Coexpression analysis identifies two oxidoreductases involved in the biosynthesis of the monoterpane acid moiety of natural pyrethrin insecticides in *Tanacetum cinerariifolium*

Haiyang Xu\(^a\), Gaurav D. Moghe\(^b,2\), Krystle Wieger-Rininger\(^c\), Anthony L. Schilmiller\(^d\), Cornelius S. Barry\(^c\), Robert L. Last\(^b,2\), Eran Pichersky\(^a3\)

\(^a\)Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
\(^b\)Department of Biochemistry, Michigan State University, East Lansing MI, USA
\(^c\)Department of Horticulture, Michigan State University, East Lansing, MI, USA.
\(^d\)Mass Spectrometry and Metabolomics Core Facility, Michigan State University, East Lansing, MI, USA
\(^e\)Department of Plant Biology, Michigan State University, East Lansing MI, USA

ORCID IDs: 0000000269540000 (H.X.); 0000-0002-8761-064X (GM); 0000-0001-7069-7120 (A.L.S); 0000-0003-4685-0273 (C.S.B.); 0000-0001-6974-9587 (R.L.L.) 0000-0002-4343-1535 (E.P.)

\(^1\)This work was supported by the National Science Foundation collaborative research grants 1565355 to EP and 1565232 to RLL.

\(^2\)Present address: Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY USA

\(^3\)Address correspondence to: lelx@umich.edu

One Sentence Summary: A set of dehydrogenases are involved in the synthesis of trans-chrysanthemic acid, the terpene moiety of the natural insecticide pyrethrins.
Running title: biosynthesis of trans-chrysanthemic acid

Key words: pyrethrins, trans-chrysanthemic acid, Tanacetum cinerariifolium, alcohol dehydrogenase, aldehyde dehydrogenase, oxidoreductase, biosynthetic pathway.

Contact information for all authors:
Haiyang Xu: hyxu@umich.edu
Gaurav Moghe: gdm67@cornell.edu
Krystle Wiegert-Rininger: wiegertk@msu.edu
Anthony Schilmiller: schilmil@msu.edu
Cornelius S. Barry: barrycs@msu.edu
Robert Last: lastr@msu.edu
Eran Pichersky: lelx@umich.edu

The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantphysiol.org) is: Eran Pichersky (lelx@umich.edu).

H.X, R.L.L and E.P. designed the experiments; H.X., G.M., A.L.S and K.W.R. conducted the experiments; H.X., C.S.B, R.L.L. and E.P wrote the article; all authors edited the article.
ABSTRACT
Flowers of *Tanacetum cinerariifolium* produce a set of compounds known collectively as pyrethrins, which are commercially important pesticides that are strongly toxic to flying insects but not to most vertebrates. A pyrethrin molecule is an ester consisting of either *trans*-chrysanthemic acid or its modified form, pyrethric acid, and one of three alcohols – jasmolone, pyrethrolone, and cinerolone – that appear to be derived from jasmonic acid. Chrysanthemyl diphosphate synthase (CDS), the first enzyme involved in the synthesis of *trans*-chrysanthemeric acid, was previously characterized and its gene isolated. *TcCDS* produces free *trans*-chrysanthemol, in addition to *trans*-chrysanthemyl diphosphate, but the enzymes responsible for the conversion of *trans*-chrysanthemol to the corresponding aldehyde and then to the acid have not been reported. We used an RNAseq-based approach and co-expression correlation analysis to identify several candidate genes encoding putative *trans*-chrysanthemol and *trans*-chrysanthemal dehydrogenases. We functionally characterized the proteins encoded by these genes using a combination of *in vitro* biochemical assays and heterologous expression *in planta* to demonstrate that *TcADH2* encodes an enzyme that oxidizes *trans*-chrysanthemol to *trans*-chrysanthemal, while *TcALDH1* encodes an enzyme that oxidizes *trans*-chrysanthemal into *trans*-chrysanthemeric acid. Transient co-expression of *TcADH2* and *TcALDH1* together with *TcCDS* in *Nicotiana benthamiana* leaves results in the production of *trans*-chrysanthemeric acid as well as several other side-products. The majority (58%) of *trans*-chrysanthemeric acid was glycosylated or otherwise modified. Overall, these data identify key steps in the biosynthesis of pyrethrins and demonstrate the feasibility of metabolic engineering to produce components of these defense compounds in a heterologous host.
INTRODUCTION

A small group of plants in the Asteraceae family, including *Tanacetum cinerariifolium* (formerly *Chrysanthemum cinerariifolium*), make insecticides known collectively as pyrethrins, with the highest levels of production observed in flowers (Casida, 1973; Casida and Quistad, 1995; Crombie, 1995). Due to their effective toxicity against a wide range of insect species, low toxicity to warm-blooded animals and propensity for degradation by sunlight and oxidation, pyrethrins have been used for pest control since medieval times (Casida and Quistad, 1995; Katsuda, 1999). Commercial production of natural pyrethrins involves drying and grinding the flowers and dissolving the powder in an organic solvent, which can be used directly for spraying. However, the concentration of pyrethrins in the powder is low at about 2% (Casida, 1973).

Synthetic pyrethrins, called pyrethroids, which are chemically similar but not identical to natural pyrethrins are cheaper and used at much higher quantities worldwide. However, these synthetic products are generally less biodegradable and photolabile, persisting in the environment longer than natural pyrethrins and thus give rise to the emergence of resistance among insects. In addition, some pyrethroids are toxic to mammals and fish (Katsuda, 2012).

Natural pyrethrins comprise a group of six compounds. The type I pyrethrins – pyrethrin I, jasmolin I, and cinerin I – are esters of the monoterpenoid *trans*-chrysanthemic acid with one of the three respective fatty acid-derived alcohols pyrethrolone, jasmolone, and cinerolone. The type II pyrethrins – pyrethrin II, jasmolin II, and cinerin II – are esters of pyrethric acid with one of these respective three alcohols. Pyrethric acid is identical to *trans*-chrysanthemic acid, except that its C8 position has a methylated carboxyl group (Figure 1A).

The synthesis of both the acid and alcohol moieties of pyrethrins is not fully understood. With respect to the acid moiety, Rivera et al (2001) demonstrated that *T. cinerariifolium* flowers contain the enzyme *trans*-chrysanthemyl diphosphate synthase (CDS, EC 2.5.1.67), which condenses two dimethyl allyl diphosphate (DMAPP) molecules via what is known as an irregular C1‘-2-3 linkage to form mostly *trans*-chrysanthemyl diphosphate (CDP) (Figure 1B) as well as a small amount of lavandulyl diphosphate. The enzymes responsible for the subsequent hypothetical steps are unknown. The conversion of CDP to *trans*-chrysanthemol could be catalyzed by a member of the terpene synthase (TPS) family similar to those TPS catalyzing the conversion of geranyl diphosphate (GPP) to the alcohol monoterpenes geraniol and linalool in
many species (Chen et al., 2011), or CDP could be hydrolyzed by phosphatases to give trans-chrysanthemol, similar to the conversion of GPP to geraniol in rose flowers (Magnard et al., 2015). However no such enzymatic activities were reported thus far in *T. cinerariifolium*. A recent study by Yang et al (2014) reported that prolonged incubation of *E. coli*–produced recombinant CDS protein with low concentrations of DMAPP led to detection of trans-chrysanthemol in addition to CDP, suggesting that CDS can produce trans-chrysanthemol in vivo. However, the enzymes responsible for the subsequent oxidation reactions of trans-chrysanthemol to trans-chrysanthemal and then to trans-chrysanthemic acid (Figure 1B) had not yet been reported.

