying *M. larici-populina* spore suspension (± 10^5 spores mL^-1) onto the abaxial leaf surfaces. Control plants were sprayed with water (N = 25). Immediately after spraying, each plant was covered with a polyethylene terephthalate bag (Bratschlauch, Toppits; Germany) to maintain high humidity and kept in the dark to facilitate spore germination. After 18 hours, the bags were opened from the top to ensure proper aeration. Five time points were chosen for sampling based on the life-style of the fungus (Hacquard et al., 2011). Samples were taken at 6 hours post inoculation (hpi), and 3, 7, 14, and 21 days post inoculation (dpi). At each time point, 5 individual plants were sampled from rust-infected and water-sprayed treatments. Six leaves at the same position (LPI5-10) on each plant were harvested and pooled together to obtain one biological sample and immediately flash frozen under liquid N_2. Unless otherwise stated, similar inoculation and sampling techniques were followed for the other rust infection experiments but only one time point (8 dpi) was used for harvesting leaves. Inoculation of hybrid aspen with *M. aecidiodes*, was carried out in the Glover Greenhouse at the University of Victoria, using a similar set-up.

In vitro Bioassays with *M. larici-populina* on Glass Slides

Antifungal activities of catechin and PAs against the biotrophic rust fungus were evaluated on glass slides. The germination medium consisted of 1.1% plant agar (Duchefa Biochemie, Haarlem, Netherlands) and 10 mM KCl in water. The medium was sterilized by autoclaving before adding catechin or proanthocyanidins (1.5 mg mL^-1). The media were incubated in a water bath at 65°C for an hour to ensure that the phenolic compounds were dissolved completely. Autoclaved medium without compounds was used as a control. Approximately 300 µL liquid medium was pipetted carefully onto a clean glass slide and allowed to solidify. After 5-10 minutes, 20 µL freshly prepared spore suspension (± 10^4 mL^-1) in
10 mM KCl was pipetted onto the glass slides and spread carefully onto the solidified medium with a plastic inoculation loop. Ten glass slides were prepared for each treatment and each of them was kept in a sterile Petri dish (9 cm diameter) with moist blotting paper to maintain the high humidity required for spore germination. The Petri dishes were incubated in a dark cabinet and the spore germination was monitored every hour under an inverted light microscope (Axiovert 200, Carl Zeiss Microscopy GmbH, Jena, Germany) coupled with a camera (AxioVision). Urediniospore germination rate was determined at 9 hpi and hyphal length was measured at 12 hpi. Three microscopic fields were photographed randomly and considered as technical replicates. The percentage of germinated spores was calculated based on numbers of spore germinated divided by total number of spores observed per microscopic field. Hyphal lengths of the germinated spores in each microscopic field were measured by ImageJ software (https://imagej.nih.gov/ij/index.html). For illustration of the technique, see Supplemental Fig. S8.

Extraction of Phenolic Compounds from Poplar

For extraction of phenolic compounds, poplar tissues (leaf, petiole, stem and root) were ground to fine powder under liquid N2. The stem samples, which contained both bark and wood, were ground with the help of a vibrating mill (Pulverisette 0, Fritsch GmbH, Idar-Oberstein, Germany) while the leaf materials were ground manually using mortar and pestle. The ground samples were lyophilized using an Alpha 1-4 LD Plus freeze dryer (Martin Christ GmbH, Osterode, Germany) at 0.001 mbar pressure and -76°C temperature for 2 days. Approximately 10 mg freeze-dried tissue was weighed using an XP26 Microbalance (Mettler-Toledo AG, Greifensee, Switzerland) into 2 mL microcentrifuge tubes. Phenolics were extracted with 1 mL extraction buffer, which contained 10 µg apigenin-7-glucoside (Carl Roth, Karlsruhe, Germany) and 0.4 mg phenyl β-D-glucopyranoside (Sigma-Aldrich St. Louis, MO, USA) as internal standards per mL methanol (analytical grade). One mL extraction buffer was added to each microcentrifuge tube, vortexed vigorously and incubated for 30 min at 20°C, shaking at 2000 rpm. The extracts were centrifuged at 13,000 rpm at 4°C for 5 min, and approximately 900 µL supernatant was transferred to a new micro centrifuge tube. Salicinoids were directly analyzed with HPLC-DAD. Samples were diluted 20-fold before analyzing flavan-3-ols by HPLC coupled to a tandem mass spectrometer (LC-MS/MS).
For extraction of oligomeric or polymeric proanthocyanidins, approx. 50 mg freeze dried plant tissue was extracted with analytical grade methanol following the above extraction protocol but additionally the insoluble material was re-extracted with 1 mL 70% acetone. Both supernatants were combined and dried under a stream of nitrogen. The dried samples were redissolved in 1 mL solvent (1:1, methanol: acetonitrile) and were analyzed by HPLC coupled to a fluorescence detector. Cell wall-bound PAs were measured from the residue remaining after extraction of soluble catechin and PAs using the acid butanol method (Porter et al. 1986) which was modified by Boeckler et al. (2013). Amounts of cell wall-bound PAs were determined using a procyanidin-B1 calibration curve (Extrasynthese, Genay, France).

Identification of Phenolics by Liquid Chromatography-Mass Spectrometry with Electrospray Ionization (LC-ESI-MS)

The phenolic compounds identified from poplar leaf extracts as well as from LAR and ANR enzyme assays were separated on a reversed phase Nucleodur Sphinct RP18ec column with dimensions of 250 × 4.6 mm and a particle size of 5 µm (Macherey Nagel, Düren, Germany) using an Agilent 1100 series HPLC (Agilent Technologies, Santa Clara, California, USA) with a solvent system of 0.2 % aqueous formic acid (A) and acetonitrile (B) at a flow rate of 1.0 mL min\(^{-1}\). The column temperature was maintained at 25°C. The proportion of B was increased from 14-58 % in a linear gradient of 22 min. After the column was washed for 3 min with 100 % B, it was re-equilibrated to the initial eluent composition for 5 min prior to the next analysis. Flow coming from the column was diverted in a ratio of 4:1 before entering the mass spectrometer electrospray chamber. Compound detection and quantification was accomplished with an Esquire 6000 ESI ion trap mass spectrometer (Bruker Daltronics, Leipzig, Germany). Phenolic compounds were analyzed in negative mode scanning a mass-to-charge ratio (m/z) between 100 and 1600 with a skimmer voltage of 60 V, a capillary exit voltage of -121 V, and a capillary voltage of 4,000 V. Nitrogen was used as drying gas (11 mL L\(^{-1}\), 330°C) and nebulizer gas pressure was 35 psi. Compounds were identified by mass spectra and by direct comparison with commercial standards as described previously (Boeckler et al., 2013; Hammerbacher et al., 2014). Bruker Daltronics Quant Analysis software version 3.4 was used for data processing and compound quantification using a standard smoothing width of 3 and Peak Detection Algorithm version 2.
Quantification of Flavan-3-ol Monomers and Dimers by Liquid Chromatography-Tandem Mass Spectrometry (LC-ESI-MS²)

Chromatography was performed on an Agilent 1200 HPLC system. An API 3200 tandem mass spectrometer (Applied Biosystems) equipped with a turbospray ion source was operated in negative ionization mode. Separation was achieved on a Zorbax Eclipse XDB-C18 column (50 × 4.6 mm, 1.8 mm, Agilent). Formic acid (0.05%) in water and acetonitrile were employed as mobile phases A and B, respectively. The elution profile was: 0-1 min 100% A; 1-7 min, 0-65% B; 7-8 min, 65-100% B; 8-9 min, 100% B; and 9-10 min, 100% A. The total mobile phase flow rate was 1.1 mL min⁻¹. The column temperature was maintained at 25°C. The instrument parameters were optimized by infusion experiments with pure standards as described by Hammerbacher et al. (2014). The ion spray voltage was maintained at -4,500 V. The turbo gas temperature was set at 700°C. Nebulizing gas was set at 70 psi, curtain gas at 25 psi, heating gas at 60 psi, and collision gas at 10 psi. Multiple reaction monitoring was used to monitor analyte parent ion → product ion: m/z 288.9 →109.1 (collision energy [CE], -34 V; declustering potential [DP], -30 V) for catechin; m/z 289.0 →109.0 (CE, -34 V; DP, -30 V) for epicatechin; m/z 304.8 →125 (CE, -28 V; DP, -30 V) for gallocatechin; m/z 576.9 →289.1 (CE, -30 V; DP, -50 V) for PA B1; m/z 430.8 → 268.0 (CE, -46 V; DP, -80 V) for apigenin 7-glucoside. Both Q1 and Q3 quadrupoles were maintained at unit resolution. Data acquisition and processing were performed using Analyst 1.5 software (Applied Biosystems). Linearity in ionization efficiencies were verified by analyzing dilution series of a standard. Flavan-3-ol concentrations were determined relative to the calibration curve for apigenin 7-glucoside as an external standard.