To facilitate characterization of pyrethrin biosynthesis, a transcriptome assembly of *Tanacetum cinerariifolium* was generated from RNAseq analysis of leaf and flower tissues harvested at different stages of development. Candidate genes for trans-chrysanthemic acid biosynthesis were identified based on co-expression analysis with two previously functionally identified genes in pyrethrin biosynthesis, *TcCDS* and *TcGLIP*, the latter being the gene encoding a GDSL-family lipase that combines the acid and alcohol moieties into an ester (Kikuta

Figure 1. A. Structures of pyrethrins. B. Proposed pathway for the biosynthesis of trans-chrysanthemic acid.
et al., 2012). This analysis led to the identification of genes \textit{TcADH2} and \textit{TcALDH1}, encoding two flower-expressed oxidoreductases that respectively catalyze the two sequential oxidation steps from \textit{trans}-chrysanthemol to \textit{trans}-chrysanthemic acid. The discovery of these enzymes facilitated the reconstruction of \textit{trans}-chrysanthemic acid biosynthesis from the precursor DMAPP, both \textit{in vitro} and \textit{in vivo} by transient expression of multiple genes in \textit{Nicotiana benthamiana}.
RESULTS

Identification of pyrethrins and their terpenoid precursors in *Tanacetum cinerariifolium* flowers

The flower heads of *Tanacetum cinerariifolium* consist of a collection of ray florets on the inside and disc florets on the outside, with both types set on a receptacle (Ramirez et al., 2013). The pyrethrin and terpenoid precursor content in *Tanacetum cinerariifolium* leaves and flowers of different developmental stages (Figure 2A) were determined by analysis of methyl tert-butyl ether (MTBE)-extracted macerated tissues by gas chromatography – mass spectrometry (GC-MS). As previously observed (Kikuta et al., 2012; Ramirez et al., 2012), pyrethrin content in flowers increased as they matured (Figure 2B), and leaves contained negligible amounts of pyrethrins compared to the amounts observed in flowers. Also as previously described (Casida, 1973), pyrethrin I was the most abundant pyrethrin (Figure 2C). In addition to pyrethrins, we also observed *trans*-chrysanthemol, *trans*-chrysanthemal, and *trans*-chrysanthemic acid in floral extracts, and quantitation of *trans*-chrysanthemic acid indicated that its concentration also increased as the flower matured (Figure 2D,E).

Identification of candidate genes involved in *trans*-chrysanthemic acid biosynthesis

To identify the genes encoding the enzymes responsible for the conversion of *trans*-chrysanthemol to *trans*-chrysanthemal and *trans*-chrysanthemal to *trans*-chrysanthemic acid, transcriptome assemblies were constructed from RNASeq libraries constructed from eight different *T. cinerariifolium* tissue samples: leaves, flowers at stage 1, flowers at stage 2, flowers at stage 3, ray florets at stage 4, disk florets at stage 4, ray florets at stage 5 and disk florets at stage 5 (Figure 3A). Interrogating our database set (http://sativa.mcdb.lsa.umich.edu/blast/) for oxidoreductases with plant alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) sequences (see Materials and Methods) identified 12 transcripts encoding putative alcohol dehydrogenases (named as *TcADH1 ~ TcADH12*) and three transcripts for putative aldehyde dehydrogenases (named as *TcALDH1 ~ TcALDH3*). Four of the putative alcohol dehydrogenase genes, *TcADH1, TcADH2, TcADH4* and *TcADH6*, and one putative aldehyde dehydrogenase...
Figure 2. GC-MS analysis of pyrethrins and terpenoids from Tanacetum cinerariifolium leaves and flowers at different stages of development.
A. Flowers of different stages of development and a leaf of T. cinerariifolium.
B. Changes in relative concentrations of pyrethrin I during floral development. Pyrethrin I is the most abundant pyrethrin in the flower, and changes in concentrations of other pyrethrins follow the same pattern as those of pyrethrin I.
C. GC-MS chromatogram of total ion mode of MTBE extracts from leaves and flowers harvested at stage 4. In each flower/leaf comparison, samples are shown with the same relative y-axis scale, but the 7.2-15.2 min section is shown at a smaller scale to magnify the peaks. Peaks identified as terpenoids and internal standard (tetradecane) are labeled.
D. GC-MS chromatogram (total ion mode) of MTBE extracts from leaves and flowers of different stages of development, showing the trans-chrysanthemic acid levels in each sample.
E. Concentrations of trans-chrysanthemic acid in the leaf and in different stages of flowers. Quantification was achieved by normalization of the peaks in (D) to the tetradecane internal standard and comparison to a standard curve of authentic trans-chrysanthemic acid (n = 3; means ± SD).

gene, TcALDH1, showed the highest degree of co-expression with the known genes of pyrethrin biosynthesis TcCDS or TcGLIP (Figure 3B; Supplemental Table S1). However, the much lower
Figure 3. Identification of candidate ADH and ALDH genes for trans-chrysanthemic acid biosynthesis.
A. Images of *T. cinerariifolium* flowers of different stages and of leaves from which RNA samples were obtained for RNAseq analysis.
B. Average-linkage hierarchical clustering of relative transcript abundance of putative ADHs and ALDHs with *TcCDS* and *TcGLIP* based on number of reads of each transcript in each RNASeq library. Tree and heat map generated by the Cluster 3.0 software (see Materials and Methods). C. Verification of levels of expression of *TcCDS*, *TcGLIP*, *TcADH1*, *TcADH2*, and *TcALDH1* by qRT-PCR. Transcript levels are expressed relative to that of GAPDH (glyceraldehyde-3-phosphate dehydrogenase) in each sample (*n* = 4; means ± SD). **p<0.01, *p<0.05. The differences between leaf, stem and root datapoints and any flower datapoints are all significant at p<0.001.

relative transcript abundance of *TcADH4* and *TcADH6* compared with that of *TcCDS* and
TcGLIP in flowers of *T. cinerariifolium* argued against their involvement in *trans*-chrysanthemic acid biosynthesis.

The expression patterns of TcADH1, TcADH2, and TcALDH1 deduced from the RNAseq read frequencies were confirmed by qRT-PCR together with the transcript levels of TcCDS and TcGLIP (Figure 3C). The transcripts of all five genes were significantly more abundant in floral tissues compared with leaves, roots or stems. Generally, transcripts increased initially from floral stage 1 to floral stage 2 and then remained at similar levels or decreased somewhat, particularly in ray florets, a pattern consistent with the previously reported localization of pyrethrin accumulation (Kikuta et al., 2012; Ramirez et al., 2012).

Phylogenetic analysis that included *T. cinerariifolium* ADHs and other ADHs with assigned functions revealed that TcADH1 and TcADH2 are most closely related to terpene modifying ADHs, including ADH1 from *Artemesia annua*, annotated in NCBI as artemisinic alcohol dehydrogenase (accession AEI16475) and 8-hydroxygeraniol oxidoreductase from *Catharanthus roseus* (Miettinen et al., 2014) (Figure 4A). Similarly, TcALDH1 is most closely related (Figure 4B) to ALDH1 from *Artemesia annua*, an enzyme that converts artemisinic aldehyde and dihydroartemisinic aldehyde to artemisinic acid and dihydroartemisinic acid, respectively (Teoh et al., 2009). No prediction of organelle targeting was obtained for the inferred TcADH1, TcADH2, and TcALDH1 protein sequences using the TargetP 1.1 Server (http://www.cbs.dtu.dk/services/TargetP/) and WoLF PSORT (https://wolfpsort.hgc.jp/) programs (Nakai and Horton, 1999; Emanuelsson et al., 2007).

TcADH2 is a trans-chrysanthemol dehydrogenase

Based on results of the co-expression and phylogenetic analyses that identified TcADH1 and TcADH2 as candidates for the conversion of *trans*-chrysanthemol to *trans*-chrysanthemal, we tested their activities *in vitro*. TcADH1 and TcADH2 proteins with fused N-terminal HIS6 tag were expressed in *Escherichia coli* and purified. To obtain the *trans*-chrysanthemol substrate – which is not commercially available – for the enzymatic assays, we used recombinant TcCDS to convert DMAPP to CDP, which was subsequently hydrolyzed by the addition of commercial alkaline phosphatase to give *trans*-chrysanthemol (Figure 5A). As previously reported (Rivera et al., 2001; Yang et al., 2014), the CDS-catalyzed reaction also produces small amounts of
lavandulyl diphosphate, causing the trans-chrysanthemol preparation to contain a small amount

Figure 4. Phylogenetic analysis of candidate T. cinerariifolium dehydrogenases for trans-chrysanthemic acid biosynthesis based on protein sequences.
A. Phylogenetic tree for TcADH1 and TcADH2.
B. Phylogenetic tree for TcALDH1.
The protein sequences from other species are of functionally characterized enzymes whose sequences were identified by BLAST search to be most closely related to the T. cinerariifolium sequences. Phylogenetic analyses were conducted in MEGA7 (Kumar et al., 2016) with the following parameters; multiple sequence alignment with ClustalW, phylogenetic construction with the Maximum Likelihood method and bootstrap tests of 1000 replicates.
Figure 5. Gas chromatography analyses of products obtained in *in vitro* biochemical assays of TcADH2 and TcALDH1. For all assays analyzed, reactions products were extracted with 100 μl MTBE and run on RxI-5Sil column. Tetradecane was used as internal standard.