Quantification of PAs by HPLC-FLD

PAs were separated on a LiChrosphere diol column with dimensions of 250 × 4 mm and a particle size of 5 µm (Merck Chemicals GmbH, Darmstadt, Germany) using an Agilent 1100 series HPLC employing a modified method previously described by Kelm et al. (2006) and Hammerbacher et al. (2014). Briefly, the total mobile phase flow rate for chromatographic separation was 1.2 mL min⁻¹. The column temperature was maintained at 30°C. Compounds were separated using acetonitrile : acetic acid (98:2) and methanol : acetic acid (95:3:2) as mobile phases A and B, respectively, with the following elution profile: 0 to 35 min, 0% to 40% B in A; 35 to 40 min, 40% B; 40 to 45 min, 40% to 0% B; and 45.1 to 50 min, 0% B. Eluent
was monitored by FLD with excitation at 276 nm and emission at 316 nm. PA oligomer and polymer concentrations were determined relative to the calibration curve for catechin.

Quantification of Other Flavonoids and Salicinoids by HPLC-DAD

To quantify flavonoids other than flavan-3-ols and salicinoids, an Agilent 1100 Series HPLC System with diode array detector, DAD (Agilent Technologies) were used. The compounds were separated by a Nucleodur Sphinx RP column with dimensions of 250 × 4.6 mm and a particle size 5 μm (Macherey-Nagel). The solvent system for the mobile phase was Milli-Q water (Millipore) and acetonitrile, but otherwise the chromatographic conditions were the same as described above for LC-ESI-MS of poplar phenolics. Data were exported by the software Data Trans at different wavelengths for respective phenolics as previously described by Boeckler et al. (2013). For absolute quantification, analyte peak areas was divided by the peak area of the internal standard phenyl β-D-glucopyranoside and multiplied by the corresponding response factors.

Reductive Cleavage of PAs

Reductive cleavage of PAs was carried out as previously described by Hammerbacher et al. (2014). Briefly, the same samples that were used for PA analysis were diluted 50-fold with methanol. The reaction was performed in HPLC glass vials containing 780 μL diluted extract, 20 μL trifluoroacetic acid and 100 μL sodium cyanoborohydrate (0.5 g mL⁻¹ methanol). Reaction mixtures were heated to 65°C for 15 min before adding additional 20 μL trifluoroacetic acid. Vials were sealed tightly and incubated overnight at 65°C. Next morning, the reaction was dried completely under a stream of nitrogen, re-suspended in 800 μL methanol and centrifuged for 5 min at 11,000 rpm at 4°C and 780 μL supernatant was transferred to a new vial. The samples were analyzed by LC-ESI-MS², as described for flavan-3-ol monomers and dimers.

RNA Isolation and cDNA Synthesis

Total RNA from leaf and stem tissue was extracted using the Invitrap Spin Plant RNA Mini Kit (Stratec Biomedical, Birkenfeld, Germany) following the protocols of the manufacturer, except that an additional DNase treatment was included (RNase-Free DNase Set, Qiagen). The first washing step was conducted with 300 μL wash buffer R1. After that, DNase (30 Kunitz
units in 80 µL volume; RNase-Free water 10 µL and buffer RDD 70 µL) was added onto the column and incubated at room temperature for 15 min. The column was washed with an additional 300 µL wash buffer R1 before continuing with the manufacturer’s protocol. The quantity and quality of the RNA was checked by spectrophotometry (Thermo Scientific™ NanoDrop 2000). Reverse transcription of 1 µg RNA into cDNA was achieved by using SuperScript II reverse transcriptase (Invitrogen) and 50 pmol Oligo(dT)12-18 Primer (Invitrogen) in a reaction volume of 20 µL. The cDNA was diluted 5-fold with sterile water and quality was checked by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) using PtUBQ primer pairs (primer sequences are given in Supplemental Table S2).

Identification, Cloning and Sequencing of PnLAR and PnANR Genes from Black Poplar

The genome of *P. trichocarpa* (Tuskan et al., 2006) was utilized to find candidate LAR and ANR genes for *P. nigra* L. as these two species are closely related. The LAR and ANR protein sequences from apple, grape and tea were used to identify LAR and ANR candidates using blastp searches in the National Center for Biotechnology Information (NCBI) and Phytozome v11 databases. The coding sequences were obtained from Phytozome v11 and complete open reading frames (ORF) were identified using the SeqBuilder software of DNASTAR Lasergene 12 package (DNASTAR, Madison-WI, USA). Consistent with Tsai et al. (2006), three *PtLAR* and two *PtANR* genes were identified in the *P. trichocarpa* genome. Gateway® (Invitrogen)-compatible primers were designed for candidate sequences by using the 5’ and 3’ ends of putative LAR and ANR genes from *P. trichocarpa* (Primer sequences are provided in Supplemental Table S2). Genes encoding LAR and ANR were PCR amplified with Gateway-compatible primers from the cDNA of black poplar using Phusion High-Fidelity DNA Polymerase (New England Biolabs, Thermo Fisher Scientific). The PCR products were purified with the QIAquick PCR purification kit (QIAGEN). Gateway entry clones were made by using BP Clonase II and pDONR207 (Invitrogen) following the manufacturer’s protocol. The pDONR207 constructs harboring *PnLAR* and *PnANR* genes were sequenced using 10 pmol of pDON primers (primer sequences are provided in Supplemental Table S2) and the BigDye Terminator v 3.1 Cycle Sequencing Kit (Thermo Fisher Scientific) on an ABI Prism R 3100 sequencing system (Applied Biosystems). Sequences from each construct were assembled and translated into protein sequence using DNASTAR Lasergene 12 software.
Heterologous Expression of *PnLAR* and *PnANR* Genes in *Escherichia coli*

Three putative *PnLAR* and two *PnANR* entry clones were sub-cloned with LR Clonase II (Invitrogen) according to the manufacturer’s instructions into the Gateway-compatible expression vector pDEST15 (Invitrogen), which contains a glutathione S-transferase Tag on the N-terminus of the expressed protein. All constructs were verified by sequencing with gene specific primers. A dihydroflavonol reductase gene (*MdDFR*) from apple (*Malus domestica*), which transforms dihydroflavonols to leucoanthocyanidins (Fischer et al., 2003), was also cloned using the above protocols into the Gateway-compatible expression vector pH9GW, a modified pET28a(+) vector (Novagen), which carries a sequence encoding a 9-histidine tag at the N-terminus of the expressed protein (O’Maïlle et al., 2004). For *PnLAR* expression, chemically competent *E. coli*, BL21 [DE3] (Invitrogen), were co-transformed with the *PnLAR* and *MdDFR* expression constructs. For protein expression, single colonies were inoculated into 5 mL Luria-Bertani (LB) broth with 100 µg mL⁻¹ ampicillin and 50 µg mL⁻¹ kanamycin for positive selection, and grown overnight at 37°C. For *PnANR* expression, BL21 cells were transformed with *PnANR* expression clones with 100 µg mL⁻¹ ampicillin for positive selection, and grown overnight at 30°C. The 5 mL starter cultures were used to inoculate 50 mL overnight expression medium supplemented with their respective antibiotics and grown at 18°C with continuous shaking (220 rpm) for 2 days. The bacterial cells were harvested by centrifugation. The crude proteins were extracted according to Hammerbacher et al., (2014) and used for enzyme assays or stored at -20°C.

In vitro Enzyme Assays for Functional Characterization of LARs and ANRs

Since the substrates leucocyanidin and cyanidin were not available for LAR and ANR assays, respectively, enzyme assays were conducted using two-step reactions. For LAR characterization, taxifolin was used as a substrate with the co-expressed (*PnLAR* + *MdDFR*) crude protein extract. The reactions were performed in a 100 µL reaction volume containing 70 µL crude protein extract, 10 µL NADPH (20 mM) and 20 µL taxifolin (50 mM) for 40 min at room temperature. The reactions were stopped by adding 100 µL methanol. The mixtures were centrifuged at 11,000 rpm for 4 min and supernatant was analyzed by an LC-ESI-Ion-trap mass spectrometer. For ANR characterization, an anthocyanin synthase gene (ANS) from *Petunia* was cloned into pDEST 15, heterologously expressed in *E. coli*, and crude protein was extracted.
using the protocols described above. The enzyme assay was performed with 200 µL crude
protein extracts (100 µL each of the ANR and ANS) and 10 µL catechin (10 mM) as substrate.
The reaction mixture also contained 20 µL NADPH (20 mM), 10 µL oxoglutarate (10 mM), 1
µL enzyme bovine catalase (40 units mL⁻¹) (Sigma Aldrich, Louis, MO, USA), 40 µL potassium-
phosphate buffer (0.2 M, pH 6.0), 10 µL ascorbate (50 mM) and 1 µL FeSO₄ (1 mM). The
reaction mixture was incubated at 28°C overnight. The reaction was stopped by adding another
100 µL methanol; centrifuged for 4 min at 11,000 rpm and the supernatant was analyzed by the
LC-ESI-Ion-trap mass spectrometer.

Quantitative Real Time (qRT) PCR

To quantify expression of target genes, a segment of ~150 base pairs were amplified
using gene specific primers. All primers were designed using Primer3 web version 4.0.0
(http://bioinfo.ut.ee/primer3/). The efficiency of each primer pair was tested before qPCR.
Primers with efficiencies below 95% were discarded. The reactions were performed in a 20 µL
volume containing 10 µL Brilliant III Ultra-Fast SYBR Green QPCR Master Mix (Agilent
Technologies), 10 pmol forward and 10 pmol reverse primer, and 2 µL diluted cDNA (approx.
100 ng). The qRT-PCR was performed using a CFX Connect Real-Time PCR Detection System
(BIO-RAD) using a two-step amplification protocol (cycling parameters: 3 min at 95°C followed
by 40 cycles of 10s at 95°C, 30s at 55°C). A non-template water sample was used as reaction
control. Transcript abundance was normalized to the abundance of the PtUBQ (Irmisch et al.,
2013) and was calculated from five biological replicates, with each biological sample being
analyzed from three technical replicates. Primer sequences for all genes used in this study are
given in Supplemental Table S2.