A. Synthesis of *trans*-chrysanthemol substrate. Top chromatograph trace: 1 mM of a commercially available standard of *trans*- and *cis*-chrysanthemol mixture. Middle trace: Reaction products obtained by incubating 30 μg recombinant TcCDS with 2.5 mM DMAPP in 50 μl reaction for 24 hours at 30°C. Bottom chromatograph trace: Reaction products obtained by incubating the products of the TcCDS-catalyzed condensation of DMAPP with 5 units of alkaline phosphatase (ALP) for 1 hour at 37°C.

B. *In vitro* production of *trans*-chrysanthemol. Reaction products obtained by incubating 0.64 mM *trans*-chrysanthemol and 1.5 mM NAD⁺ with 5 μl eluted protein from empty vector (top chromatograph trace) or 1.25 μg purified TcADH2 (bottom chromatograph trace) in 60 μL reaction volume for 5 min.

C. Production of *trans*-chrysanthemic acid from *trans*-chrysanthemol in a coupled assay containing 0.64 mM *trans*-chrysanthemol and 1.5 mM NAD⁺ with 1.25 μg purified TcADH2 and 6.00 μg purified TcALDH1 in 60 μL reaction volume for 5, 10, 15, 25, and 45 min. A control reaction was performed using 5 μl eluted protein from empty vector. Bottom chromatograph trace: 0.3 mM of commercial *trans*-chrysanthemic acid.

of lavandulol (Figure 5A). Under our assay conditions, we did not detect *trans*-chrysanthemol
Recombinant TcADH1 and TcADH2 were initially tested with a variety of alcohol substrates at 0.3 mM concentration and 1mM NAD\(^+\) or NADP\(^+\) (Table 1). With both TcADH1 and TcADH2, NAD\(^+\) was a more effective co-factor; with NADP\(^+\), product yield with each substrate was <5% compared with NAD\(^+\). TcADH1, however, had no activity with trans-chrysanthemol, instead showing its highest level of activity with nerol and reduced activity with geraniol (48%, Table 1), both monoterpenic compounds. TcADH2 had the highest activity with trans-chrysanthemol, but it also had some activity (≤70% compared with its activity with trans-chrysanthemol) with several other alcohols (Table 1). GC-MS analysis of reaction products showed that TcADH2 converted trans-chrysanthemol to trans-chrysanthenal, but did not oxidize lavandulol (Figure 5B). Kinetic analysis revealed that TcADH2 had a \(K_m\) value of 236.0 ± 5.8 µM and a turnover rate of 0.75 ± 0.0032 s\(^{-1}\) for trans-chrysanthenol while the \(K_m\) value for NAD\(^+\) was 192.6 ± 8.7 µM.

TcALDH1 converts trans-chrysanthenal to trans-chrysanthenic acid

Based on results of the co-expression and phylogenetic analyses that identified TcALDH1 as a candidate for the conversion of trans-chrysanthemol to trans-chrysanthenic acid, we tested its activity *in vitro* with trans-chrysanthemol and several other substrates. trans-Chrysanthemal was produced in a coupled enzymatic method employing TcCDS, alkaline phosphatase and TcADH2 (Figure 5A and see Materials and Methods). N-terminal tagged TcALDH1 was purified from *E. coli* showed highest activity with trans-chyranthenal substrate but also displayed substantial activity with several additional aliphatic and aromatic substrates (Table 1). The enzyme had a \(K_m\) value of 4.6 ± 1.8 µM for trans-chrysanthemal when NAD\(^+\) was provided, and a \(K_m\) value of 4.4 ± 2.2 µM for trans-chrysanthemal in the presence of NADP\(^+\) (Table 2). Both NAD\(^+\) and NADP\(^+\) served as cofactors for the enzyme, with a \(K_m\) of 20.4 µM for NAD\(^+\) and 68.6 µM for NADP\(^+\) (Table 2). Incubation of trans-chrysanthemol with both TcADH2 and TcALDH1 led to production of trans-chsyranthenic acid (Figure 5C).

Transient co-expression of TcADH2 and TcALDH1 with CDS in Nicotiana benthamiana results in trans-chyranthenic acid production
To test the activities of TcADH2 and TcALDH1 *in planta*, *N. benthamiana* leaves were infiltrated with *Agrobacterium tumefaciens* strains harboring plasmids containing TcCDS, TcADH2 and TcALDH1. For controls, we infiltrated *N. benthamiana* leaves with TcCDS alone, TcCDS and TcADH2, or EGFP (Enhanced Green Fluorescent Protein, see Materials and Methods) as control. In these experiments, the complete open reading frame of TcCDS was used, including the transit peptide that was shown to direct the protein to the plastids (Yang et al., 2014). Transformed leaves were harvested 10 days after infiltration and the products were extracted and analyzed by GC-MS. As expected, transient expression of TcCDS alone resulted in the production of *trans*-chrysanthemol at 18.3 nmol/g FW and trace amounts of *trans*-chrysanthemic acid (Figure 6). Notably, co-expression of TcCDS with TcADH2 in *N. benthamiana* leaves resulted in production of *trans*-chrysanthemic acid at 328.0 nmol/g FW (Figure 6), a 48-fold increase over expression of TcCDS alone. Finally, when all three genes – TcCDS, TcADH2 and TcALDH1 - were co-expressed in *N. benthamiana* leaves, the concentration of *trans*-chrysanthemic acid was 818.4 nmol/g FW, a 122-fold increase over expression of TcCDS alone.

In addition to *trans*-chrysanthemic acid and its precursors, additional volatile derivatives of these metabolites were identified. A peak with a mass fragmentation spectrum (MS) similar to *trans*-chrysanthemol (Supplemental Figure S1C) was found in *N. benthamiana* leaves expressing TcCDS; it eluted with RT of 30.16 min, compared to a RT of 10.08 for *trans*-chrysanthemol, and was labeled as “Unknown 1” in Figure 6. Despite the lack of an authentic standard for this compound, which precluded determination of its actual concentration, we could measure changes in its relative concentrations. When TcCDS-expressing *N. benthamiana* leaf extract was treated with glycosidase, Unknown 1 was no longer observed (Supplemental Figure S2A). When the same extract was treated with NaOH, there were no changes in Unknown 1 and *trans*-chrysanthemol (Supplemental Figure S2B).

In leaves expressing both TcCDS and TcADH2, “Unknown 1” concentration was reduced by 30-fold. In addition, a new compound judged to be related to *trans*-chrysanthemic acid by its MS and designated as “Unknown 2” was detected with an RT of 15.49 (Figure 6; Supplemental Figure S1D). In leaves expressing TcCDS, TcADH2 and TcALDH1, the levels of “Unknown 2” increased 7-fold over those observed in leaves expressing TcCDS and TcADH2 without
TcALDH1. In addition, the leaves expressing all three genes had a new trans-chrysanthemic acid-related compound, designated Unknown 3, with an RT of 31.98 (Figure 6, Supplemental Figure S1E). Unknown 2 and Unknown 3 were eliminated when the extract was treated with either glycosidase or NaOH (Supplemental Figure S3A,B), indicating that they are likely to be esters of trans-chrysanthemic acid. It is notable that the concentration of trans-chrysanthemal...
was always below detection levels in all *N. benthamiana* infiltrated leaves, whether expressing
TcCDS by itself, *TcCDS* and *TcADH2*, or *TcCDS*, *TcADH2*, and *TcALDH1*.

To search for non-volatile *trans*-chrysanthemol and *trans*-chrysanthemic acid conjugates, aliquots of the leaf MTBE extracts from these experiments were dried, dissolved in 70%
acetonitrile, and analyzed by LC-qToF-MS. The sample from leaves expressing *TcCDS* alone contained a peak with m/z 803.3742 (Figure 7B). The mass spectrum-mass spectrum (MS/MS) of this metabolite (Figure 7E) was identical to that of a compound produced in *N. tabacum*
expressing *TcCDS* (Yang et al., 2014) that these workers putatively identified as *trans-*chrysanthemylmalonylglucoside. In samples expressing *TcCDS + TcADH2*, a peak with m/z 831.3328 was detected with an MS/MS spectrum that closely matched the spectrum of another monoterpene acid glucoside, geranyl-6-O-malonyl-β-D-glucopyranoside (Yang et al., 2011). Based on this similarity, the m/z 831.3328 compound is putatively identified as the dimer ion (2M-H) of a *trans*-chrysanthemic acid malonylglucoside conjugate (Figure 7C,F). When *TcCDS*,
TcADH2, and *TcALDH1* were co-expressed in *N. benthamiana*, the level of a product with identical elution time and accurate mass increased ~150-fold based on peak area compared to *TcCDS* and *TcADH2* expression without *TcALDH1* (Figure 7C,D). To determine the portion of *trans*-chrysanthemic acid present as malonylated glucoside in plants simultaneously expressing the three enzymes, we used GC-MS to compare the amount of free *trans*-chrysanthemic acid in extract hydrolyzed with 0.4N NaOH at 80 °C (which left no detectable *trans*-chrysanthemic acid malonylglucoside as determined by LC-qToF-MS, see Supplemental Figure S4) with that in non-
hydrolyzed extract, and found that 58.0% of the total *trans*-chrysanthemic acid in this extract was esterified, including with malonylated glucoside (Figure 7G). Since the concentration of free *trans*-chrysanthemic acid in these leaves was determined to be 818.4 nmol/g FW (Figure 6C), the total amount of *trans*-chrysanthemic acid produced in these leaves can be calculated to be 1946.6 nmol/g FW.
Co-expression analysis and biochemical assays indicate that TcADH2 and TcALDH1 catalyze reactions in the trans-chrysanthemic acid biosynthetic pathway

T. cinerariifolium is an important commercial source of the biodegradable natural pyrethrin insecticides, which are very efficient against flying insects and safe for humans and other vertebrates. It has been shown that pyrethrin biosynthesis begins at early stages in the developing achenes (dry fruits) in the inflorescence and reaches peak accumulation in the mature achene (Ramirez et al., 2012). Our observations on the pattern of accumulation of pyrethrins in the inflorescence (Figure 2B) were consistent with these previous observations. Based on this
information, we proceeded to perform transcriptomic profiling on RNA samples collected from five different stages of developing inflorescences as well as from leaf material. The last two stages of floral development, stages 4 and 5, afforded enough material to do separate analysis on ray florets (flowers on the outside perimeter, which have large petals) and disk florets (flowers on the inside, with small petals).

The transcriptomic profiling data (assembled transcripts and the number of reads from each transcript) were used to perform co-expression cluster analysis (Eisen et al., 1998) to identify candidate ADH and ALDH genes whose expression patterns most resembled that of TcCDS, the gene encoding the key enzyme in the pathway for trans-chrysanthemic acid (Rivera et al., 2001; Yang et al., 2014), as well as that of TcGLIP, encoding the enzyme that forms the final pyrethrin product (Kikuta et al., 2012). Both genes were shown to have peak transcript levels at the earliest developmental stage (stage 2) that could be examined (Ramirez et al., 2012). This analysis identified TcADH1, TcADH2, and TcALDH1 as the strongest candidate enzymes for the synthesis of the terpene moiety of pyrethrins. The results of the qRT-PCR analysis of the levels of transcripts of these three genes, as well as those of TcCDS and TcGLIP (Figure 3C), were generally consistent with the read frequencies obtained in the transcriptomic profiling experiments (Supplemental Table 1). However, the transcript levels we measured for all five gene do not show a steep decline in later stages of floral development as was reported previously for TcCDs and TcGLIP (Ramirez et al., 2012), although the discrepancy may be due to differences in the delineation of developmental stages and consequent differences in the actual ages of the materials examined.

Based on the identification of TcADH1, TcADH2, and TcALDH1 as the most likely candidates to be involved in conversion of trans-chrysanthemol to trans-chrysanthemic acid, we proceeded to produce recombinant proteins from these three genes and test the catalytic activities of these proteins in in vitro assays. TcADH1 exhibited no activity with trans-chrysanthemol, but TcADH2 was able to catalyze the conversion of trans-chrysanthemol to trans-chrysanthemal with a K_m value of 236 µM for trans-chrysanthemol (Table 2). Similar in vitro assays demonstrated that TcALDH1 catalyzes the conversion of trans-chrysanthemal to trans-chrysanthemic acid, with a K_m value of 4.4 µM for trans-chrysanthemal. Transient co-expression of TcADH2 and TcALDH1 together with TcCDS in N. benthamiana leaves resulted in appreciable amounts of trans-chrysanthemic acid produced - 1946.6 nmol/g FW - further
demonstrating the ability of TcADH2 and TcALDH1 to catalyze the sequential oxidation of trans-chrysanthemol to trans-chrysanthemic acid.

Chrysanthemic acid can be made efficiently by in planta heterologous expression of only TcCDS, TcADH2, and TcALDH1

Yang et al. (2014) reported that transgenic tobacco (N. tabacum) plants expressing only TcCDS produce trans-chrysanthemol and trans-chrysanthemylmalonylglucoside. Our analysis of N. benthamiana leaves transiently expressing TcCDS identified the production of these two metabolites as well as a compound by GC-MS that appears to be a modification of trans-chrysanthemol (Unknown 1). When extracts of N. benthamiana leaves transiently expressing TcCDS was treated with glycosidase, both trans-chrysanthemylmalonylglucoside and Unknown 1 disappeared, and the amount of trans-chrysanthemol increased by 35-fold, indicating that most of the trans-chrysanthemol in these leaves is in a glycone form. These results indicate (as also noted by Yang et al., 2014) that trans-chrysanthemol is produced directly by TcCDS, and/or that phosphatases present in the host plant can hydrolyze the two phosphate groups from trans-chrysanthemyl diphosphate to give trans-chrysanthemol. But in addition to trans-chrysanthemol and its derivatives, we also detected trace amounts of trans-chrysanthemic acid in the N. benthamiana leaves transiently expressing TcCDS (Figure 6), showing that endogenous enzymes found in plant hosts are capable of further modifying the heterologously produced trans-chrysanthemol by additional oxidation reactions to give the corresponding acid. This observation is similar to the observed conversion of the monoterpene alcohol geraniol to geranial and geranic acid in transgenic tomato fruits (Davidovich-Rikanati et al., 2007).

The co-expression of TcCDS with TcADH2, and particularly the coexpression of these two genes with TcALDH1, greatly enhanced the production of trans-chrysanthemic acid in N. benthamiana leaves (Figure 6). While trans-chrysanthemylmalonylglucoside and Unknown 1 (a modified trans-chrysanthemol) were no longer detected in plants expressing all three genes, the malonylglucoside ester of trans-chrysanthemic and two other esters of this acid, Unknown 2 and Unknown 3, were present at a combined concentration exceeding the levels of free trans-chrysanthemonic acid by a factor of 1.5. These results indicate that in addition to dehydrogenases that can act on trans-chrysanthemic acid precursors, N. benthamiana leaves also contain
enzymes that can use trans-chrysanthemic acid as a substrate and modify it further. The observation that endogenous enzymes in a plant cell engineered to make compounds not previously present in the cell can react with such new compounds has been made before (Lewinsohn and Gijzen, 2009). For a successful genetic engineering attempt to reconstruct the pyrethrin biosynthetic pathway in a heterologous system, it will be necessary to counteract such non-productive side reactions.