Histochemical Staining and Microscopy

Fresh plant specimens were embedded into Tissue Freezing Medium (Jung, Leica
Biosystems, Wetzlar, Germany) and left for 1 hour at -20°C. Sections (10-20 µm) were made
using a CM1850 cryotome (Leica Biosystems, Wetzlar, Germany). Then 2-3 sections were
transferred to a clean glass slide and stained for 10 min with approximately 50 µL freshly
prepared 1% DMACA solution [1% DMACA (v/v) in absolute ethanol containing 5N HCl (1:1,
v/v)]. After 10 min staining, the excess DMACA solution was wiped off carefully, and one drop
70% glycerol (v/v) was added to the sections. A clean coverslip was put carefully on the sections, and observed under an inverted light microscope (Axiovert 200, Carl Zeiss Microscopy GmbH, Germany) and photographs were taken with a camera (AxioVision).

Phylogenetic Analysis

Full-length amino acid sequences of LARs and ANRs were retrieved from public databases (GenBank/NCBI/EMBL and Phytozome v11). A poplar DFR protein sequence (ortholog of apple DFR) was included. Protein sequences were aligned using a multiple sequence alignment program MAFFT version 7 (Katoh and Standley, 2013) by employing the highly accurate method L-INS-I (sequence alignment is provided in Supplemental Fig. S14). The aligned sequences were then verified and edited using Mesquite 3.04 (http://mesquiteproject.org). The maximum likelihood tree was constructed using the software package PhyML-3.0 (Guindon et al., 2010). The amino acid substitution model was LG (Le and Gascuel, 2008). BIONJ distance-based tree was the starting tree by default and then improved by tree topology search by combining NNI (Nearest Neighbor Interchange) and SPR (Subtree Pruning and Regrafting). Bootstrapping was estimated with 1,000 replicates. The tree was viewed using Figtree (http://tree.bio.ed.ac.uk/software/figtree/) and rooted at the midpoint. The tree readability was improved using Adobe Illustrator CS5. Accessions of all peptide sequences are given at the end of the method section.

Vector Construction and Plant Transformation

The binary vector was constructed following the method described by Levée et al. (2009). The transformation of the *P. nigra* NP1 by an RNAi construct was achieved following a protocol optimized for *Populus canescens* (Meilan and Ma 2006). To target *PnMYB134* mRNA, a fragment between position 512 and 696 of the coding sequence was selected. Transgenic RNAi poplar plants were amplified by micropropagation as described by Behnke et al. (2007). To verify the level of transgenicity, qRT-PCR analysis was done on wild-type, vector control (pCambia), and RNAi plants (lines 2 and 9). Primers for RNAi and qRT are given in the Supplemental Table S2. MYB134 overexpressing lines of hybrid aspen (*P. tremula X alba* 717-1-B4) were available in the Constabel laboratory, propagated on Woody Plant Medium, and acclimated in a mist chamber before being moved to the greenhouse.
Statistical Analysis
All data were analyzed by using the statistical package R (version: R 3.4.0). Before analysis, normality and homogeneity of variances were verified using Shapiro-Wilk and Levene’s tests, respectively. Whenever necessary, data were square root or log transformed to meet the assumptions for parametric testing. Data were analyzed either by one-way or two-way ANOVA, depending on the overall number of factors in each experiment. Tukey’s post-hoc test was performed to compare differences among different groups.