Biosynthesis of pyrethric acid

In three of the six pyrethrins that *T. cinerariifolium* synthesizes (pyrethrin II, cenerin II, and jasmolin II), pyrethric acid rather than trans-chrysanthemic acid constitute the acid moiety. Pyrethric acid is identical to trans-chrysanthemic acid except that the C8 position (sometimes referred to as C10) has a methylated carboxyl group, and is therefore likely derived from trans-chrysanthemic acid by a series of enzymatic reactions involving first an hydroxylation of C8, then two successive oxidations of C8 to give an aldehyde and then a carboxyl group, and finally a carboxylmethylation. The hydroxylation of C8 is likely to be catalyzed by an enzyme of the cytochrome P450 oxidoreductase family. The next two oxidations reactions, however, are equivalent to the reactions catalyzed by TcADH2 and TcALDH1, respectively. Our co-expression analysis identified only TcADH1, TcADH2 and TcALDH1 as likely candidate genes for involvement in the synthesis of the terpene moiety of pyrethrins. TcADH6 was also identified as potential candidates, but the low levels of its transcripts in pyrethrin-producing tissue made it less likely to be involved in trans-chrysanthemic acid biosynthesis. Therefore, it is possible that the TcADH6 protein is involved in biosynthesis of pyrethric acid by catalyzing the conversion of the C8 alcohol to the C8 aldehyde, as pyrethrins containing the pyrethric acid moiety are much less abundant that those containing trans-chrysanthemic acid. It is also possible that TcADH1, which had no activity with trans-chrysanthemol, catalyzes this reaction, and perhaps even TcADH2 possesses this activity. It is notable that all these three ADHs are evolutionarily closely related to 8-hydroxygeraniol oxidoreductase from *Catharanthus roseus*, an enzyme that catalyzes the same C8 alcohol oxidation reaction on another monoterpenoid (Miettinen et al., 2014). Finally, it is possible that TcALDH1 catalyzes the conversion of the C8 aldehyde to give a carboxyl group. The lack of suitable substrates presently prevents the testing of these
hypotheses, but the availability of transgenic plants producing some of the precursors in the pathway to pyrethric acid may ameliorate this problem.

MATERIALS AND METHODS

Plant materials and chemicals

The various tissues including flowers, leaves, stem, and roots were collected from *Tanacetum cinerariifolium* grown in a greenhouse with a 16/8 hour day/night photoperiod. Harvested tissues were flash frozen in liquid nitrogen and stored at -80°C until use. All commercial chemicals were purchased from Sigma-Aldrich with the exception of 8-hydroxygeraniol which was obtained from Santa Cruz Biotechnology, and *trans*-chrysanthemol and *trans*-chrysanthemal.

trans-chrysanthemol was produced via an enzymatic method by TcCDS plus alkaline phosphatase (ALP) from DMAPP, and its concentration calculated according on GC-MS based on the standard curve of commercial mixture of *trans* and *cis*-chrysanthemol. *trans*-chrysanthemal was produced by TcADH2 and NAD⁺ from *trans*-chrysanthemol, extracted by MTBE from the reaction volume, dried, and dissolved in water.

GC-MS analysis of pyrethrins and terpenoids from *Tanacetum cinerariifolium* leaves and flowers of different stages of development

Leaf and flower tissues of different stages of development were cut into small pieces, 100 mg of which were transferred into a tube containing 200 µL MTBE with 0.01 ng/µl tetradeacne as internal standard. The tube was vortexed for 3 min at maximum speed, incubated at room temperature for 2 hours, and the MTBE phase was then collected. Sequential extractions with MTBE on test samples indicated that in the initial extraction >94% of the chrysanthemic acid partitioned into the MTBE phase. The MTBE extracts were analyzed by GC-MS. The measurement of *trans*-chrysanthemic acid was performed based on the corresponding standard curve.
RNAseq analysis

Total RNA was extracted from leaf and flower parts at different stages of development using the Total RNA Isolation Kit from Omega. The quantity and quality of extracted RNA for sequencing was determined with Qubit (Thermo Fisher Scientific, USA) and Bioanalyzer (Agilent Technologies, Palo Alto, California). Libraries for all 8 samples (flowers at stage 1, flowers at stage 2, flowers at stage 3, ray florets at stage 4, disk florets at stage 4, ray florets at stage 5, disk florets at stage 5, and leaf) were made using the KAPA stranded RNA-seq library preparation kit and sequenced at the Michigan State University Genomics Core on the Illumina HiSeq 2500 with HiSeq SBS reagents in 2x150 bp format. Initial reads have been deposited in NCBI (bioproject accession numbers PRJNA399494).

To assemble the reads, paired end RNA-seq reads were trimmed by quality scores using Trimmomatic v0.32 (Bolger et al., 2014) with the following parameters:

```
PE -threads 4 -phred33 ILLUMINACTION:all_adapters_combined.fasta:2:30:10 LEADING:20 TRAILING:20 SLIDINGWINDOW:4:20 HEADCROP:10 MINLEN:50
```

Prior to generating a full-scale RNA-seq assembly, we tested the impact of changing the kmer value for de novo assembly using a set of normalized reads obtained using `insilico_read_normalization.pl` function provided in Trinity v2.2.0 (Haas et al., 2013), with the following options:

```
--seqType fq --JM 100G --max_cov 50 --pairs_together --SS_lib_type RF --CPU 10 --PARALLEL_STATS --KMER_SIZE 25 --max_pct_stdev 200
```

The assemblies were analyzed for completeness by screening the Metazoan and Eukaryote comparison databases of BUSCO v1.22 (Simao et al., 2015) using default parameters. This analysis revealed k=31 to be the most optimal value of k for assembling complete transcripts. This result was also supported by analysis of the length distribution of transcripts using the `abyss_fac` function in AbySS 1.9.0 (Simpson et al., 2009), with k=31 producing the longest transcripts (N50=1810 bp). Thus, we performed an assembly of all RNA-seq reads with Trinity v2.2.0 using the following parameters:

```
--seqType fq --KMER_SIZE 31 --max_memory 120G --SS_lib_type RF --CPU 16 --min_kmer_cov 2
```

This assembly was used to identify ADH-like and ALDH-like transcripts using BLAST.
The expression levels of all transcripts were estimated using the `align_and_estimate_abundance.pl` function of the Trinity software, using the following parameters:

```
align_and_estimate_abundance.pl --transcripts Trinity.fasta --prep_reference --left PYR*_R1_* .fastq --right PYR*_R2_* .fastq --est_method RSEM --aln_method bowtie --SS_lib_type RF --thread_count 10 --max_ins_size 1000 --trinity_mode --seqType fq
```

which estimated transcript abundance using the RSEM function (Li and Dewey, 2011). These expression values were used to identify transcripts correlated with CDSases and GLIP transcripts across all tissues.

Identifying ADH and ALDH sequences in the *T. cinerariifolium* transcriptome

To find candidate ADH and ALDH genes in our *T. cinerariifolium* transcriptome database, we queried it on the publicly accessible site (http://sativa.mcdb.lsa.umich.edu/blast/) with various plant ADH and ALDH sequences (e.g., cinnamyl alcohol dehydrogenase from *Populous trichocarpa*, accession number ACC63874; geraniol dehydrogenase from *Ocimum basilicum*, Q2KNL6; benzaldehyde dehydrogenase from *Antirrhinum majus*, ACM89738; aldehyde dehydrogenase 1 from *Artemisia annua*, ACR61719.1) using the TBLASTN function. We also screened the entire annotated database for the designation “alcohol dehydrogenase” and “aldehyde dehydrogenase” and added transcripts identified in this way to our list of candidates.