Accession Numbers
Sequences used in this article can be found in the GenBank/EMBL/Phytozome libraries under the following accession numbers: MdLAR1 (DQ139836, Malus domestica), MdLAR2 (DQ139837, Malus domestica), PcLAR1 (DQ251190, Pyrus communis), PcLAR2 (DQ251191, Pyrus communis), FxaLAR1 (DQ834906, Fragaria x ananassa), VvLAR1 (BN000698, Vitis vinifera), VvLAR2 (3I6IA, Vitis vinifera), CsLAR (GU992401, Camellia sinensis), MtLAR (CAI56327.1, Medicago truncatula), LcLAR1 (DQ49103, Lotus corniculatus), LcLAR2 (DQ49105, Lotus corniculatus), PaLAR1 (KC589001, Picea abies), PaLAR2 (KC589002, Picea abies), PaLAR3 (KC589003, Picea abies), TcLAR (ADD51358, Theobroma cacao), GbANR (AAU95082, Ginkgo biloba), LcANR (ABC71337, Lotus corniculatus), TcANR (ADD51354, Theobroma cacao), FxaANR (ABG76842, Fragaria x ananassa), MtANR (AAN77735.1, Medicago truncatula), MdANR (AAZ79363, Malus domestica), CsANR1 (GU992402, Camellia sinensis), CsANR2 (GU992400, Camellia sinensis), PnLAR1 (KY751539, Populus nigra), PnLAR2 (KY751540, Populus nigra), PnLAR3 (KY751541, Populus nigra), PnANR1 (KY751542, Populus nigra), PnANR2 (KY751543, Populus nigra), PtDFR1 (Potri.005G229500, Populus trichocarpa).

SUPPLEMENTAL DATA
Supplemental Figure S1. Changes in Poplar Flavonoids and Salicinoids during Rust Infection.
Supplemental Figure S2. Constitutive Levels of Flavan-3-ols and Proanthocyanidins in Different Tissues of 6 Month-Old Black Poplar Saplings (P. nigra NP1).
Supplemental Figure S3. Transcript Abundances of LAR and ANR Genes Catalyzing the Last Steps of Flavan-3-ol Biosynthesis in Black Poplar Saplings (P. nigra NP1).

Supplemental Figure S4. Constitutive Levels of Salicinoids in Different Tissues of Black Poplar.

Supplemental Figure S5. Degree of PA Polymerization in Poplar Leaves and Stems after Fungal Infections.

Supplemental Figure S6. Changes in Flavan-3-ol Monomers Epicatechin and Gallocatechin in Leaves of Different Poplar Genotypes after 8 days Infection with Rust Fungus.

Supplemental Figure S7. Composition of Flavan-3-ol Monomers after Hydrolysis of PAs in Different Poplar Genotypes with or without Rust Infection.

Supplemental Figure S8. Relative Abundance of LAR and ANR mRNA Transcripts in Water-Treated Control and Rust Infected Leaves of Poplar Genotypes 8 Days Post Inoculation.

Supplemental Figure S9. Illustration of in vitro Bioassay with Biotrophic Rust Fungus (M. larici-populina) on Glass Slides.

Supplemental Figure S10. Effect of Different Phenolic Secondary Metabolites on M. larici-populina Spore Germination in vitro.

Supplemental Figure S11. Silencing PnMYB134 Regulating Flavan-3-ols and PA Biosynthesis in Black Poplar Partially Influenced other Phenolic Metabolites.

Supplemental Figure S12. Specificity of Dimethylaminocinnamaldehyde (DMACA) Staining for Different Poplar Phenolic Metabolites.

Supplemental Figure S13. Alignment of the Protein Sequences.

Supplement Table S1. Preliminary Screening of Poplar Genotypes for Resistance against Rust Fungus M. larici-populina under Natural Conditions.

Supplement Table S2. List of Primers Used in this Study.

ACKNOWLEDGMENTS

We thank Dr. Michael Reichelt for his help with chemical analyses and Bettina Raguschke for her assistance in the laboratory, Charlotte Lauder for work during her internship, all members of the greenhouse team, especially Andreas Weber, for growing hundreds of poplar plants used for this study, Richard Hamelin and Nicolas Feau for the M. aecidoides spores, Jake Ketterer for help with plant care, the Northwest German Forest Research Station.
(Nordwestdeutsche Forstliche Versuchsanstalt) for providing stem cuttings of different poplar genotypes, and anonymous reviewers for their valuable comments and suggestions.

FIGURE LEGENDS

Figure 1. Catechin and Proanthocyanidins Accumulate in Rust-Infected Black Poplar Leaves as Antimicrobial Defenses. (A) Experimental design for controlled inoculation with rust fungus using 50 young black poplar trees (left). At each time point, five plants from each treatment were harvested with each replicate consisting of the same six leaves from a single plant as depicted (right). (B) Catechin (2,3-trans-(+)-flavan-3-ol monomer) and (C) PA dimers were measured by LC-MS/MS. (D) PA oligomers with up to 8 monomeric units measured by HPLC-FLD. (E) Cell wall-bound PAs were measured from the residue remaining after extraction of soluble catechin and PAs using the butanol-HCl method. The amounts of PA oligomers and cell wall-bound PAs are expressed as catechin and procyanidin-B1 equivalents respectively. Data were analyzed by two-way ANOVA (factors were: “tr” = treatment, “t” = time post inoculation, and “tr × t” = interaction effect). Corresponding p-values are indicated in the graphs. (F) Composition of flavan-3-ol monomeric units after hydrolytic cleavage of PAs. Metabolite data (catechin and epicatechin) were analyzed separately by two-way ANOVA (tr: p < 0.01, t: p < 0.01, tr × t: p < 0.01; for both metabolites). (G) Colonization of rust fungus in poplar leaves at different times after inoculation. The relative growth of the rust fungus was determined with qRT-PCR by normalizing poplar UBQ gene expression to quantify the relative growth of the fungus. Data were analyzed by one-way ANOVA followed by Tukey’s post-hoc test and different letters denote statistically significant differences at 95% confidence. Data presented in all graphs are mean ± SE (N = 5). [h = hour, d = day, ctrl = control, rust = rust-infected, DW = dry weight].
Figure 2. Heterologous Expression and Biochemical Characterization of Enzymes Involved in the Last Steps of Flavan-3-ol Biosynthesis in Black Poplar. (A) Biosynthetic route to monomeric flavan-3-ols and proanthocyanidins. (B) Catalytic activities of leucoanthocyanidin reductase enzymes (LARs). A construct for each LAR gene was co-expressed with an apple dihydroflavonol reductase (MdDFR) in the BL-21 strain of Escherichia coli. The crude protein extracts were assayed with taxifolin (a dihydroflavonol) as a substrate. The apple DFR converted taxifolin to leucocyanidin which was subsequently converted to catechin by the poplar LAR proteins, as measured by LC-MS. (C) Catalytic activities of anthocyanidin reductase enzymes (ANRs). Each ANR construct was expressed in BL-21 and the crude extract of the expressed protein was used for the enzymatic assay. The crude extract of a Petunia anthocyanidin synthase (ANS) was also added to each assay and catechin was added as substrate (shown with a dashed line arrow). The ANS converted catechin to cyanidin, which was then used as substrate for the poplar ANRs to produce epicatechin. The numbers on top of the chromatograms correspond to the compounds shown in Figure 2A (left).

Figure 3. Evolutionary Relationship of LAR and ANR Genes of Black Poplar and Other Plant Species. The corresponding protein sequences were aligned with MAFFT using the L-INS-I method. The maximum likelihood tree was constructed using PhyML-3.1 employing the amino acid substitution model LG (Le and Gascuel, 2008). Non-parametric bootstrap analysis was performed with 1000 iterations and values next to each node indicate the branch support percentages (values > 70 are included). The scale bar indicates amino acid substitution per site. The tree was rooted to the midpoint. The peptide sequence alignment is provided in supplemental Figure 14. Accession numbers of all sequences including species names are given at the end of the methods section.

Figure 4. Transcript Accumulation of Flavan-3-ol Biosynthetic Genes and a Transcription Factor Regulating PA Biosynthesis in P. nigra after Rust Infection. Gene expression of three PnLARs (A-C) and two PnANRs (D-E) from P. nigra NP1 that were biochemically characterized in this study measured by qRT-PCR. Gene expression was normalized to PnUBQ. Data were analyzed by two-way ANOVA (factors were: “tr” = treatment, “t” = time post inoculation, and
“tr × t” = interaction effect). Corresponding metabolite data is depicted in Fig 1. Data represented in graphs are mean ± SE (N = 5), and each biological replicate consisted of three technical replicates.

Figure 5. Poplar Genotypes Moderately Resistant to Rust Fungus Contain Constitutively Higher Amounts of Catechin and Proanthocyanidins. (A) Catechin (flavan-3-ol monomer) and (B) PA dimers were measured by LC-MS/MS. (C) Flavan-3-ol oligomers measured up to 10 monomeric units by HPLC-FLD. (D) Cell wall-bound PAs were measured from the residue remaining after extraction of soluble catechin and PAs using the butanol-HCl method. The amounts of PA oligomers and cell wall-bound PAs are expressed as catechin and procyanidin-B1 equivalents respectively. Data (A-B) were analyzed by two-way ANOVA (factors were: “g” = genotype, “tr” = treatment, and “g × tr” = interaction effect). Corresponding p-values are indicated in the graphs. (E) Fungal growth in different poplar genotypes 8 days post inoculation. The growth of the fungus was determined by qRT-PCR. *M. larici-populina* Actin gene expression was normalized to poplar *UBQ* gene expression to quantify the colonization of the fungus in poplar leaves. (F) Biomass of poplar genotypes in one growing season under natural environmental conditions. The shoot biomass was determined in autumn (November, 2015) when all leaves had dropped at the end of the growing season. In the susceptible genotypes, defoliation was earlier due to severe rust infection. Data in figures E-F were analyzed by one-way ANOVA followed by Tukey’s post-hoc test with different letters indicating statistically significant differences at 95% confidence. Data represented in the graphs are mean ± SE (N = 5).