Co-expression analysis

The number of reads from each transcript in the various RNAseq analyses of RNA samples from different stages of development and parts of the plant were used to perform cluster analysis using the freely available Cluster 3.0 software program (http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm#ctv). This program is based on an algorithm developed by Eisen et al., (1998), and the analysis results in a tree and heat map that matches each gene with another gene whose expression pattern matches best with that of the first one.
Quantitative RT-PCR analysis of TcCDS, TcGLIP, TcADH1, TcADH2 and TcALDH1 transcript Levels

For real-time RT-PCR analysis of transcripts in different tissues, RNA was isolated using Total RNA Isolation Kit from Omega with a DNA digestion step. cDNAs were prepared using High Capacity cDNA Reverse Transcription Kit from Thermo Fisher Scientific following the manufacturer’s instructions. Primer design and real-time PCR were performed following the manufacturer’s instructions. Assays were performed using four independent biological replicates. The relative amounts of transcripts for different genes were normalized to glyceraldehyde-3-P dehydrogenase (GAPDH) transcript levels using LinRegPCR software (http://www.hartfaalcentrum.nl/index.php?main=files&fileName=LinRegPCR.zip&description=LinRegPCR:%20qPCR%20data%20analysis&sub=LinRegPCR). The CT mean values for GAPDH are shown in Supplemental Figure S5. The statistics assay (unpaired t-test, two-tailed option) was performed via software GraphPad Prism (https://www.graphpad.com/scientific-software/prism/).

Generation, expression, and purification of recombinant TcCDS, TcADH1, TcADH2 and TcALDH1

The open reading frames of TcADH1, TcADH2 and TcALDH1 were obtained by RT-PCR from prepared cDNA of flowers at stage 1 of T. cinerariifolium. The full-length cDNAs were introduced into the expression vector pET28a+ or pHIS8, in each case generating a fusion gene that encoded a “tag” of HIS6 residues at the N-terminus for expression in E. coli. To obtain soluble proteins for expression in Escherichia coli, a truncated open reading frame of TcCDS, missing the first 50 codons, was obtained by RT-PCR from prepared cDNA of flowers at stage 1 of T. cinerariifolium. The truncated TcCDS ORF was inserted into the pEXP5-CT/TOPO vector following the manufacturer’s instructions, generating a fusion gene that encodes a “tag” of HIS6 residues at the C-terminus for expression in E. coli. The purification of recombinant proteins were performed as described previously (Xu et al., 2013). All constructs were transformed into E. coli BL21(+) cells. Transformed E.coli cells were grown in Luria-Bertani medium containing appropriate antibiotics until optical density of the culture at 600 nm reached 0.6 and then
recombinant gene expression was induced with the addition of IPTG to a final concentration of 0.15 mM and cells grown for overnight at 16°C. The resulting His-tagged fusion proteins were purified using Ni-NTA affinity columns.

Enzymatic assays of recombinant TcCDS

The enzymatic assay for TcCDS broadly followed the protocol described by Rivera et al. (2001) as follows: The reaction was initiated by adding 30 µg of affinity-purified His-tagged enzyme in a final volume of 50 µL of assay buffer (pH 7.5) containing 50 mM Tris-HCl, 2 mM DTT, 5 mM MgCl₂, and 2.5 mM DMAPP. The assay was incubated at 30°C for 24 hours. To analyze the production of CDP in this assay by GC-MS, hydrolysis of CDP to trans-chrysanthemol by 5 units of Roche rAPid alkaline phosphatase (Sigma) was performed following the manufacturer’s instructions at 37°C for 2 h. Reaction products were extracted with 100 µL MTBE and the MTBE extract was injected and analyzed by GC-MS.

Enzymatic assays of recombinant TcADH1 and TcADH2

For assaying of substrate specificity of TcADH1 and TcADH2, reactions were initiated by adding 1.25 µg of affinity-purified His-tagged enzyme in a final volume of 50 µL of assay buffer (pH 8.0) containing 50 mM Tris-HCl, 2 mM DTT, 1 mM NAD⁺ and 0.3 mM of selected alcohols. The assays were incubated at 30°C for 10 min, after which reaction products were extracted with 100 µL MTBE. The MTBE extract was analyzed by GC-MS for product and remaining substrate.

To determine the kinetic parameters of TcADH2, a similar protocol was followed. The K_m value for NAD⁺ was determined by using 0.64 mM trans-chrysanthemol whereas the K_m value for trans-chrysanthemol was determined with 1 mM NAD⁺. K_m and k_{cat} values were calculated from initial rate data by using the hyperbolic regression analysis method in Hyper32 software (version 1.0.0, http://hyper32.software.informer.com/).

Enzymatic assays of recombinant TcALDH1
For testing the substrate specificity of TcALDH1, reactions were initiated by adding 2.5 µg of affinity-purified His-tagged enzyme in a final volume of 50 µL of assay buffer (pH 8.5) containing 50 mM Tris-HCl, 2 mM DTT, 1 mM NADP+ and 40 µM selected aldehydes. The assays were incubated at 30°C for 10 min after which reaction products were extracted with 100 µL MTBE. The MTBE extract was analyzed by GC-MS. The reaction rate was calculated according to the decrease of substrate based on the corresponding standard curve.

To determine the kinetic parameters of TcALDH1, a similar protocol was followed. The K_m value for NAD$^+$ and NADP$^+$ was determined by using 40 µM trans-chrysanthemal whereas the K_m value for trans-chrysanthemal was determined with 1mM NAD$^+$ or NADP$. The reaction rate was calculated according to production of trans-chrysanthemic acid based on the corresponding standard curve. K_m and k_{cat} values were calculated as described above.

Plasmid construction for transient expression in N. benthamiana leaves

The complete open reading frame of EGFP was amplified from pSAT6-EYFP-N1 vector and used as control gene in this study. The EGFP, TcCDS, TcADH2 and TcALDH1 genes were spliced into pEAQ-HT binary vector between AgeI and XhoI restriction sites using the NEBuilder HiFi DNA Assembly Cloning Kit (https://www.neb.com/products/e5520-nebuilder-hifi-dna-assembly-cloning-kit, NEB) according to manufacturer’s instructions to express them under the control of 35S promoter.

Transient expression in leaves of N. benthamiana

Agrobacterium tumefaciens strain GV3101 infiltration (agro-infiltration) was performed as described previously (Sainsbury et al., 2009). Briefly, *A. tumefaciens* strain GV3101 was grown at 28°C at 200 rpm for 24 hours in LB medium containing kanamycin (50 mg L$^{-1}$), rifampicin (50 mg L$^{-1}$) and gentamycin (25 mg L$^{-1}$). Cells were collected by centrifugation for 15 min at 3000 g at 20°C, and then resuspended in 10 mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer containing 10 mM MgCl$_2$ and 100 µM acetosyringone (4’-hydroxy-3’,5’-dimethoxyacetophenone) to a final OD$_{600}$ of 0.4, followed by incubation at 20°C for 3 hours. For co-infiltration, equal number of cells from each of the cultures of strains harboring different
binary plasmids were mixed together, collected by centrifugation, and resuspended as above to a final OD$_{600}$ of 0.4 per strain. *N. benthamiana* plants were grown from seeds on soil in a greenhouse with 16/8 hours day/night photoperiod at 25°C. Leaves of 4-week-old *N. benthamiana* plants were infiltrated using a 2 ml syringe without a needle. *N. benthamiana* plants transformed with the binary vector harboring EGFP alone were used as control. The infiltrated leaves were collected 10 days after infiltration.

To analyze the compounds produced in the leaves, the harvested plant materials were flash-frozen and ground into a fine powder in liquid nitrogen. Three grams of powder was extracted with 4 ml MTBE. The extracts were briefly vortexed for 3 min at maximum speed and then incubated at room temperature with shaking at 50 rpm for 3 h, followed by centrifugation for 15 min at 8000 g. The MTBE layer was transferred to a fresh vial, dehydrated using anhydrous Na$_2$SO$_4$ and concentrated by evaporating the solvent to a final volume of about 0.3 ml. Analysis of the samples was performed with an Rxi-5Sil column on a Shimadzu QP-2010 GC-MS system.

GC-MS and LC-MS analyses

Analytes from 1 µl samples were separated by Shimadzu QP-2010 GC-MS system equipped with the Rxi-5Sil column (30 m × 0.25 mm × 0.25 µm film thickness, RESTEK, USA) using helium as the carrier gas at a flow rate of 1.4 ml min$^{-1}$. The injector was used in split mode at ratio of 1:2 with the inlet temperature set to 240°C. The initial oven temperature of 50°C was increased after holding for 3 min to 110°C at a rate of 10°C min$^{-1}$, then increased to 150°C at a rate of 5°C min$^{-1}$, held for 3 min at 150°C, increased to 300°C at a rate of 10°C min$^{-1}$, and finally held for 3 min at 300°C. Compounds were identified by comparison of mass spectra and retention time with those of the authentic standards, when available, or with known retention indices and mass fragmentation from the literature and NIST library.

Each MTBE extract (4 mL) was evaporated by BUCHI Rotavapor and dissolved in 0.5 ml of 70% acetonitrile/30% water for analysis using a Waters Xevo G2-XS Q-Tof mass spectrometer interfaced with a Waters Acquity binary solvent manager and 2777c autosampler. Samples (5 µL each) were injected onto an Acquity BEH C18 UPLC column (2.1 x 100 mm, 1.7 µm particle size; Waters Corp) at 40°C. Initial conditions were 0.3 ml/min of 99% solvent A (water + 0.1% formic acid) and 1% solvent B (acetonitrile). Following injection, solvent B was
increased in a linear gradient over 16 min to 99%, followed by a hold at 99% B for 2 min, then return to 99% A at 18.01 min and equilibrate for 2 min before starting the next sample. Ions were generated by electrospray ionization in negative-ion mode. Capillary voltage was 2.0 kV, sample cone voltage was 40 V and source temperature was 100°C. Desolvation temperature was 350°C and desolvation gas flow was 600 L/hr. Data were acquired using a data-independent MSe method providing both non-fragmenting and fragmenting conditions for each run, and lock mass correction was performed using a leucine enkephalin standard. MS/MS was performed for selected ions in separate runs.

Hydrolysis of modified trans-chrysanthemol and trans-chrysanthemic acid

Acylglucosides such as chrysanthemic acid glucoside can typically be hydrolyzed by base, but chrysanthemyll glucosides cannot. Some non-specific glycosidases can hydrolyze both classes of compounds. We therefore used both and glycosidase treatments to hydrolyze volatile and non-volatile derivatives of trans-chrysanthemol and trans-chrysanthemic acid produced in N. benthamiana leaves. Samples were prepared by flash-freezing leaves and grounding them into a fine powder in liquid nitrogen. For base hydrolysis, homogenates (0.5 g per sample) were mixed completely with 50 µL 4N NaOH and incubated at 80°C for 20 min, followed by neutralization with 50 µL 4N HCl, and then adding 1 mL MTBE containing 0.01 ng/µl tetradecane as internal standard and vortexing at maximum speed for 4 min. MTBE extracts were transferred to a fresh vial, dehydrated and concentrated to a final volume of about 0.2 mL for GC-MS analysis, or dried and dissolved in 0.3 ml of 70% acetonitrile/30% water for LC-MS analysis. For glycosidase treatment, homogenates were treated with 4 mg of β-glucosidase (EC 3.2.1.21, purchased from Sigma) at 37°C for 1.5 hour, and then extracted and analyzed as described above. GC-MS analysis was used to measure volatile compounds as described above. LC-MS analysis was performed to check for disappearance of the non-volatile trans-chrysanthemic acid conjugates also as described above.

Accession Numbers
The sequence data used in this study can be obtained from NCBI with the following GenBank accession numbers: TcADH1 – MF497443; TcADH2 – MF497444; TcALDH1 – MF497445. The bioproject accession numbers for the RNAseq data is PRJNA399494.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Mass spectral analysis of Unknown 1, Unknown 2 and Unknown 3 produced in *N. benthamiana* leaves expressing *TcCDS*, *TcADH2* and *TcALDH1*.

Supplemental Figure S2. GC-MS analysis of hydrolysis assays of tissues of *N. benthamiana* leaves expressing *TcCDS*.

Supplemental Figure S3. GC-MS analysis of hydrolysis assays of tissues of *N. benthamiana* leaves expressing *TcCDS*, *TcADH2* and *TcALDH1*.

Supplemental Figure S4. LC-MS analysis of hydrolysis assays of tissues of *N. benthamiana* leaves expressing *TcCDS*, *TcADH2* and *TcALDH1*.

Supplemental Figure S5. The *C*_\text{\textsc{t}} mean values of *TcGAPDH*.

Supplemental Table S1. Transcript Abundance for Selected Candidate in the RNASeq database of leaves and flowers at different stages from *Tanacetum cinerariifolium*.

ACKNOWLEDGMENTS

We thank Prof. Daniel Jones (Michigan State University) for help with the analysis of non-volatiles compounds in *N. benthamiana* leaves transiently expressing various *T. cinerariifolium* genes.
Figure Legends:

Figure 1. A. Structures of pyrethrins. B. Proposed pathway for the biosynthesis of *trans*-chrysanthemic acid.

Figure 2. GC-MS analysis of pyrethrins and terpenoids from *Tanacetum cinerariifolium* leaves and flowers at different stages of development.

A. Flowers of different stages of development and a leaf of *T. cinerariifolium*.

B. Changes in relative concentrations of pyrethrin I during floral development. Pyrethrin I is the most abundant pyretherin in the flower, and changes in concentrations of other pyrethrins follow the same pattern as those of pyrethrin I.

C. GC-MS chromatogram of total ion mode of MTBE extracts from leaves and flowers harvested at stage 4. In each flower/leaf comparison, samples are shown with the same relative y-axis scale, but the 7.2-15.2 min section is shown at a smaller scale to magnify the peaks. Peaks identified as terpenoids and internal standard (tetradecane) are labeled.

D. GC-MS chromatogram (total ion mode) of MTBE extracts from leaves and flowers of different stages of development, showing the *trans*-chrysanthemic acid levels in each sample.

E. Concentrations of *trans*-chrysanthemic acid in the leaf and in different stages of flowers. Quantification was achieved by normalization of the peaks in (D) to the tetradecane internal standard and comparison to a standard curve of authentic *trans*-chrysanthemic acid (n = 3; means ± SD).

Figure 3. Identification of candidate *ADH* and *ALDH* genes for *trans*-chrysanthemic acid biosynthesis.

A. Images of *T. cinerariifolium* flowers of different stages and of leaves from which RNA samples were obtained for RNAseq analysis.

B. Average-linkage hierarchical clustering of relative transcript abundance of putative ADHs and ALDHs with *TcCDS* and *TcGLIP* based on number of reads of each transcript in each RNASeq library. Tree and heat map generated by the Cluster 3.0 software (see Materials and Methods).

C. Verification of levels of expression of *TcCDS*, *TcGLIP*, *TcADH1*, *TcADH2*, and *TcALDH1* by qRT-PCR. Transcript levels are expressed relative to that of *GAPDH* (glyceraldehyde-3-
phosphate dehydrogenase) in each sample (<i>n</i> = 4; means ± SD). ** <i>p</i><0.01, * <i>p</i><0.05. The differences between leaf, stem and root datapoints and any flower datapoints are all significant at <i>p</i><0.001.

Figure 4. Phylogenetic analysis of candidate <i>T. cinerariifolium</i> dehydrogenases for trans-chrysanthemic acid biosynthesis based on protein sequences.

A. Phylogenetic tree for TcADH1 and TcADH2.

B. Phylogenetic tree for TcALDH1.

The protein sequences from other species are of functionally characterized enzymes whose sequences were identified by BLAST search to be most closely related to the <i>T. cinerariifolium</i> sequences. Phylogenetic analyses were conducted in MEGA7 (Kumar et al., 2016) with the following parameters; multiple sequence alignment with ClustalW, phylogenetic construction with the Maximum Likelihood method and bootstrap tests of 1000 replicates.

Figure 5. Gas chromatography analyses of products obtained in <i>in vitro</i> biochemical assays of TcADH2 and TcALDH1. For all assays analyzed, reactions products were extracted with 100 µl MTBE and run on Rxi-5Sil column. Tetradecane was used as internal standard.

A. Synthesis of <i>trans</i>-chrysanthemol substrate. Top chromatograph trace: 1 mM of a commercially available standard of <i>trans</i>- and <i>cis</i>-chrysanthemol mixture. Middle trace: Reaction products obtained by incubating 30 µg recombinant TcCDS with 2.5 mM DMAPP in 50 µL reaction for 24 hours at 30°C. Bottom chromatograph trace: Reaction products obtained by incubating the products of the TcCDS-catalyzed condensation of DMAPP with 5 units of alkaline phosphatase (ALP) for 1 hour at 37°C.