Figure 6. Catechin and Proanthocyanidins Show a Direct Inhibitory Effect on Spore Germination and Hyphal Growth of the Biotrophic Rust Fungus in vitro. (A-B) Germination of rust urediniospores on glass slide at 9 hpi, (A) Spore germination shown in control medium (B) Spore germination shown in medium supplemented with catechin. (C-D) Patterns of mycelial branching at 18 hpi, (C) control medium (D) medium supplemented with catechin (E) 10urediniospore germination percentage determined at 9 hpi (F) Hyphal lengths of germinated urediniospores at 12 hpi. Data were analyzed by one-way ANOVA followed by Tukey’s post-hoc test, and different letters indicating treatment groups statistically different at 95%
confidence. Scale bars indicate 50 µm. Data represented in the graphs are mean ± SE (N = 8), where each replicate is a mean of three technical replicates.

Figure 7. Overexpression of MYB134 in hybrid aspen (P. tremula × alba) leads to an up-regulation of flavan-3-ol and PA biosynthesis, and reduced rust (M. aecidiodes) susceptibility. (A-C) Concentrations of catechin, PA dimers and PA oligomers respectively in aspen leaves. Catechin and PA dimers were measured by LC-MS/MS and PA oligomers were measured up to 12 monomeric units by HPLC-FLD. (D) Relative expression of MYB134 mRNA which was normalized to UBQ mRNA levels. (E) Relative colonization of rust fungus M. aecidiodes in aspen leaves determined by qRT-PCR. The rust Actin mRNA levels were normalized to poplar UBQ mRNA to quantify rust colonization. Data were analyzed by one-way ANOVA followed by Tukey’s post-hoc test and different letters indicate groups statistically different at 95% confidence. Data represented in graphs are mean + SE (N = 5-8).

Figure 8. Down-regulation of flavan-3-ol and PA biosynthesis in black poplar (P. nigra NP1) by silencing MYB134 transcription factor results in an increased susceptibility to rust infection (M. larici-populina). (A-B) Concentrations of catechin, PA dimers in poplar leaves measured by LC-MS/MS (C) PA oligomers were measured up to 8 monomeric units by HPLC-FLD. (D) Relative expression of MYB134 mRNA which was normalized to UBQ mRNA levels. (E) Relative colonization of rust fungus in poplar leaves determined by qRT-PCR. The rust Actin mRNA levels were normalized to poplar UBQ mRNA to quantify relative rust colonization. Data in figures A-D were analyzed by two-way ANOVA (Factors were: “L” = poplar lines, “tr” = treatment [control and rust], L × tr = interaction effect) followed by Tukey’s post-hoc test, different letters indicate groups statistically different at 95% confidence. Data in figure E were analyzed by one-way ANOVA followed by Tukey’s post-hoc test and different letters indicate lines statistically different at 95% confidence. Data represented in graphs are mean + SE (N = 4-5).

Figure 9. Localization of Flavan-3-ols and PAs in Poplar Leaves with or without Rust Infection. Sections (20 µm thickness) were made from the first fully expanded mature leaf (LPI-5) and were stained with 4-dimethylaminocinnamaldehyde (DMACA). (A-E) Cross sections (leaf lamina) of the genotype NP1, Leip, Dorn, Kew and Bla respectively (F) Cross section of
NP1 petiole. (G-K) Cross sections (leaf lamina) of NP1, Leip, Dorn, Kew and Bla genotypes respectively after rust infection (L) Petiole cross section of NP1 infected with rust fungus 5 days post inoculation. Scale bars 100 µm (K, for all leaf laminae) and 200 µm (F, L). The genotypes NP1 and Leip were found to be very susceptible to the rust fungus, while the genotypes Dorn, Kew and Bla were found to be moderately resistant. Triangles indicate fungal penetration and colonization sites. [ue = upper epidermis, le = lower epidermis, vb = vascular bundles, s = stomata, sp = spongy parenchyma, pa = palisade parenchyma, e = epidermis, c = cortex].

separation and purification of cacao (Theobroma cacao L.) procyanidins according to degree of polymerization using a diol stationary phase. J Agric Food Chem 54, 1571-1576.

responsive MYB134 gene encodes an R2R3 MYB transcription factor that regulates proanthocyanidin synthesis in poplar. Plant Physiol 150, 924-941.

Palo, R.T. (1984). Distribution of birch (Betula SPP.), willow (Salix SPP.), and poplar (Populus SPP.) secondary metabolites and their potential role as chemical defense against herbivores. Journal of Chemical Ecology 10, 499-520.

of dihydroflavonol reductase from trembling aspen (Populus tremuloides). Plant J 32, 701-712.