B. <i>In vitro</i> production of <i>trans</i>-chrysanthemol. Reaction products obtained by incubating 0.64 mM <i>trans</i>-chrysanthemol and 1.5 mM NAD⁺ with 5 µl eluted protein from empty vector (top chromatograph trace) or 1.25 µg purified TcADH2 (bottom chromatograph trace) in 60 µL reaction volume for 5 min.

C. Production of <i>trans</i>-chrysanthemic acid from <i>trans</i>-chrysanthemol in a coupled assay containing 0.64 mM <i>trans</i>-chrysanthemol and 1.5 mM NAD⁺ with 1.25 µg purified TcADH2 and 6.00 µg purified TcALDH1 in 60 µL reaction volume for 5, 10, 15, 25, and 45 min. A control
reaction was performed using 5µl eluted protein from empty vector. Bottom chromatograph trace: 0.3 mM of commercial *trans*-chrysanthemic acid.

Figure 6. Production of *trans*-chrysanthemol, *trans*-chrysanthemic acid, and related compounds in *N. benthamiana* leaves transiently expressing TcCDS, TcADH2, and TcALDH1 proteins.

A. GC-MS chromatograms of MTBE extracts of *N. benthamiana* leaves expressing *EGFP* (control), TcCDS, TcCDS and TcADH2, and TcCDS with TcADH2 and TcALDH1. For terpenes, m/z =123 was monitored, and for the internal control tetradecane, m/z =198 was monitored. Peaks related to *trans*-chrysanthemol, *trans*-chrysanthemic acid and internal standard are labeled.

B. Concentrations of free *trans*-chrysanthemol and (C) free *trans*-chrysanthemic acid in *N. benthamiana* leaves expressing the indicated constructs were determined by comparison with an authentic standard.

D-F. The relative levels of Unknown 1 (D), Unknown 2 (E), and Unknown 3 (F) in *N. benthamiana* leaves expressing the indicated constructs. For each compound, the plant material expressing a specific construct that showed the highest levels (average of three biological replicates) was set at 100%.

The data in B–F represent mean ± SD from triplicate biological replicates. N.D. - not detected.

Figure 7. LC-MS analysis of *N. benthamiana* leaves simultaneously expressing the three enzymes TcCDS, TcADH2, and TcALDH1. Extracted ion chromatograms of m/z 803.37 and 831.33 are shown for: A. EGFP single expression control, B. TcCDS, C. TcCDS + TcADH2, D. TcCDS + TcADH2 + TcALDH1. Chromatograms are all scaled the same, as indicated by the ion current (1.01e7) in the upper right corner of each chromatogram. The sample for panel D was diluted 10-fold compared to the other three samples due to high concentration of m/z 831.33 in the sample. MS/MS spectra are shown for ions m/z 803.37 (E) and m/z 831.33 (F) along with the proposed compound structures based on exact mass, fragmentation pattern, and similarity to previously published data. G. Relative levels of *trans*-chrysanthemol in *N. benthamiana* leaves expressing all TcCDS, TcADH2 and TcALDH1 with or without sodium hydroxide treatment.
Table 1: Relative activities of recombinant TcADH1, TcADH2 and TcALDH1 with selected substrates

<table>
<thead>
<tr>
<th>Alcohols</th>
<th>TcADH1</th>
<th>TcADH2</th>
<th>Aldehydes</th>
<th>TcALDH1</th>
</tr>
</thead>
<tbody>
<tr>
<td>cis-3-Hexenol</td>
<td>N.D.</td>
<td>N.D.</td>
<td>trans-2-Heptenal</td>
<td>47</td>
</tr>
<tr>
<td>Perillyl alcohol</td>
<td>N.D.</td>
<td>35</td>
<td>Octanal</td>
<td>90</td>
</tr>
<tr>
<td>Nerol</td>
<td>100(^b)</td>
<td>42</td>
<td>Dodecanal</td>
<td>47</td>
</tr>
<tr>
<td>Geraniol</td>
<td>48</td>
<td>38</td>
<td>Citral</td>
<td>20</td>
</tr>
<tr>
<td>(S)-β-citronellol</td>
<td>8</td>
<td>22</td>
<td>Perillaldehyde</td>
<td>40</td>
</tr>
<tr>
<td>trans,trans-Farnesol</td>
<td>N.D.</td>
<td>N.D.</td>
<td>Farnesal</td>
<td>54</td>
</tr>
<tr>
<td>trans-Chrysanthemol</td>
<td>N.D.</td>
<td>100(^c)</td>
<td>trans-Chrysanthemal</td>
<td>100(^e)</td>
</tr>
<tr>
<td>8-Hydroxygeraniol</td>
<td>N.D.</td>
<td>70</td>
<td>(S)-(−)-Citronellal</td>
<td>84</td>
</tr>
<tr>
<td>Benzyl alcohol</td>
<td>N.D.</td>
<td>N.D.</td>
<td>Benzaldehyde</td>
<td>90</td>
</tr>
<tr>
<td>Cinnamyl alcohol</td>
<td>N.D.</td>
<td>N.D.</td>
<td>trans-</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cinnamaldehyde</td>
<td></td>
</tr>
</tbody>
</table>

The activities of TcADH1 and TcADH2 were measured with 0.3 mM alcohols and 1mM NAD\(^+\).

The activities of TcALDH1 were measured with 0.04 mM aldehydes and 1mM NADP\(^+\). Data are expressed as relative mean percentages from triplicate independent assays.

\(^a\) N.D., not detectable (≤ 5% of highest activity)

\(^b\) 100% relative activity, corresponds to 0.44 μmol min\(^{-1}\) mg\(^{-1}\) of citral.

\(^c\) 100% relative activity, corresponds to 0.50 μmol min\(^{-1}\) mg\(^{-1}\) of trans-chrysanthemal.

\(^e\) 100% relative activity, corresponds to 0.11 μmol min\(^{-1}\) mg\(^{-1}\) of trans-chrysanthemic acid.
Table 2: Kinetic properties of recombinant TcADH2 and TcALDH1

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Substrate</th>
<th>K_m (μM)</th>
<th>K_{cat} (s⁻¹)</th>
<th>K_{cat}/K_m (M⁻¹ s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TcADH2</td>
<td>trans-chrysanthemol</td>
<td>236.0 ± 5.8</td>
<td>0.75 ± 0.0032</td>
<td>3186.2</td>
</tr>
<tr>
<td></td>
<td>NAD⁺</td>
<td>192.6 ± 8.7</td>
<td>0.64 ± 0.0034</td>
<td>3345.5</td>
</tr>
<tr>
<td>TcALDH1</td>
<td>trans-chrysanthemal</td>
<td>4.4 ± 2.2</td>
<td>0.11 ± 0.0049</td>
<td>25122.4</td>
</tr>
<tr>
<td></td>
<td>NADP⁺</td>
<td>20.4 ± 7.1</td>
<td>0.090 ± 0.0013</td>
<td>4391.8</td>
</tr>
<tr>
<td></td>
<td>trans-chrysanthemal</td>
<td>4.6 ± 1.8</td>
<td>0.096 ± 0.0032</td>
<td>20992.3</td>
</tr>
<tr>
<td></td>
<td>NAD⁺</td>
<td>68.6 ± 17.1</td>
<td>0.086 ± 0.0012</td>
<td>1256.07</td>
</tr>
</tbody>
</table>

Data are presented as mean ± SD from triplicate independent assays. All assays were performed on GC-MS.

a Kinetic parameters were determined with 1 mM NAD⁺.
b Kinetic parameters were determined with 0.64 mM trans-chrysanthemol.
c Kinetic parameters were determined with 1 mM NADP⁺.
d Kinetic parameters were determined with 0.040 mM trans-chrysanthemol.
e Kinetic parameters were determined with 1 mM NAD⁺.
f Kinetic parameters were determined with 0.040 mM trans-chrysanthemol.

Chen F, Tholl D, Bohlmann J, Pichersky E (2011) The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J 66: 212-229

Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12

